跳到主要內容

臺灣博碩士論文加值系統

(44.201.97.0) 您好!臺灣時間:2024/04/24 12:16
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蕭俊彥
研究生(外文):Jyun-Yan Siao
論文名稱:利用垂直異向性電極研究橫向自旋閥單層二硒化鎢通道和接觸的電學特性
論文名稱(外文):Investigation on Electrical Properties of Monolayer Tungsten Diselenide Channel and Contact through Lateral Spin Valve with Perpendicular Magnetic Anisotropy Electrodes
指導教授:林敏聰林敏聰引用關係
指導教授(外文):Minn-Tsong Lin
口試委員:果尚志張玉明安惠榮張文豪張書維
口試委員(外文):Shan-gjr GwoYu-Ming ChangHye-Young AhnWen-Hao ChangShu-Wei Chang
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:物理學研究所
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2019
畢業學年度:108
語文別:英文
論文頁數:174
中文關鍵詞:能谷電子學二維材料過渡金屬硫屬化物二硒化鎢晶體剝離垂直磁異向性元件量測蕭基特能障
外文關鍵詞:Valleytronics2D-materialstransition metal dichalcongenidestungsten diselenidecrystal exfoliationperpendicular magnetic anisotropydevice measurementSchottky barrier
DOI:10.6342/NTU201904421
相關次數:
  • 被引用被引用:0
  • 點閱點閱:152
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近十年來,二維過渡金屬二硫化物引起了人們的興趣。其額外的能谷自由度可以與電子自旋自由度耦合,使得能谷-自旋電子元件可能被實現。然而,由於鐵磁金屬和半導體之間的接觸,將導致電導失配問題,使得通過電接觸的自旋傳輸仍然具有挑戰性。而接觸電阻是實現對二維過渡金屬半導體注入電子自旋的關鍵,其大小由金屬和半導體之間的界面特性決定。當接觸電阻數值落在優化範圍內,將有利於通過電接觸實現自旋傳輸。

在本論文中,我們主要製作了兩種WSe2-FET 橫向自旋閥,一種是正向結構,另一種是倒置結構。此外,接觸電極是由多層鈷/鉑組成,它是一種具有垂直磁向異性(PMA)的電極。在未來的研究中,此種電極可用於注入和檢測單層二硒化鎢通道中的電子自旋。透過濺鍍沉積多層鈷/鉑電極,並且在室溫下使用我們自架的P-MOKE系統測量它們的磁性。單層二硒化鎢和六方氮化硼是使用PDMS透過機械剝離方式來製備,然後再轉移到SiO2(300nm)/Si或預先沉積好的垂直磁異性電極上。在其中兩個元件裡,我們從橫向自旋閥的IV量測中,得到了某些柵極電壓下的蕭基特位壘高度。我們也製作了一些有潛力的WSe2-FET橫向自旋閥,實驗結果顯示這些結構是有機會在未來被用來進行自旋傳輸研究的結構。
Two-dimension transition metal dichalcongenides (2D-TMDCs) has gained interests in recent 10 years. Its extra valley degree of freedom can couple with electron spin degree of freedom, giving the possibility to make valley-spintronic device come true. However, spin transport through the electric contact still remains challenging because of contact between ferromagnetic metal and semiconductor, resulting in conductance mismatch problem. The other key point about injecting spin into TMD semiconductor is contact resistance which is decided by the interface properties between metal and semiconductor. And optimized region value of contact resistance is beneficial to spin transport through the electric contact.

In this thesis, we mainly fabricated two categories of WSe2-FET lateral spin valve. One is the normal structure and the other one is reversed structure. In addition, the contact electrodes consist of Co/Pt multilayers, which is kind of perpendicular magnetic anisotropy (PMA) electrodes. It can be used to inject and detect spin through monolayer tungsten diselenide (WSe2) channel in the future research. Multilayers Co/Pt electrodes are deposited by sputtering and their magnetic properties are measured by our homemade polar MOKE system at room temperature. The monolayer WSe2 and hexagonal boron nitride (hBN) are prepared by mechanical exfoliation through polydimethylsiloxane (PDMS) and are transferred onto SiO2 (300nm)/Si or pre-patterned PMA electrodes afterwards. We extract Schottky barrier height from IV measurement at some certain gate voltage in two of our devices. We also fabricate some promising structure of WSe2-FET lateral spin valve. Results has shown that they''re potential for future spin transport research.
Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 Basic Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1 Two-Dimensional Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.1 2D-Transition Metal Dichalcongenides (2D-TMDCs) . . . . . . . . . . . . . 5
2.1.2 Hexagonal Boron Nitride (h-BN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Magnetic Anisotropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 Spin Tunnel Junction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3.1 Spin Injection from Ferromagnetic Metal into Semiconductor . . . . . . 16
2.3.2 Tunnel Magnetoresistance (TMR) . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3 Instruments and Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.1 Lithography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.1.1 Photolithography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.1.2 Electron Beam Lithography (E-beam) . . . . . . . . . . . . . . . . . . . . . . . . 32
3.2 Deposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.2.1 UHV Magnetron Sputtering System . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.3 Sample Characterization and Measurement . . . . . . . . . . . . . . . . . . . . . 38
3.3.1 Photoluminescence (PL) Spectroscopy . . . . . . . . . . . . . . . . . . . . . . . 38
3.3.2 Magneto-optic Kerr Effect (MOKE) . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.3.3 4-Probe Vacuum System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4 Monolayer WSe2 and Thicker hBN Preparation . . . . . . . . . . . . . . . . . . . . 49
4.1 PDMS Exfoliation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.1.1 Exfoliation Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.1.2 Exfoliated hBN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.1.3 Exfoliated WSe2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.2 The Method of Transferring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5 Magnetic Properties of PMA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

6 Electrical Measurements for Lateral Spin Valve Devices of Different Struc-
tures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
6.1 Sample Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
6.2 Physical Fitting Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
6.3 Experiment Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
6.3.1 Monolyer WSe2 Lateral Device Encapsulated by hBN . . . . . . . . . . . 85
6.3.2 Monolayer WSe2/thicker hBN Lateral Device . . . . . . . . . . . . . . . . . . 98
6.3.3 AlOx/ML WSe2/thicker hBN Lateral Device . . . . . . . . . . . . . . . . . . . 106
6.3.4 Monolayer WSe2 Lateral Device in Reversed Design . . . . . . . . . . . 111

7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

A AC-MR Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

B Leakage Problem Caused by Adaptor . . . . . . . . . . . . . . . . . . . . . . . . . . 125

C Focus-DC-MOKE Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
C.1 Laser Spot Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
C.2 Faraday Effect Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

D Device Supplementary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
D.1 Monolayer WSe2 Lateral Device Encapsulated by hBN . . . . . . . . . . 131
D.1.1 Vg= -14V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
D.1.2 Vg= -16V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
D.1.3 Vg= -18 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
D.2 Monolayer WSe2/thicker hBN Lateral Device . . . . . . . . . . . . . . . . . . 143
D.2.1 Vg= -15V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
D.2.2 Vg= -16V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
D.2.3 Vg= -17V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
D.2.4 Vg= -18 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
D.2.5 Vg= -19V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
[1] Qing Hua Wang, Kourosh Kalantar-Zadeh, Andras Kis, Jonathan N. Coleman, and Michael S. Strano. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nature Nanotechnology, 7:699, 2012.
[2] Andrea Splendiani, Liang Sun, Yuanbo Zhang, Tianshu Li, Jonghwan Kim, ChiYung Chim, Giulia Galli, and Feng Wang. Emerging photoluminescence in monolayer mos2. Nano Letters, 10(4):1271–1275, 2010.
[3] Di Xiao, Gui-Bin Liu, Wanxiang Feng, Xiaodong Xu, and Wang Yao. Coupled spin and valley physics in monolayers of MoS2 and other group-vi dichalcogenides. Phys.Rev. Lett., 108(19):196802, 2012.
[4] Alex Summerfield. Studies of self-assembled metal-organic nanostructures and the mbe growth of graphene. phdthesis, 2016.
[5] Adrien Allain, Jiahao Kang, Kaustav Banerjee, and Andras Kis. Electrical contacts to two-dimensional semiconductors. Nature Materials, 14:1195, 2015.
[6] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov. Electric field effect in atomically thin carbon films. Science, 306(5696):666–669, 2004.
[7] Changgu Lee, Xiaoding Wei, Jeffrey W. Kysar, and James Hone. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science, 321(5887):385–388, 2008.
[8] S. Ghosh, I. Calizo, D. Teweldebrhan, E. P. Pokatilov, D. L. Nika, A. A. Balandin, W. Bao, F. Miao, and C. N. Lau. Extremely high thermal conductivity of graphene: Prospects for thermal management applications in nanoelectronic circuits. Applied Physics Letters, 92(15):151911, 2008.
[9] Hyunmin Kim and Jong-Hyun Ahn. Graphene for flexible and wearable device applications. Carbon, 120:244–257, 2017.
[10] Raghunath Murali, Yinxiao Yang, Kevin Brenner, Thomas Beck, and James D. Meindl. Breakdown current density of graphene nanoribbons. Applied Physics Letters, 94(24):243114, 2009.
[11] Kin Fai Mak, Changgu Lee, James Hone, Jie Shan, and Tony F. Heinz. Atomically thin MoS2: A new direct-gap semiconductor. Phys. Rev. Lett., 105(13):4, 2010.
[12] Gui-Bin Liu, Di Xiao, Yugui Yao, Xiaodong Xu, and Wang Yao. Electronic structures and theoretical modelling of two-dimensional group-vib transition metal dichalcogenides. Chem. Soc. Rev, 44(9):2643–2663, 2015.
[13] B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis. Single-layer MoS2 transistors. Nature Nanotechnology, 6:147, 2011.
[14] Zongyou Yin, Hai Li, Hong Li, Lin Jiang, Yumeng Shi, Yinghui Sun, Gang Lu, Qing Zhang, and Chen. Single-layer MoS2 phototransistors. ACS Nano, 6(1):74–80, 2012.
[15] Mingsheng Xu, Tao Liang, Minmin Shi, and Hongzheng Chen. Graphene-like two-dimensional materials. American Chemical Society, 113(5):0009–2665, 2013.
[16] Julia Gusakova, Xingli Wang, Li Lynn Shiau, Anna Krivosheeva, Victor Shaposhnikov, Victor Borisenko, Vasilii Gusakov, and Beng Kang Tay. Electronic properties of bulk and monolayer tmds: Theoretical study within dft framework (gvj-2e method). physica status solidi (a), 214(12):1700218, 2017.
[17] Sohail Ahmed and Jiabao Yi. Two-dimensional transition metal dichalcogenides and their charge carrier mobilities in field-effect transistors. Nano-Micro Letters, 9(4):50, 2017.
[18] M. Waqas Iqbal, M. Zahir Iqbal, M. Farooq Khan, M. Arslan Shehzad, Yongho Seo, Yongho Seo, Jong Hyun Park, Chanyong Hwang, and Jonghwa Eom. High-mobility and air-stable single-layer ws2 field-effect transistors sandwiched between chemical vapor deposition-grown hexagonal bn films. Scientific Reports, 5:10699, 2015.
[19] Kin Fai Mak and Jie Shan. Photonics and optoelectronics of 2d semiconductor transition metal dichalcogenides. Nature Photonics, 10:216, 2016.
[20] J. A. Reyes-Retana and F. Cervantes-Sodi. Spin-orbital effects in metal-dichalcogenide semiconducting monolayers. Scientific Reports, 6:24093, 2016.
[21] Di Xiao, Gui-Bin Liu, Wanxiang Feng, Xiaodong Xu, and Wang Yao. Coupled spin and valley physics in monolayers of mos2 and other group-vi dichalcogenides. Phys. Rev. Lett., 108(19):196802, 2012.
[22] G. Cassabois, P. Valvin, and B. Gil. Hexagonal boron nitride is an indirect bandgap semiconductor. Nature Photonics, 10:262, 2016.
[23] Liam Britnell, Roman V. Gorbachev, Rashid Jalil, Branson D. Belle, Fred Schedin, Mikhail I. Katsnelson, Laurence Eaves, Sergey V. Morozov, Alexander S. Mayorov, Nuno M. R. Peres, Antonio H. Castro Neto, Jon Leist, Andre K. Geim, Leonid A. Ponomarenko, and Kostya S. Novoselov. Electron tunneling through ultrathin boron nitride crystalline. Nano Letters, 12(3):1707–1710, 2012.
[24] C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K. L. Shepard, and J. Hone. Boron nitride substrates for high-quality graphene electronics. Nature Nanotechnology, 5:722, 2010.
[25] Lu Hua Li, Tan Xing, Ying Chen, and Rob Jones. Boron nitride nanosheets for metal protection. Advanced Materials Interfaces, 1(8):1300132, 2014.
[26] Xuemei Li, Jun Yin, Jianxin Zhou, and Wanlin Guo. Large area hexagonal boron nitride monolayer as efficient atomically thick insulating coating against friction and oxidation. Nanotechnology, 25(10):105701, 2014.
[27] Pablo U. Asshoff, Jose L. Sambricio, Sergey Slizovskiy, Aidan P. Rooney, Takashi Taniguchi, Kenji Watanabe, Sarah J. Haigh, Vladimir Fal’ko, Irina V. Grigorieva, and Ivan J. Vera-Marun. Magnetoresistance in co-hbn-nife tunnel junctions enhanced by resonant tunneling through single defects in ultrathin hbn barriers. Nano Letters, 18(11):6954–6960, 2018.
[28] M. Piquemal-Banci, R. Galceran, S. Caneva, M.-B. Martin, R. S. Weatherup, P. R. Kidambi, K. Bouzehouane, S. Xavier, A. Anane, F. Petroff, A. Fert, J. Robertson, S. Hofmann, B. Dlubak, and P. Seneor. Magnetic tunnel junctions with monolayer hexagonal boron nitride tunnel barriers. Applied Physics Letters, 108(10):102404, 2016.
[29] Xu Cui, Gwan-Hyoung Lee, Young Duck Kim, Ghidewon Arefe, Pinshane Y. Huang, Chul-Ho Lee, Daniel A. Chenet, Xian Zhang, Lei Wang, Fan Ye, Filippo Pizzocchero, Bjarke S. Jessen, Kenji Watanabe, Takashi Taniguchi, David A. Muller, Tony Low, Philip Kim, and James Hone. Multi-terminal transport measurements of mos2 using a van der waals heterostructure device platform. Nature Nanotechnology, 10:534, 2015.
[30] Alexander S. Mayorov, Roman V. Gorbachev, Sergey V. Morozov, Liam Britnell, Rashid Jalil, Leonid A. Ponomarenko, Peter Blake, Kostya S. Novoselov, Kenji Watanabe, Takashi Taniguchi, and A. K. Geim. Micrometer-scale ballistic transport in encapsulated graphene at room temperature. Nano Letters, 11(6):102404, 2011.
[31] Gwan-Hyoung Lee, Xu Cui, Young Duck Kim, Ghidewon Arefe, Xian Zhang, Chul-Ho Lee, Fan Ye, Kenji Watanabe, Takashi Taniguchi, Philip Kim, and James Hone. Highly stable, dual-gated mos2 transistors encapsulated by hexagonal boron nitride with gate-controllable contact, resistance, and threshold voltage. ACS Nano, 9(7):7019–7026, 2015.
[32] Joel I. Jan Wang, Yafang Yang, Yu-An Chen, Kenji Watanabe, Takashi Taniguchi, Hugh O. H. Churchill, and Pablo Jarillo-Herrero. Electronic transport of encapsulated graphene and wse2 devices fabricated by pick-up of prepatterned hbn. Nano Letters, 15(3):1898–1903, 2015.
[33] Patrick Bruno. Physical origins and theoretical models of magnetic anisotropy. in Magnetismus von Festkorpern und grenzflachen, 24:1–28, 1993.
[34] Louis Néel. Anisotropie magnétique superficielle et surstructures d’orientation. J. Phys. Radium, 15(4):225–239, 1954.
[35] Minn-Tsong Lin, W. C. Lin, C. C. Kuo, and C. L. Chiu. Critical evolution of spin-reorientation transition in magnetic CoxNi1−x/Cu(100) films upon precise variation of d-band filling. Phys. Rev. B, 62(21):14268–14272, 2000.
[36] W. C. Lin, B. Y. Wang, Y. W. Liao, Ker-Jar Song, and Minn-Tsong Lin. Alloying and strain relaxation effects on spin-reorientation transitions in CoxNi1−x/Cu3Au(100) ultrathin films. Phys. Rev. B, 71(18):9, 2005.
[37] Supriyo Datta and Biswajit Das. Electronic analog of the electro‐optic modulator. Applied Physics Letters, 56(7):665–667, 1990.
[38] P. C. van Son, H. van Kempen, and P. Wyder. Boundary resistance of the ferromagnetic-nonferromagnetic metal interface. Phys. Rev. Lett., 58(0):2271–2273, 1987.
[39] T. Valet and A. Fert. Theory of the perpendicular magnetoresistance in magnetic multilayers. Phys. Rev. B, 48(10):7099–7113, 1993.
[40] G. Schmidt, D. Ferrand, L. W. Molenkamp, A. T. Filip, and B. J. van Wees. Fundamental obstacle for electrical spin injection from a ferromagnetic metal into a diffusive semiconductor. Phys. Rev. B, 62(8):R4790–R4793, 2000.
[41] A. Fert and H. Jaffrès. Conditions for efficient spin injection from a ferromagnetic metal into a semiconductor. Phys. Rev. B, 64(18):184420, 2001.
[42] D. Hägele, M. Oestreich, W. W. Rühle, N. Nestle, and K. Eberl. Spin transport in GaAs. Applied Physics Letters, 73(11):1580–1582, 1998.
[43] J. S. Moodera, Lisa R. Kinder, Terrilyn M. Wong, and R. Meservey. Large magnetoresistance at room temperature in ferromagnetic thin film tunnel junctions. Phys. Rev. Lett., 74(16):3273–3276, 1995.
[44] Maëlis Piquemal-Banci, Regina Galceran, Florian Godel, Sabina Caneva, MarieBlandine Martin, Robert S. Weatherup, Piran R. Kidambi, Karim Bouzehouane, Stephane Xavier, Abdelmadjid Anane, Frédéric Petroff, Albert Fert, Simon MutienMarie Dubois, Jean-Christophe Charlier, John Robertson, Stephan Hofmann, Bruno Dlubak, and Pierre Seneor. Insulator-to-metallic spin-filtering in 2d-magnetic tunnel junctions based on hexagonal boron nitride. ACS Nano, 12(5):4712–4718, 2018.
[45] J. Bardeen. Tunnelling from a many-particle point of view. Phys. Rev. Lett., 6(2):57–59, 1961.
[46] M. Jullière. Tunneling between ferromagnetic films. Physics Letters A, 54(3):225–226, 1975.
[47] J.M.D. Coey and C.L. Chien. Half-metallic ferromagnetic oxides. MRS Bulletin, 28(10):720–724, 2003.
[48] Alan Kalitsov, Pierre-Jean Zermatten, Frédéric Bonell, Gilles Gaudin, Stéphane Andrieu, Coriolan Tiusan, Mairbek Chshiev, and Julian P Velev. Bias dependence of tunneling magnetoresistance in magnetic tunnel junctions with asymmetric barriers. IOP Publishing, 25(49):496005, 2013.
[49] Wenhong Wang, Hiroaki Sukegawa, and Koichiro Inomata. Temperature dependence of tunneling magnetoresistacnce in epitaxial magnetic tunnel junctions using a Co2FeAl Heusler alloy electrode. Phys. Rev. B, 82(4):092402, 2010.
[50] Hyunsoo Yang, See-Hun Yang, and Stuart Parkin. The role of mg interface layer in mgo magnetic tunnel junctions with CoFe and CoFeB electrodes. AIP Advances, 2(1):012150, 2012.
[51] J. Mathon and A. Umerski. Theory of tunneling magnetoresistance of an epitaxial Fe/MgO/Fe(001) junction. Phys. Rev. B, 63(4):220403, 2011.
[52] J. Zak, E. R. Moog, C. Liu, and S. D. Bader. Magneto-optics of multilayers with arbitrary magnetization directions. Phys. Rev. B, 43(8):6423–6429, 1991.
[53] S.D. Bader. Smoke. Journal of Magnetism and Magnetic Materials, 100(1):440–454, 1991.
[54] Z.Q Qiu and S.D Bader. Surface magneto-optic kerr effect (smoke). Journal of Magnetism and Magnetic Materials, 200(1):664–678, 1999.
[55] N. Nakajima, T. Koide, T. Shidara, H. Miyauchi, H. Fukutani, A. Fujimori, K. Iio, T. Katayama, M. Nývlt, and Y. Suzuki. Perpendicular magnetic anisotropy caused by interfacial hybridization via enhanced orbital moment in Co/Pt multilayers: Magnetic circular x-ray dichroism study. Phys. Rev. Lett., 81(23):5229–5232, 1998.
[56] G. H. O. Daalderop, P. J. Kelly, and M. F. H. Schuurmans. Magnetic anisotropy of a free-standing co monolayer and of multilayers which contain co monolayers. Phys. Rev. B, 50(14):9989–10003, 1994.
[57] B. D. Hermsmeier, R. F. C. Farrow, C. H. Lee, E. E. Marinero, C. J. Lin, R. F. Marks, and C. J. Chien. Magnetic anisotropy and structural characterization of co/pt superlattices grown along selected orientations by molecular‐beam epitaxy. Journal of Applied Physics, 69(8):5646–5648, 1991.
[58] S. U. Jen, T. P. Chen, and B. L. Chao. Saturation moment, specific heat, and transport properties of disordered co100−xptx alloys. Phys. Rev. B, 48(17):12789–12794, 1993.
[59] Satoru Emori and Geoffrey S. D. Beach. Optimization of out-of-plane magnetized co/pt multilayers with resistive buffer layers. Journal of Applied Physics, 110(3):033919, 2011.
[60] C.H. Lee, R.F.C. Farrow, B.D. Hermsmeier, R.F. Marks, W.R. Bennett, C.J. Lin, E.E. Marinero, P.D. Kirchner, and C.J. Chien. Molecular beam epitaxial growth and magnetic properties of co-pt superlattices oriented along the [001], [110] and [111] axes of pt. Journal of Magnetism and Magnetic Materials, 93:592–596, 1991.
[61] Ying NIE, Xin YANG, Pang ZHANG, and Hai SANG. Magnetization and coercivity in co/pt multilayers with constant total co layer thickness. Transactions of Nonferrous Metals Society of China, 20(5):819–824, 2010.
[62] R. Sbiaa, Z. Bilin, M. Ranjbar, H. K. Tan, S. J. Wong, S. N. Piramanayagam, and T. C. Chong. Effect of magnetostatic energy on domain structure and magnetization reversal in (co/pd) multilayers. Journal of Applied Physics, 107(10):103901, 2010.
[63] Sze Ter Lim, Michael Tran, Jacob Wang Chenchen, Ji Feng Ying, and Guchang Han. Effect of different seed layers with varying co and pt thicknesses on the magnetic properties of co/pt multilayers. Journal of Applied Physics, 117(17):17A731, 2015.
[64] S.M. Sze and K.K. Ng. Physics of semiconductor devices. 3rd edition. John Wiley and Sons, Hoboken, 2006.
[65] O.W.Richardson. Li. some applications of the electron theory of matter. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 23(136):594–627, 1912.
[66] Saul Dushman. Electron emission from metals as a function of temperature. Phys. Rev., 21(6):623–636, 1923.
[67] Amro Anwar, Bahram Nabet, James Culp, and Fransisco Castro. Effects of electron confinement on thermionic emission current in a modulation doped heterostructure. Journal of Applied Physics, 85(5):2663–2666, 1999.
[68] Xianlong Wei, Qing Chen, and Lianmao Peng. Electron emission from a two-dimensional crystal with atomic thickness. Journal of Applied Physics, 3(4):042130, 2013.
[69] Jen-Ru Chen, Patrick M. Odenthal, Adrian G. Swartz, George Charles Floyd, Hua Wen, Kelly Yunqiu Luo, and Roland K. Kawakami. Control of schottky barriers in single layer mos2 transistors with ferromagnetic contacts. Nano Letters, 13(7):3106–3110, 2013.
[70] Weiyi Wang, Yanwen Liu, Lei Tang, Yibo Jin, Tongtong Zhao, and Faxian Xiu. Controllable schottky barriers between mos2 and permalloy. Scientific Reports, 4:6928, 2014.
[71] Shiheng Liang, Huaiwen Yang, Pierre Renucci, Bingshan Tao, Piotr Laczkowski, Stefan Mc-Murtry, Gang Wang, Xavier Marie, Jean-Marie George, Sèbastien Petit- Watelot, Abdelhak Djeffal, Stèphane Mangin, Henri Jaffrès, and Yuan Lu. Electrical spin injection and detection in molybdenum disulfide multilayer channel. Nature Communications, 8:14947, 2017.
[72] Naveen Kaushik, Debjani Karmakar, Ankur Nipane, Shruti Karande, and Saurabh Lodha. Interfacial n-doping using an ultrathin tio2 layer for contact resistance reduction in mos2. ACS Applied Materials and Interfaces, 8(1):256–263, 2016.
[73] José Ramón Durán Retamal, Dharmaraj Periyanagounder, Jr-Jian Ke, Meng-Lin Tsai, and Jr-Hau He. Charge carrier injection and transport engineering in two-dimensional transition metal dichalcogenides. Chem. Sci., 9(40):7727–7745, 2018.
[74] P. R. Gray, P. J. Hurst, S. H. Lewis, and R. G. Meyer. Analysis and design of analog integrated circuits. 5th edition. Wiley, page 40.
[75] Akash Laturia, Maarten L. Van de Put, and William G. Vandenberghe. Dielectric properties of hexagonal boron nitride and transition metal dichalcogenides: from monolayer to bulk. npj 2D Materials and Applications, 2(1):6, 2018.
[76] N. R. Pradhan, D. Rhodes, S. Memaran, J. M. Poumirol, D. Smirnov, S. Talapatra, S. Feng, N. Perea-Lopez, A. L. Elias, M. Terrones, P. M. Ajayan, and L. Balicas. Hall and field-effect mobilities in few layered p-wse2 field-effect transistors. Scientific Reports, 5:8979, 2015.
[77] Hao Qiu, Tao Xu, Zilu Wang, Wei Ren, Haiyan Nan, Zhenhua Ni, Qian Chen, Shijun Yuan, Feng Miao, Fengqi Song, Gen Long, Yi Shi, Litao Sun, Jinlan Wang, and Xinran Wang. Hopping transport through defect-induced localized states in molybdenum disulphide. Nature Communications, 4:2642, 2013.
[78] Melinda Y. Han, Juliana C. Brant, and Philip Kim. Electron transport in disordered graphene nanoribbons. Phys. Rev. Lett., 104(5):056801, 2010.
[79] E. M. Hamilton. Variable range hopping in a non-uniform density of states. The Philosophical Magazine: A Journal of Theoretical Experimental and Applied
Physics, 26(4):1043–1045, 1972.
[80] A L Efros and B I Shklovskii. Coulomb gap and low temperature conductivity of disordered systems. Journal of Physics C: Solid State Physics, 8(4):L49–L51, 1975.
[81] Michael G. Stanford, Pushpa R. Pudasaini, Elisabeth T. Gallmeier, Nicholas Cross, Liangbo Liang, Akinola Oyedele, Gerd Duscher, Masoud Mahjouri-Samani, Kai Wang, Kai Xiao, David B. Geohegan, Alex Belianinov, Bobby G. Sumpter, and Philip D. Rack. High conduction hopping behavior induced in transition metal dichalcogenides by percolating defect networks: Toward atomically thin circuits. Advanced Functional Materials, 27(36):1702829, 2017.
[82] Y. Lu, D. Lacour, G. Lengaigne, S. Le Gall, S. Suire, F. Montaigne, M. Hehn, and M. W. Wu. Electrical control of interfacial trapping for magnetic tunnel transistor on silicon. Applied Physics Letters, 104(4):042408, 2014.
[83] Y. Lu, M. Tran, H. Jaffrès, P. Seneor, C. Deranlot, F. Petroff, J-M. George, B. Lépine, S. Ababou, and G. Jézéquel. Spin-polarized inelastic tunneling through insulating barriers. Phys. Rev. Lett., 102(17):176801, 2009.
[84] Sung Tae Lee and In Tak Cho. Accurate extraction of wse2 fets parameters by using pulsed i-v method at various temperatures. Nano Convergence, 3(1):31, 2016.
[85] Hui Fang, Steven Chuang, Ting Chia Chang, Kuniharu Takei, Toshitake Takahashi, and Ali Javey. High performance single layered wse2 p-fets with chemically doped contacts. Nano Letters, 12(7):3788–3792, 2012.
[86] Wei Liu, Wei Cao, Jiahao Kang, and Kaustav Banerjee. High-performance field-effect-transistors on monolayer-wse2. ECS Transactions, 58, 2013.
[87] Wei Liu, Jiahao Kang, Deblina Sarkar, Yasin Khatami, Debdeep Jena, and Kaustav Banerjee. Role of metal contacts in designing high-performance monolayer n-type Wse2 field effect transistors. Nano Letters, 13(5):1983–1990, 2013.
[88] Jingli Wang, Qian Yao, Chun-Wei Huang, Xuming Zou, Lei Liao, Shanshan Chen, Zhiyong Fan, Kai Zhang, Wei Wu, Xiangheng Xiao, Changzhong Jiang, and WenWei Wu. High mobility mos2 transistor with low schottky barrier contact by using atomic thick h-bn as a tunneling layer. Advanced Materials, 28(37):8302–8308, 2016.
[89] Dmitry Ovchinnikov, Adrien Allain, Ying-Sheng Huang, Dumitru Dumcenco, and Andras Kis. Electrical transport properties of single-layer ws2. ACS Nano, 8(8):8174–8181, 2014.
[90] Adrien Allain and Andras Kis. Electron and hole mobilities in single-layer wse2. ACS Nano, 8(7):7180–7185, 2014.
[91] H.H. Berger. Models for contacts to planar devices. Solid-State Electronics, 15(2):145–158, 1972.
[92] D. B. Scott, W. R. Hunter, and H. Shichijo. A transmission line model for silicided diffusions: Impact on the performance of vlsi circuits. IEEE Journal of Solid-State Circuits, 17(2):281–291, 1982.
[93] Xin Tong, Eric Ashalley, Feng Lin, Handong Li, and Zhiming M. Wang. Advances in mos2-based field effect transistors (fets). Nano-Micro Letters, 7(3):203–218, 2015.
[94] Arnob Islam, Jaesung Lee, and Philip X.-L. Feng. All-dry transferred single- and few-layer mos2 field effect transistor with enhanced performance by thermal annealing. Journal of Applied Physics, 123(2):025701, 2018.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊