跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.175) 您好!臺灣時間:2024/12/10 16:40
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:裴迪
研究生(外文):Dinesh Kumar Patel
論文名稱:毫米尺度單層石墨烯電子電洞接面之亮子霍爾效應
論文名稱(外文):Quantum Hall effect in millimeter-scale, mono-layer epitaxial graphene p-n junctions
指導教授:梁啟德
指導教授(外文):Chi-Te Liang
口試委員:林立弘謝雅萍呂宥蓉謝馬利歐
口試委員(外文):Li-Hung LinYa-Ping HsiehYu-Jung LuMario Hofmann
口試日期:2020-06-30
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:物理學研究所
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:英文
論文頁數:137
中文關鍵詞:Integer and Fractional multiple of RHQuantum Hall effectmono-layer epitaxial graphenep-n junctions
外文關鍵詞:Integer and Fractional multiple of RHQuantum Hall effectmono-layer epitaxial graphenep-n junctions
DOI:10.6342/NTU202001274
相關次數:
  • 被引用被引用:0
  • 點閱點閱:85
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
After the discovery of graphene, condensed matter research community interact a lot to investigate two dimensional (2D) physics because of the unique chiral nature of its carrier dynamics and huge Landau level spacing in comparison to GaAs. For metrology application point of view, graphene on silicon carbide (SiC) has been identified as an ideal platform for resistance standards using particularly quantum Hall effect technique. This thesis describes the fabrication technique of epitaxial graphene-based millimeter-scale, series and parallel p-n junction device. And perform the quantum Hall effect measurement. These experiments elucidate some interesting physical properties and technological applications of graphene.

Epitaxial graphene (EG) on SiC, grown on hexagonal SiC at 1850 ºC temperatures, is nearly defect-free and mono-layer on the centimeter scale. It exhibits properties that are suitable for large-scale and high-current applications. We have demonstrated the millimeter-scale fabrication of monolayer epitaxial graphene p-n-p junction devices using simple ultraviolet photolithography, thereby significantly reducing the device processing time compared to electron beam lithography typically used for obtaining approximately 200 nm wide dissipation less junctions. This work presents the resulting variety of experimental data obtained from these devices, introducing multiple current inputs with several different configurations. Furthermore, we use the LTspice circuit simulator to examine the various rearrangements of the electric potential in the device when injecting current at up to three independent sites. These measurements yield nonconventional, fractional multiples of the typical quantized Hall resistance at ν=2 plateau (R_H=h⁄(〖(2e〗^2)) , where R_H is the Hall resistance, h is the Planck constant and e is the electron charge) that take the form: a/b R_H. Here, a and b have been observed to take on values such 1, 2, 3, and 5 to form various coefficients of R_H. These results support the potential for drastically simplifying device processing time and may be used for many other two-dimensional materials.

To verify the proposed UV photolithography technique, dissipation less junction and to support our non-conventional quantized Hall resistance values, we fabricated two more devices with four and seven p-n junction in series at millimeter scale. The utilization of single current in device through source and drain has enabled many integer (1, 2, 3, 4, 5, 6, 7 and 8) multiple of the quantized Hall resistance at ν=2 plateau (R_H≈ 12906 Ω).The usage of multiple current terminals and their arbitrarily selected placement on millimeter-scale graphene p-n junction devices has enabled the measurement of many fractional (2/3, 8/7, 6/17, 12/13, 24/29, 32/57 and many more) multiples of the R_H at ν=2 plateau. These integers and fractions can be determined both analytically and by simulations. These experiments validate the use of either the LTspice circuit simulator or the analytical framework recently presented in similar work. Furthermore, the production of several devices with large-scale junctions substantiates the approach of using simple ultraviolet lithography to obtain junctions of sufficient sharpness.

Measurements of fractional multiples of the ν=2 plateau quantized Hall resistance (R_H ≈ 12906 Ω) were enabled by the utilization of multiple current terminals on millimeter-scale graphene p-n junction devices fabricated with interfaces along both lateral directions. These quantum Hall resistance checkerboard devices have been demonstrated to match quantized resistance outputs numerically generated with the LTspice circuit simulator. From the devices’ functionality, more complex embodiments of the quantum Hall resistance checkerboard were simulated to highlight the parameter space within which these devices could operate. Moreover, these measurements suggest that the scalability of p-n junction fabrication on millimeter or centimeter scale is feasible with regards to graphene device manufacturing by using the far more efficient process of standard ultraviolet lithography.
After the discovery of graphene, condensed matter research community interact a lot to investigate two dimensional (2D) physics because of the unique chiral nature of its carrier dynamics and huge Landau level spacing in comparison to GaAs. For metrology application point of view, graphene on silicon carbide (SiC) has been identified as an ideal platform for resistance standards using particularly quantum Hall effect technique. This thesis describes the fabrication technique of epitaxial graphene-based millimeter-scale, series and parallel p-n junction device. And perform the quantum Hall effect measurement. These experiments elucidate some interesting physical properties and technological applications of graphene.

Epitaxial graphene (EG) on SiC, grown on hexagonal SiC at 1850 ºC temperatures, is nearly defect-free and mono-layer on the centimeter scale. It exhibits properties that are suitable for large-scale and high-current applications. We have demonstrated the millimeter-scale fabrication of monolayer epitaxial graphene p-n-p junction devices using simple ultraviolet photolithography, thereby significantly reducing the device processing time compared to electron beam lithography typically used for obtaining approximately 200 nm wide dissipation less junctions. This work presents the resulting variety of experimental data obtained from these devices, introducing multiple current inputs with several different configurations. Furthermore, we use the LTspice circuit simulator to examine the various rearrangements of the electric potential in the device when injecting current at up to three independent sites. These measurements yield nonconventional, fractional multiples of the typical quantized Hall resistance at ν=2 plateau (R_H=h⁄(〖(2e〗^2)) , where R_H is the Hall resistance, h is the Planck constant and e is the electron charge) that take the form: a/b R_H. Here, a and b have been observed to take on values such 1, 2, 3, and 5 to form various coefficients of R_H. These results support the potential for drastically simplifying device processing time and may be used for many other two-dimensional materials.

To verify the proposed UV photolithography technique, dissipation less junction and to support our non-conventional quantized Hall resistance values, we fabricated two more devices with four and seven p-n junction in series at millimeter scale. The utilization of single current in device through source and drain has enabled many integer (1, 2, 3, 4, 5, 6, 7 and 8) multiple of the quantized Hall resistance at ν=2 plateau (R_H≈ 12906 Ω).The usage of multiple current terminals and their arbitrarily selected placement on millimeter-scale graphene p-n junction devices has enabled the measurement of many fractional (2/3, 8/7, 6/17, 12/13, 24/29, 32/57 and many more) multiples of the R_H at ν=2 plateau. These integers and fractions can be determined both analytically and by simulations. These experiments validate the use of either the LTspice circuit simulator or the analytical framework recently presented in similar work. Furthermore, the production of several devices with large-scale junctions substantiates the approach of using simple ultraviolet lithography to obtain junctions of sufficient sharpness.

Measurements of fractional multiples of the ν=2 plateau quantized Hall resistance (R_H ≈ 12906 Ω) were enabled by the utilization of multiple current terminals on millimeter-scale graphene p-n junction devices fabricated with interfaces along both lateral directions. These quantum Hall resistance checkerboard devices have been demonstrated to match quantized resistance outputs numerically generated with the LTspice circuit simulator. From the devices’ functionality, more complex embodiments of the quantum Hall resistance checkerboard were simulated to highlight the parameter space within which these devices could operate. Moreover, these measurements suggest that the scalability of p-n junction fabrication on millimeter or centimeter scale is feasible with regards to graphene device manufacturing by using the far more efficient process of standard ultraviolet lithography.
Abstract iii
Acknowledgments v
List of Publications vii
Table of Contents ix
List of figures xiii
Chapter 1. Introduction 1
1.1 Background 1
1.2 Objective 2
1.3 Complexity 3
1.4 Methodology 3
Chapter 2. Background on the classical and quantum Hall effect 5
2.1 Classical Hall effect 5
2.2 The quantum Hall effect in two-dimensional electron systems 8
2.2.1 Landau quantization 10
2.2.2 Edge states 14
2.3 The quantum Hall effect in monolayer graphene 16
2.3.1 Band structure of graphene 17
2.3.2 Landau quantization in graphene 25
2.4 The quantum Hall effect in graphene p-n Junction 28
2.4.1 Evolution of the Landau levels across the p-n junctions 28
2.4.2 Theoretical calculation of a p-n-p junction 30
2.5 LTspice simulations 35
Chapter 3. Experimental techniques and optical characterization 39
3.1 Materials and experimental tools 39
3.2 Labelling on the carbon face of SiC before dicing the SiC wafer 40
3.3 Dicing and cleaning SiC wafer prior to growing graphene 40
3.4 Epitaxial monolayer graphene grown on centimeter scale 41
3.4.1 Confocal microscopy characterization 42
3.4.2 Atomic force microscopy 44
3.4.3 Raman spectroscopy 44
3.5 Fabrication of devices for quantum Hall measurement 45
3.6 Functionalisation of graphene by Cr(CO)3 48
3.7 Fabrication of p-n junctions on millimeter scale 49
3.7.1 Designing and making p-n junction optical masks 50
3.7.2 Series p-n junction 51
3.7.3 Checkerboard p-n junctions 52
3.8 Ultraviolet light exposer on p-n Junctions 53
3.9 Low-temperature transport measurement setup 54
3.9.1 Janis Cryogenic system 55
3.9.2 Four-terminal resistance measurement techniques 57
Chapter 4. Atypical quantized resistance in millimeter-scale epitaxial graphene p-n junctions 59
4.1 Verifying the charge configuration 59
4.2 Assessing the quality of the charge configuration and p-n junctions 60
4.3 Basic electrical characterization of p-n junctions 64
4.4 Measuring nonconventional fractions of the v=2 quantized Hall resistance 68
Chapter 5. Accessing ratios of the ν = 2 quantized Hall resistance in graphene p-n junction devices with multiple current terminals 73
5.1 Results on a four junction device 73
5.1.1 Optical Characterization 74
5.1.2 Electrical Verification 75
5.1.3 Using multiple terminals 77
5.2 Results on a seven junction device 79
5.2.1 Verifying the electrical functionality of all seven regions 79
5.2.2 Integer and fractional values of RH for a seven junction device 80
Chapter 6. Quantum Hall effect in graphene-based checkerboard p-n junction devices 83
6.1 Resistance of graphene-based checkerboard p-n junction devices 83
6.2 Hall resistance quantization using multiple current sources 86
6.3 Prediction of LT spice simulations 88
6.3.1 Proposing different region geometries 89
Chapter 7. Summary and outlook 91
References 95
Appendix 112
A 112
B 120
C 126
D 130
[1]K. von Klitzing, G. Dorda, and M. Pepper, “New method for high-accuracy determination of the fine-structure constant based on quantized hall resistance,” Phys. Rev. Lett., vol. 45, no. 6, pp. 494–497, 1980, doi: 10.1103/PhysRevLett.45.494.
[2]I. M. Mills, P. J. Mohr, T. J. Quinn, B. N. Taylor, and E. R. Williams, “Adapting the international system of units to the twenty-first century,” Philos. Trans. R. Soc. A Math. Phys. Eng. Sci., vol. 369, no. 1953, pp. 3907–3924, 2011, doi: 10.1098/rsta.2011.0180.
[3]M. J. T. Milton, R. Davis, and N. Fletcher, “Towards a new SI: A review of progress made since 2011,” Metrologia, vol. 51, no. 3, 2014, doi: 10.1088/0026-1394/51/3/R21.
[4]B. P. Kibble, “A. Kastler, P. Grivet (auth.), J. H. Sanders, A. H. Wapstra (eds.) - Atomic Masses and Fundamental Constants 5-Springer US (1976).pdf.” New York, pp. 545–551, 1976.
[5]R. Steiner, D. Newell, and E. Williams, “Determining the Planck Constant,” J. Res. Natl. Inst. Stand. Technol., vol. 110, no. 1, pp. 1–26, 2005.
[6]R. B. Laughlin, “Quantized Hall conductivity in two dimensions,” Phys. Rev. B, vol. 23, no. 10, pp. 5632–5633, 1981, doi: 10.1103/PhysRevB.23.5632.
[7]J. Riess, “Is the quantized hall conductance a topological invariant?,” Epl, vol. 12, no. 3, pp. 253–258, 1990, doi: 10.1209/0295-5075/12/3/011.
[8]D. J. Thouless, “Topological interpretations of quantum Hall conductance,” J. Math. Phys., vol. 35, no. 10, pp. 5362–5372, 1994, doi: 10.1063/1.530757.
[9]P. J. Mohr and B. N. Taylor, “CODATA recommended values of the fundamental physical constants: 1998,” Rev. Mod. Phys., vol. 72, no. 2, pp. 351–495, 2000, doi: 10.1103/RevModPhys.72.351.
[10]W. Poirier and F. Schopfer, Resistance metrology based on the quantum Hall effect, vol. 172, no. 1. 2009.
[11]F. Delahaye and B. Jeckelmann, “Revised technical guidelines for reliable dc measurements of the quantized Hall resistance,” Metrologia, vol. 40, no. 5, pp. 217–223, 2003, doi: 10.1088/0026-1394/40/5/302.
[12]A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater., vol. 6, no. 3, pp. 183–191, 2007, doi: 10.1038/nmat1849.
[13]S. Das Sarma, S. Adam, E. H. Hwang, and E. Rossi, “Electronic transport in two-dimensional graphene,” Rev. Mod. Phys., vol. 83, no. 2, pp. 407–470, 2011, doi: 10.1103/RevModPhys.83.407.
[14]A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys., vol. 81, no. 1, pp. 109–162, 2009, doi: 10.1103/RevModPhys.81.109.
[15]K. S. Novoselov, V. I. Fal’Ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for graphene,” Nature, vol. 490, no. 7419, pp. 192–200, 2012, doi: 10.1038/nature11458.
[16]M. Kruskopf and R. E. Elmquist, “Epitaxial graphene for quantum resistance metrology,” Metrologia, vol. 55, no. 4, pp. R27–R36, 2018, doi: 10.1088/1681-7575/aacd23.
[17]T. J. B. M. Janssen, A. Tzalenchuk, R. Yakimova, S. Kubatkin, S. Lara-Avila, S. Kopylov, and V. I. Fal’ko, “Anomalously strong pinning of the filling factor ν=2 in epitaxial graphene,” Phys. Rev. B - Condens. Matter Mater. Phys., vol. 83, no. 23, pp. 3–6, 2011, doi: 10.1103/PhysRevB.83.233402.
[18]M. Kruskopf, J. Hu, B. Y. Wu, Y. Yang, H. Y. Lee, A. F. Rigosi, D. B. Newell, and R. E. Elmquist, “Epitaxial Graphene for High-Current QHE Resistance Standards,” CPEM 2018 - Conf. Precis. Electromagn. Meas., no. 0001, pp. 3–5, 2018, doi: 10.1109/CPEM.2018.8500893.
[19]Y. Yang, G. Cheng, P. Mende, I. G. Calizo, R. M. Feenstra, C. Chuang, C. W. Liu, C. I. Liu, G. R. Jones, A. R. Hight Walker, and R. E. Elmquist, “Epitaxial graphene homogeneity and quantum Hall effect in millimeter-scale devices,” Carbon N. Y., vol. 115, pp. 229–236, 2017, doi: 10.1016/j.carbon.2016.12.087.
[20]R. Ribeiro-Palau, F. Lafont, J. Brun-Picard, D. Kazazis, A. Michon, F. Cheynis, O. Couturaud, C. Consejo, B. Jouault, W. Poirier and F. Schopfer, “Quantum Hall resistance standard in graphene devices under relaxed experimental conditions,” Nat. Nanotechnol., vol. 10, no. 11, pp. 965–971, 2015, doi: 10.1038/nnano.2015.192.
[21]T. J. B. M. Janssen, S Rozhko, I Antonov, A Tzalenchuk, J M Williams, Z Melhem, H He, S Lara-Avila, S Kubatkin and R Yakimova, “Operation of graphene quantum Hall resistance standard in a cryogen-free table-top system,” 2D Mater., vol. 2, no. 3, 2015, doi: 10.1088/2053-1583/2/3/035015.
[22]M. A. Real, T. Shen, G. R. Jones, R. E. Elmquist, J. A. Soons, and Albert V. Davydov, “Graphene Epitaxial growth on SiC(0001) for resistance standards,” IEEE Trans. Instrum. Meas., vol. 62, no. 6, pp. 1454–1460, 2013, doi: 10.1109/TIM.2012.2225962.
[23]A. Tzalenchuk, S. Lara-Avila, A. Kalaboukhov, S. Paolillo, M. Syva¨ja¨rvi, R. Yakimova, O. Kazakova, T. J. B. M. Janssen, V. Fal’ko and S. Kubatkin, “Towards a quantum resistance standard based on epitaxial graphene,” Nat. Nanotechnol., vol. 5, no. 3, pp. 186–189, 2010, doi: 10.1038/nnano.2009.474.
[24]F. Lafont, R. Ribeiro-Palau, D. Kazazis, A. Michon, O. Couturaud, C. Consejo, T. Chassagne, M. Zielinski, M. Portail, B. Jouault, F. Schopfer and W. Poirier, “Quantum hall resistance standards from graphene grown by chemical vapour deposition on silicon carbide,” Nat. Commun., vol. 6, pp. 1–9, 2015, doi: 10.1038/ncomms7806.
[25]B. Jeckelmann, “The quantum Hall effect and its application as electrical resistance standard,” Proc. Int. Sch. Phys. “Enrico Fermi” Vol. 146 Recent Adv. Metrol. Fundam. Constants, vol. 1603, pp. 263–290, 2001, doi: 10.3254/978-1-61499-002-4-263.
[26]A. F. Rigosi, A. R. Panna, S. U. Payagala, M. Kruskopf, M. E. Kraft, G. R. Jones, B. Y. Wu, H. Y. Lee, Y. Yang, J. Hu, Dean G. Jarrett, D. B. Newell, and Randolph E. Elmquist, “Graphene Devices for Tabletop and High-Current Quantized Hall Resistance Standards,” IEEE Trans. Instrum. Meas., vol. 68, no. 6, pp. 1870–1878, 2019, doi: 10.1109/TIM.2018.2882958.
[27]A. F. Rigosi, M. Kruskopf, H. M. Hill, H. Jin, B. Y. Wu, P. E. Johnson, S. Zhang, M. Berilla, A. R. Hight Walker, Christina A. Hacker, D. B. Newell and R. E. Elmquist, “Gateless and reversible Carrier density tunability in epitaxial graphene devices functionalized with chromium tricarbonyl,” Carbon N. Y., vol. 142, pp. 468–474, 2019, doi: 10.1016/j.carbon.2018.10.085.
[28]R. E. Elmquist, M. Kruskopf, D. K. Patel, I. F. Hu, C. I. Liu, A. F. Rigosi, A. R. Panna, S. U. Payagala and D. G. Jarrett, “AC and DC Quantized Hall Array Resistance Standards,” in CPEM 2020, 2020.
[29]S. Novikov, N. Lebedeva, J. Hamalainen, I. Iisakka, P. Immonen, A. J. Manninen, and A. Satrapinski, “Mini array of quantum Hall devices based on epitaxial graphene,” J. Appl. Phys., vol. 119, no. 17, 2016, doi: 10.1063/1.4948675.
[30]A. Lartsev, S. Lara-Avila, A. Danilov, S. Kubatkin, A. Tzalenchuk, and R. Yakimova, “A prototype of RK /200 quantum Hall array resistance standard on epitaxial graphene,” J. Appl. Phys., vol. 118, no. 4, 2015, doi: 10.1063/1.4927618.
[31]F. Delahaye, “Series and parallel connection of multiterminal quantum Hall-effect devices,” J. Appl. Phys., vol. 73, no. 11, pp. 7914–7920, 1993, doi: 10.1063/1.353944.
[32]J. Park, W. S. Kim, and D. H. Chae, “Realization of 5 h e 2 with graphene quantum Hall resistance array,” Appl. Phys. Lett., vol. 116, no. 9, 2020, doi: 10.1063/1.5139965.
[33]T. Oe, S. Gorwadkar, T. Itatani, and N. H. Kaneko, “Development of 1-MΩ quantum Hall array resistance standards,” CPEM 2016 - Conf. Precis. Electromagn. Meas. Conf. Dig., pp. 1–2, 2016, doi: 10.1109/CPEM.2016.7540717.
[34]T. Oe, S. Gorwadkar, T. Itatani, and N. H. Kaneko, “10 MΩ Quantum Hall Array Device,” CPEM 2018 - Conf. Precis. Electromagn. Meas., pp. 1–2, 2018, doi: 10.1109/CPEM.2018.8501182.
[35]J. Hu, A. F. Rigosi, M. Kruskopf, Y. Yang, B. Y. Wu, J. Tian, A. R. Panna, H. Y. Lee1, S. U. Payagala1, G. R. Jones, M. E. Kraft, D. G. Jarrett, K. Watanabe, T. Taniguchi, R. E. Elmquist and D. B. Newell, “Towards epitaxial graphene p-n junctions as electrically programmable quantum resistance standards,” Sci. Rep., vol. 8, no. 1, pp. 1–11, 2018, doi: 10.1038/s41598-018-33466-z.
[36]A. F. Rigosi, C. I. Liu, N. R. Glavin, Y. Yang, H. M. Hill, J. Hu, A. R. Hight Walker, C. A. Richter, R. E. Elmquist, and D. B. Newell, “Electrical Stabilization of Surface Resistivity in Epitaxial Graphene Systems by Amorphous Boron Nitride Encapsulation,” ACS Omega, vol. 2, no. 5, pp. 2326–2332, 2017, doi: 10.1021/acsomega.7b00341.
[37]A. F. Rigosi, N. R Glavin, C. I. Liu, Y. Yang, J. Obrzut, H. M. Hill, J. Hu, H. Y. Lee, A. R. Hight Walker, C. A. Richter, R. E. Elmquist, and D. B. Newell, “Preservation of Surface Conductivity and Dielectric Loss Tangent in Large-Scale, Encapsulated Epitaxial Graphene Measured by Noncontact Microwave Cavity Perturbations,” Small, vol. 13, no. 26, pp. 1–7, 2017, doi: 10.1002/smll.201700452.
[38]M. J. Hollander, M. LaBella, Z. R. Hughes, M. Zhu, K. A. Trumbull, R. Cavalero, D. W. Snyder, X. Wang, E. Hwang, S. Datta, and J. A. Robinson, “Enhanced transport and transistor performance with oxide seeded high-κ gate dielectrics on wafer-scale epitaxial graphene,” Nano Lett., vol. 11, no. 9, pp. 3601–3607, 2011, doi: 10.1021/nl201358y.
[39]J. A. Robinson, M. LaBella III, K. A. Trumbull, X. Weng, R. Cavelero, T. Daniels, Z. Hughes, M. Hollander, M. Fanton, and D. Snyder, “Epitaxial graphene materials integration: Effects of dielectric overlayers on structural and electronic properties,” ACS Nano, vol. 4, no. 5, pp. 2667–2672, 2010, doi: 10.1021/nn1003138.
[40]J. M. P. Alaboson, Q. Hua Wang, J. D. Emery, A. L. Lipson, M. J. Bedzyk, J. W. Elam, M. J. Pellin, and M. C. Hersam, “Seeding atomic layer deposition of high-k dielectrics on epitaxial graphene with organic self-assembled monolayers,” ACS Nano, vol. 5, no. 6, pp. 5223–5232, 2011, doi: 10.1021/nn201414d.
[41]N. Y. Garces, V. D. Wheeler, J. K. Hite, G. G. Jernigan, J. L. Tedesco, N. Nepal, C. R. Eddy Jr., and D. K. Gaskill, “Epitaxial graphene surface preparation for atomic layer deposition of Al2O3,” J. Appl. Phys., vol. 109, no. 12, 2011, doi: 10.1063/1.3596761.
[42]A. F. Rigosi, C. I. Liu, B. Y. Wu, H. Y. Lee, M. Kruskopf, Y. Yang, H. M. Hill, J. Hu, E. G. Bittle, J. Obrzut, A. R. Hight Walker, R. E. Elmquist, and D. B. Newell, “Examining epitaxial graphene surface conductivity and quantum Hall device stability with Parylene passivation,” Microelectron. Eng., vol. 194, no. February, pp. 51–55, 2018, doi: 10.1016/j.mee.2018.03.004.
[43]S. Nair, M. Kathiresan, T. Mukundan, and V. Natarajan, “Passivation of organic field effect transistor with photopatterned Parylene to improve environmental stability,” Microelectronic Engineering, vol. 163. pp. 36–42, 2016, doi: 10.1016/j.mee.2016.06.001.
[44]A. F. Rigosi, C. I. Liu, B. Y. Wu, H. Y. Lee, M. Kruskopf, Y. Yang, H. M. Hill, J. Hu, E. G. Bittle, J. Obrzut, A. R. Hight Walker, R. E. Elmquist, and D. B. Newell, “Quantum Hall device data monitoring following encapsulating polymer deposition,” Data in Brief, vol. 20. pp. 1201–1208, 2018, doi: 10.1016/j.dib.2018.08.121.
[45]M. S. Bresnehan, M. J. Hollander, M. Wetherington, M. LaBella, K. A. Trumbull, R. Cavalero, D. W. Snyder, and J. A. Robinson, “Integration of hexagonal boron nitride with quasi-freestanding epitaxial graphene: Toward wafer-scale, high-performance devices,” ACS Nano, vol. 6, no. 6, pp. 5234–5241, 2012, doi: 10.1021/nn300996t.
[46]A. F. Rigosi, H. M. Hill, N. R Glavin, S. J. Pookpanratana, Y. Yang, A. G. Boosalis, J. Hu, A. Rice, A. A. Allerman, N. V. Nguyen, C. A. Hacker, R. E. Elmquist, A. R. Hight Walker and D. B Newell, “Measuring the dielectric and optical response of millimeter-scale amorphous and hexagonal boron nitride films grown on epitaxial graphene,” 2D Mater., vol. 5, no. 1, 2018, doi: 10.1088/2053-1583/aa9ea3.
[47]S. Lara-Avila, K. Moth-Poulsen, R. Yakimova, T. Bjornholm, V. Fal'ko, A. Tzalenchuk, and S. Kubatkin, “Non-volatile photochemical gating of an epitaxial graphene/polymer heterostructure,” Adv. Mater., vol. 23, no. 7, pp. 878–882, 2011, doi: 10.1002/adma.201003993.
[48]H. He, K. Ho Kim, A. Danilov, D. Montemurro, L. Yu, Y. W. Park, F. Lombardi, T. Bauch, K. Moth-Poulsen, T. Iakimov, R. Yakimova, P. Malmberg, C. Müller, S. Kubatkin and S. Lara-Avila, “Uniform doping of graphene close to the Dirac point by polymer-assisted assembly of molecular dopants,” Nat. Commun., vol. 9, no. 1, pp. 3–9, 2018, doi: 10.1038/s41467-018-06352-5.
[49]J. Hu, A. F. Rigosi, J. U. Lee, H. Y. Lee, Y. Yang, C. I. Liu, R. E. Elmquist, and D. B. Newell, “Quantum transport in graphene p-n junctions with moiré superlattice modulation,” Phys. Rev. B, vol. 98, no. 4, pp. 1–7, 2018, doi: 10.1103/PhysRevB.98.045412.
[50]M. Woszczyna, M. Friedemann, T. Dziomba, T. Weimann, and F. J. Ahlers, “Graphene p-n junction arrays as quantum-Hall resistance standards,” Appl. Phys. Lett., vol. 99, no. 2, pp. 1–4, 2011, doi: 10.1063/1.3608157.
[51]E. H. Hall, “On a new action of the magnet on electric currents,” Am. J. Math., vol. 2, no. 3, pp. 287–292, 1879.
[52]N. D. M. N. W. Ashcroft, Solid state physics, 1st ed. New York, Holt, Rinehart and Winston, 1976.
[53]K. von Klitzing, “Quantum Hall Effect: Discovery and Application,” Annu. Rev. Condens. Matter Phys., vol. 8, no. 1, pp. 13–30, 2017, doi: 10.1146/annurev-conmatphys-031016-025148.
[54]K. von Klitzing, “A conversation with Prof. Dr. Klaus von Klitzing: Discoverer of the quantum Hall effect,” ACS Nano, vol. 2, no. 4, pp. 609–611, 2008, doi: 10.1021/nn800179w.
[55]Bureau International des Poids et Mesure, “Conference on Weights and Measures (CGPM), at its 26th meeting,” p. 16.
[56]NIST, “Fundamental Physical Constants,” NIST. [Online]. Available: https://physics.nist.gov/cgi-bin/cuu/Value?eqrk.
[57]K. von Klitzing and G. Ebert, “Application of the quantum hall effect in metrology,” Metrologia, vol. 21, no. 1, pp. 11–18, 1985, doi: 10.1088/0026-1394/21/1/004.
[58]B. Jeckelmann and B. Jeanneret, “The quantum Hall effect as an electrical resistance standard,” IOP Publ. Ltd. Rep. Prog. Phys, vol. 64, pp. 1603–1655, 2001.
[59]J. W. Lynn, The Quantum Hall Effect, Second Edi. Springer-Verlag New York Berlin Heidelberg London Paris Tokyo Hong Kong, 1989.
[60]T. Chakraborty and P. PietiUiinen, The Quantum Hall Effects Integral and Fractional, Second Enl. Springer-Verlag Berlin Heidelberg, 1895.
[61]B. I. Halperin, “Quantized Hall conductance, current-carrying edge states, and the existence of extended states in a two-dimensional disordered potential,” Phys. Rev. B, vol. 25, no. 4, p. 2418, 1982, doi: 10.1103/PhysRevA.25.2418.
[62]M. Büttiker, “Absence of backscattering in the quantum Hall effect in multiprobe conductors,” Phys. Rev. B, vol. 38, no. 14, pp. 9375–9389, 1988, doi: 10.1103/PhysRevB.38.9375.
[63]R. J. Haug, “Edge-state transport and its experimental consequences in high magnetic fields,” Semicond. Sci. Technol., vol. 8, no. 2, pp. 131–153, 1993, doi: 10.1088/0268-1242/8/2/001.
[64]K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature, vol. 438, no. 7065, pp. 197–200, 2005, doi: 10.1038/nature04233.
[65]Y. Zhang, Y. W. Tan, H. L. Stormer, and P. Kim, “Experimental observation of the quantum Hall effect and Berry’s phase in graphene,” Nature, vol. 438, no. 7065, pp. 201–204, 2005, doi: 10.1038/nature04235.
[66]K. S. Novoselov, Z. Jiang, Y. Zhang, S. V. Morozov, H. L. Stormer, U. Zeitler, J. C. Maan, G. S. Boebinger, P. Kim, A. K. Geim, “Room-temperature quantum hall effect in graphene,” Science, vol. 315, no. 5817, p. 1379, 2007, doi: 10.1126/science.1137201.
[67]A. A. Greshnov, “Room-temperature quantum Hall effect in graphene: The role of the two-dimensional nature of phonons,” J. Phys. Conf. Ser., vol. 568, 2014, doi: 10.1088/1742-6596/568/5/052010.
[68]S. Eigler, M. Enzelberger-Heim, S. Grimm, P. Hofmann, W. Kroener, A geworski, C. Dotzer, M. Rockert, J Xiao, C. Papp, O. Lytken, H. P. Steinruck, P. Muller, and A. Hirsch, “Wet chemical synthesis of graphene,” Adv. Mater., vol. 25, no. 26, pp. 3583–3587, 2013, doi: 10.1002/adma.201300155.
[69]A. N. Obraztsov, “Making graphene on a large scale,” Nat. Nanotechnol., vol. 4, no. 4, pp. 212–213, 2009, doi: 10.1038/nnano.2009.67.
[70]C. Virojanadara, M. Syväjarvi, R. Yakimova, L. I. Johansson, A. A. Zakharov, and T. Balasubramanian, “Homogeneous large-area graphene layer growth on 6H-SiC(0001),” Phys. Rev. B - Condens. Matter Mater. Phys., vol. 78, no. 24, pp. 1–6, 2008, doi: 10.1103/PhysRevB.78.245403.
[71]A. J. M. Giesbers, G. Rietveld, E. Houtzager, U. Zeitler, R. Yang, K. S. Novoselov, A. K. Geim, and J. C. Maan, “Quantum resistance metrology in graphene,” Appl. Phys. Lett., vol. 93, no. 22, 2008, doi: 10.1063/1.3043426.
[72]K. Thodkar, C. Schonenberger, M. Calame, F. Luond, F. Overney, and B. Jcanncret, “Observation of High Accuracy Resistance Quantization in CVD Graphene,” CPEM 2018 - Conf. Precis. Electromagn. Meas., no. Ccc, pp. 11–12, 2018, doi: 10.1109/CPEM.2018.8500820.
[73]C. Melios, N. Huang, L. Callegaro, A. Centeno, A. Cultrera, A. Cordon, V. Panchal1, I. Arnedo, A. Redo-Sanchez, D. Etayo, M. Fernandez, A. Lopez, S. Rozhko, O. Txoperena, A. Zurutuza, and O. Kazakova, “Towards standardisation of contact and contactless electrical measurements of CVD graphene at the macro-, micro- and nano-scale,” Sci. Rep., vol. 10, no. 1, p. 3223, 2020, doi: 10.1038/s41598-020-59851-1.
[74]S. Reich, J. Maultzsch, C. Thomsen, and P. Ordejón, “Tight-binding description of graphene,” Phys. Rev. B - Condens. Matter Mater. Phys., vol. 66, no. 3, pp. 354121–354125, 2002, doi: 10.1103/PhysRevB.66.035412.
[75]A. Maffucci and G. Miano, “Electrical Properties of Graphene for Interconnect Applications,” Appl. Sci., vol. 4, no. 2, pp. 305–317, 2014, doi: 10.3390/app4020305.
[76]V. Singh and M. M. Deshmukh, “Quantum hall effect and electromechanics in graphene,” Dep. Condens. Matter Phys. Mater. Sci., vol. Doctor of, p. 186, 2012.
[77]D. S. Wei, “Electron interferometry and magnon transport in graphene quantum Hall systems,” Harvard University Cambridge, 2019.
[78]V. P. Gusynin and S. G. Sharapov, “Unconventional integer quantum hall effect in graphene,” Phys. Rev. Lett., vol. 95, no. 14, pp. 2–5, 2005, doi: 10.1103/PhysRevLett.95.146801.
[79]Y. Zhang, Z. Jiang, J. P. Small, M. S. Purewal, Y.-W. Tan, M. Fazlollahi, J. D. Chudow, J. A. Jaszczak, H. L. Stormer, and P. Kim “Landau-level splitting in graphene in high magnetic fields,” Phys. Rev. Lett., vol. 96, no. 13, pp. 1–4, 2006, doi: 10.1103/PhysRevLett.96.136806.
[80]J. R. Williams, L. Dicarlo, and C. M. Marcus, “Quantum Hall Effect in a Gate- Controlled p-n Junction of Graphene,” Science, vol. 317, no. 5838, pp. 638–641, 2007, doi: 10.1126/science.1144657.
[81]B. Özyilmaz, P. Jarillo-Herrero, D. Efetov, D. A. Abanin, L. S. Levitov, and P. Kim, “Electronic transport and quantum hall effect in bipolar graphene p-n-p junctions,” Phys. Rev. Lett., vol. 99, no. 16, pp. 2–5, 2007, doi: 10.1103/PhysRevLett.99.166804.
[82]J. Li and S. Q. Shen, “Disorder effects in the quantum Hall effect of graphene p-n junctions,” Phys. Rev. B - Condens. Matter Mater. Phys., vol. 78, no. 20, pp. 1–7, 2008, doi: 10.1103/PhysRevB.78.205308.
[83]W. Long, Q. F. Sun, and J. Wang, “Disorder-induced enhancement of transport through graphene p-n junctions,” Phys. Rev. Lett., vol. 101, no. 16, pp. 2–5, 2008, doi: 10.1103/PhysRevLett.101.166806.
[84]J. C. Chen, T. C. A. Yeung, and Q. F. Sun, “Effect of disorder on longitudinal resistance of a graphene p-n junction in the quantum Hall regime,” Phys. Rev. B - Condens. Matter Mater. Phys., vol. 81, no. 24, pp. 1–7, 2010, doi: 10.1103/PhysRevB.81.245417.
[85]J. C. Chen, H. Zhang, S. Q. Shen, and Q. F. Sun, “Dephasing effect on transport of a graphene p-n junction in a quantum Hall regime,” J. Phys. Condens. Matter, vol. 23, no. 49, 2011, doi: 10.1088/0953-8984/23/49/495301.
[86]D. A. Abanin and L. S. Levitov, “Quantized transport in graphene p-n junctions in a magnetic field,” Science (80-. )., vol. 317, no. 5838, pp. 641–643, 2007, doi: 10.1126/science.1144672.
[87]D. K. Ki and H. J. Lee, “Quantum Hall resistances of a multiterminal top-gated graphene device,” Phys. Rev. B - Condens. Matter Mater. Phys., vol. 79, no. 19, pp. 1–6, 2009, doi: 10.1103/PhysRevB.79.195327.
[88]S. G. Nam, D. K. Ki, J. W. Park, Y. Kim, J. S. Kim, and H. J. Lee, “Ballistic transport of graphene pnp junctions with embedded local gates,” Nanotechnology, vol. 22, no. 41, 2011, doi: 10.1088/0957-4484/22/41/415203.
[89]F. Amet, J. R. Williams, K. Watanabe, T. Taniguchi, and D. Goldhaber-Gordon, “Selective equilibration of spin-polarized quantum Hall edge states in graphene,” Phys. Rev. Lett., vol. 112, no. 19, pp. 1–5, 2014, doi: 10.1103/PhysRevLett.112.196601.
[90]C. H. W. Barnes, “Quantum electronics in semiconductors,” Phys. Bull., vol. 26, no. 11, pp. 482–483, 1975, doi: 10.1088/0031-9112/26/11/018.
[91]K. Zimmermann, “Quantum point contact in high mobility graphene,” Université Grenoble Alpes, 2017.
[92]J. Schurr, F. J. Ahlers, G. Hein, and K. Pierz, “The ac quantum Hall effect as a primary standard of impedance,” Metrologia, vol. 44, no. 1, pp. 15–23, 2007, doi: 10.1088/0026-1394/44/1/002.
[93]F. Lüönd, C. C. Kalmbach, F. Overney, J. Schurr, B. Jeanneret, A. Müller, M. Kruskopf, K. Pierz, and F. Ahlers, “AC quantum hall effect in epitaxial graphene,” IEEE Trans. Instrum. Meas., vol. 66, no. 6, pp. 1459–1466, 2017, doi: 10.1109/TIM.2017.2652501.
[94]M. Kruskopf, D. Patel, C. I. Liu, A. F. Rigosi, R. E. Elmquist, Y. Wang, S. Bauer, Y. Yin, K. Pierz, E. Pesel, M. Götz and J. Schurr, “Graphene quantum Hall effect devices for AC and DC resistance metrology,” in CPEM 2020, 2020, pp. 3–5.
[95]A. Domae, T. Oe, K. Matsuhiro, S. Kiryu, and N. H. Kaneko, “Development of a one-chip quantized Hall resistance voltage divider,” Meas. Sci. Technol., vol. 23, no. 12, 2012, doi: 10.1088/0957-0233/23/12/124008.
[96]M. Marzano, M. Kruskopf, A. R. Panna, A. F Rigosi, D. K Patel, H. Jin, S. Cular, L. Callegaro, R. E. Elmquist and M. Ortolano, “Implementation of a graphene quantum Hall Kelvin bridge-on-a-chip for resistance calibrations,” Metrologia, vol. 57, no. 1, 2020, doi: 10.1088/1681-7575/ab581e.
[97]F. Schopfer and W. Poirier, “Testing universality of the quantum Hall effect by means of the Wheatstone bridge,” J. Appl. Phys., vol. 102, no. 5, 2007, doi: 10.1063/1.2776371.
[98]J. Schurr, V. Bürkel, and B. P. Kibble, “Realizing the farad from two ac quantum Hall resistances,” Metrologia, vol. 46, no. 6, pp. 619–628, 2009, doi: 10.1088/0026-1394/46/6/003.
[99]B. W. Ricketts and P. C. Kemeny, “Quantum Hall effect devices as circuit elements,” J. Phys. D. Appl. Phys., vol. 21, no. 3, pp. 483–487, 1988, doi: 10.1088/0022-3727/21/3/018.
[100]M. Ortolano and L. Callegaro, “Matrix method analysis of quantum Hall effect device connections,” Metrologia, vol. 49, no. 1, pp. 1–7, 2012, doi: 10.1088/0026-1394/49/1/001.
[101]“The spice page.” [Online]. Available: http://bwrcs.eecs.berkeley.edu/Classes/IcBook/SPICE/.
[102]“Linear Technology 2018 LTspice XVII.” .
[103]M. Ortolano and L. Callegaro, “Circuit models and SPICE macro-models for quantum Hall effect devices,” Meas. Sci. Technol., vol. 26, no. 8, 2015, doi: 10.1088/0957-0233/26/8/085018.
[104]M. Kruskopf, D. M. Pakdehi, K. Pierz, S. Wundrack, R, Stosch, T. Dziomba, M. Götz, J. Baringhaus, J. Aprojanz, C. Tegenkamp, J. Lidzba, T. Seyller, F. Hohls, F. J. Ahlers and H. W Schumacher, “Comeback of epitaxial graphene for electronics: Large-area growth of bilayer-free graphene on SiC,” 2D Mater., vol. 3, no. 4, 2016, doi: 10.1088/2053-1583/3/4/041002.
[105]T. Schumann, K. J. Friedland, M. H. Oliveira, A. Tahraoui, J. M. J. Lopes, and H. Riechert, “Anisotropic quantum Hall effect in epitaxial graphene on stepped SiC surfaces,” Phys. Rev. B - Condens. Matter Mater. Phys., vol. 85, no. 23, pp. 1–5, 2012, doi: 10.1103/PhysRevB.85.235402.
[106]M. K. Yakes, D. Gunlycke, J. L. Tedesco, P. M. Campbell, R. L. M.-Ward, C. R. Eddy, Jr., D. K. Gaskill, P. E. Sheehan, and A. R. Laracuente, “Conductance anisotropy in epitaxial graphene sheets generated by substrate interactions,” Nano Lett., vol. 10, no. 5, pp. 1559–1562, 2010, doi: 10.1021/nl9035302.
[107]H. Nakagawa, S. Tanaka, and I. Suemune, “Self-ordering of nanofacets on vicinal sic surfaces,” Phys. Rev. Lett., vol. 91, no. 22, pp. 2–5, 2003, doi: 10.1103/PhysRevLett.91.226107.
[108]M. Nagase, H. Hibino, H. Kageshima, and H. Yamaguchi, “Local conductance measurement of few-layer graphene on SiC substrate using an integrated nanogap probe,” J. Phys. Conf. Ser., vol. 100, no. PART 5, 2008, doi: 10.1088/1742-6596/100/5/052006.
[109]T. Low, V. Perebeinos, J. Tersoff, and P. Avouris, “Deformation and scattering in graphene over substrate steps,” Phys. Rev. Lett., vol. 108, no. 9, pp. 1–4, 2012, doi: 10.1103/PhysRevLett.108.096601.
[110]D. Momeni Pakdehi, J. Aprojanz, A. Sinterhauf, K. Pierz, M. Kruskopf, P. Willke, J. Baringhaus, J. P. Stö ckmann, G. A. Traeger, F. Hohls, C. Tegenkamp, M. Wenderoth, F. J. Ahlers, and H. W. Schumacher, “Minimum Resistance Anisotropy of Epitaxial Graphene on SiC,” ACS Appl. Mater. Interfaces, vol. 10, no. 6, pp. 6039–6045, 2018, doi: 10.1021/acsami.7b18641.
[111]D. S. Lee, C. Riedl, B. Krauss, K. Von Klitzing, U. Starke, and J. H. Smet, “Raman spectra of epitaxial graphene on SiC and of epitaxial graphene transferred to SiO2,” Nano Lett., vol. 8, no. 12, pp. 4320–4325, 2008, doi: 10.1021/nl802156w.
[112]J. A. Robinson, M. Wetherington, J. L. Tedesco, P. M. Campbell, X. Weng, J. Stitt, M. A. Fanton, E. Frantz, D. Snyder, B. L. VanMil, G. G. Jernigan, R. L. M.Ward, C. R. Eddy, Jr., and D. Kurt Gaskill, “Correlating raman spectral signatures with carrier mobility in epitaxial graphene: A guide to achieving high mobility on the wafer scale,” Nano Lett., vol. 9, no. 8, pp. 2873–2876, 2009, doi: 10.1021/nl901073g.
[113]F. Fromm, M. Wetherington, J. L. Tedesco, P. M. Campbell, X. Weng, J. Stitt, M. A. Fanton, E. Frantz, D. Snyder, B. L. VanMil, G. G. Jernigan, R. L. Myers-Ward, C. R. Eddy, Jr., and D. Kurt Gaskill, “Contribution of the buffer layer to the Raman spectrum of epitaxial graphene on SiC(0001),” New J. Phys., vol. 15, no. 100, 2013, doi: 10.1088/1367-2630/15/4/043031.
[114]Y. Yang, L.‐I. Huang, Y. Fukuyama, F. H. Liu, M. A. Real, P. Barbara, C. T. Liang, D. B. Newell, R. E. Elmquist, “Low carrier density epitaxial graphene devices on SiC,” Small, vol. 11, no. 1, pp. 90–95, 2015, doi: 10.1002/smll.201400989.
[115]M. Kruskopf, A. F. Rigosi, A. R. Panna, D. Patel, H. Jin, M. Marzano, M. Berilla, D. B. Newell, and R. E. Elmquist, “Two-Terminal and Multi-Terminal Designs for Next-Generation Quantized Hall Resistance Standards: Contact Material and Geometry,” IEEE Trans. Electron Devices, vol. 66, no. 9, pp. 3973–3977, 2019, doi: 10.1109/TED.2019.2926684.
[116]S. Sarkar, S. Niyogi, E. Bekyarova, and R. C. Haddon, “Organometallic chemistry of extended periodic π-electron systems: Hexahapto-chromium complexes of graphene and single-walled carbon nanotubes,” Chem. Sci., vol. 2, no. 7, pp. 1326–1333, 2011, doi: 10.1039/c0sc00634c.
[117]E. Bekyarova, S Sarkar, S Niyogi, M E Itkis, and R C Haddon, “Advances in the chemical modification of epitaxial graphene,” J. Phys. D. Appl. Phys., vol. 45, no. 15, 2012, doi: 10.1088/0022-3727/45/15/154009.
[118]M. Chen, A. Pekker, W. Li, M. E. Itkis, R. C. Haddon, and E. Bekyarova, “Organometallic chemistry of graphene: Photochemical complexation of graphene with group 6 transition metals,” Carbon N. Y., vol. 129, pp. 450–455, 2018, doi: 10.1016/j.carbon.2017.12.025.
[119]S. Che, K. Jasuja, S. K. Behura, P. Nguyen, T. S. Sreeprasad, and V. Berry, “Retained Carrier-Mobility and Enhanced Plasmonic-Photovoltaics of Graphene via ring-centered η6 Functionalization and Nanointerfacing,” Nano Lett., vol. 17, no. 7, pp. 4381–4389, 2017, doi: 10.1021/acs.nanolett.7b01458.
[120]J. Dai, Y. Zhao, X. Wu, X. C. Zeng, and J. Yang, “Organometallic hexahapto-functionalized graphene: Band gap engineering with minute distortion to the planar structure,” J. Phys. Chem. C, vol. 117, no. 42, pp. 22156–22161, 2013, doi: 10.1021/jp408347w.
[121]G. Zhang, P. Yan, and T. Liang, “Cr absorber mask for extreme-ultraviolet lithography,” 20th Annu. BACUS Symp. Photomask Technol., vol. 4186, no. January 2001, p. 774, 2001, doi: 10.1117/12.410675.
[122]W. Park, J. Rhie, N. Y. Kim, S. Hong, and D. S. Kim, “Sub-10 nm feature chromium photomasks for contact lithography patterning of square metal ring arrays,” Sci. Rep., vol. 6, no. December 2015, pp. 1–6, 2016, doi: 10.1038/srep23823.
[123]S. V. Kopylov, A. Tzalenchuk, S. Kubatkin, and V. I. Fal’Ko, “Charge transfer between epitaxial graphene and silicon carbide,” Appl. Phys. Lett., vol. 97, no. 11, pp. 2008–2011, 2010, doi: 10.1063/1.3487782.
[124]H. M. Hill, A. F. Rigosi, S. Chowdhury, Y. Yang, N. V. Nguyen, F. Tavazza, R. E. Elmquist, D. B. Newell, and A. R. Hight Walker, “Probing the dielectric response of the interfacial buffer layer in epitaxial graphene via optical spectroscopy,” Phys. Rev. B, vol. 96, no. 19, pp. 1–7, 2017, doi: 10.1103/PhysRevB.96.195437.
[125]I. Shtepliuk, T. Iakimov, V. Khranovskyy, J. Eriksson, F. Giannazzo, and R. Yakimova, “Role of the potential barrier in the electrical performance of the graphene/SiC interface,” Crystals, vol. 7, no. 6, pp. 1–18, 2017, doi: 10.3390/cryst7060162.
[126]K. Takase, H. Hibino, and K. Muraki, “Probing the extended-state width of disorder-broadened Landau levels in epitaxial graphene,” Phys. Rev. B - Condens. Matter Mater. Phys., vol. 92, no. 12, pp. 1–7, 2015, doi: 10.1103/PhysRevB.92.125407.
[127]K. Takase, S. Tanabe, S. Sasaki, H. Hibino, and K. Muraki, “Impact of graphene quantum capacitance on transport spectroscopy,” Phys. Rev. B - Condens. Matter Mater. Phys., vol. 86, no. 16, pp. 1–8, 2012, doi: 10.1103/PhysRevB.86.165435.
[128]E. Samiei and M. Hoorfar, “Systematic analysis of geometrical based unequal droplet splitting in digital microfluidics,” J. Micromechanics Microengineering, vol. 25, no. 5, 2015, doi: 10.1088/0960-1317/25/5/055008.
[129]N. N. Klimov, S. T. Le, J. Yan, P. Agnihotri, E. Comfort, J. U. Lee, D. B. Newell, and C. A. Richter., “Edge-state transport in graphene p-n junctions in the quantum Hall regime,” Phys. Rev. B - Condens. Matter Mater. Phys., vol. 92, no. 24, pp. 1–5, 2015, doi: 10.1103/PhysRevB.92.241301.
[130]S. Lara-Avila, A. Tzalenchuk, S. Kubatkin, R. Yakimova, T. J. B. M. Janssen, K. Cedergren, T. Bergsten, and V. Fal’ko, “Disordered Fermi liquid in epitaxial graphene from quantum transport measurements,” Phys. Rev. Lett., vol. 107, no. 16, pp. 1–5, 2011, doi: 10.1103/PhysRevLett.107.166602.
[131]T. Lohmann, K. Von Klitzing, and J. H. Smet, “Four-Terminal magneto-Transport in graphene p-n junctions created by spatially selective doping,” Nano Lett., vol. 9, no. 5, pp. 1973–1979, 2009, doi: 10.1021/nl900203n.
[132]B. Huard, J. A. Sulpizio, N. Stander, K. Todd, B. Yang, and D. Goldhaber-Gordon, “Transport measurements across a tunable potential barrier in graphene,” Phys. Rev. Lett., vol. 98, no. 23, pp. 8–11, 2007, doi: 10.1103/PhysRevLett.98.236803.
[133]S. Matsuo, S. Takeshita, T. Tanaka, S. Nakaharai, K. Tsukagoshi, T. Moriyama, T. Ono & K. Kobayashi, “Edge mixing dynamics in graphene p-n junctions in the quantum Hall regime,” Nat. Commun., vol. 6, pp. 4–9, 2015, doi: 10.1038/ncomms9066.
[134]C. Kumar, M. Kuiri, and A. Das, “Equilibration of quantum hall edge states and its conductance fluctuations in graphene p-n junctions,” Solid State Commun., vol. 270, no. October 2017, pp. 38–44, 2018, doi: 10.1016/j.ssc.2017.11.008.
[135]A. F. Rigosi, D. Patel, M. Marzano, M. Kruskopf, H. M. Hill, H. Jin, J. Hu, A. R. Hight Walker, M. Ortolano, L. Callegaro, C. T. Liang, D. B. Newell., “Atypical quantized resistances in millimeter-scale epitaxial graphene p-n junctions,” Carbon N. Y., vol. 154, pp. 230–237, 2019, doi: 10.1016/j.carbon.2019.08.002.
[136]A. F. Rigosi, M. Marzano, A. Levy, H. M. Hill, D. K. Patel, M. Kruskopf, H. Jin, R. E. Elmquist, D. B. Newell, “Analytical determination of atypical quantized resistances in graphene p-n junctions,” Phys. B Condens. Matter, vol. 582, no. October 2019, p. 411971, 2020, doi: 10.1016/j.physb.2019.411971.
[137]D. Patel, M. Marzano, C. I Liu, H. M. Hill, M. Kruskopf, H. Jin, J. Hu, D. B. Newell, C. T. Liang, R. E. Elmquist, and A. F. Rigosi, “Accessing ratios of quantized resistances in graphene p - N junction devices using multiple terminals,” AIP Adv., vol. 10, no. 2, 2020, doi: 10.1063/1.5138901.
[138]C. I. Liu, D. K. Patel, M. Marzano, M. Kruskopf, H. M. Hill, and A. F. Rigosi, “Quantum Hall resistance dartboards using graphene p-n junction devices with Corbino geometries,” AIP Adv., vol. 10, no. 3, 2020, doi: 10.1063/1.5136315.
[139]C. I. Liu, D. S. Scaletta, D. K. Patel, M. Kruskopf, A. Levy, H. M. Hill, and A. F. Rigosi, “Analysing quantized resistance behaviour in graphene Corbino p-n junction devices,” J. Phys. D. Appl. Phys., vol. 53, no. 27, p. 275301, 2020, doi: 10.1088/1361-6463/ab83bb.
[140]P. Bøggild, J. M. Caridad, C. Stampfer, G. Calogero, N. R. Papior, and M. Brandbyge, “A two-dimensional Dirac fermion microscope,” Nat. Commun., vol. 8, p. 15783, 2017, doi: 10.1038/ncomms15783.
[141]D. Suszalski, G. Rut, and A. Rycerz, “Mesoscopic valley filter in graphene Corbino disk containing a p–n junction,” J. Phys. Mater., vol. 3, no. 1, p. 015006, 2019, doi: 10.1088/2515-7639/ab5082.
[142]A. F. Young and P. Kim, “Quantum interference and Klein tunnelling in graphene heterojunctions,” Nat. Phys., vol. 5, no. 3, pp. 222–226, 2009, doi: 10.1038/nphys1198.
[143]S. W. Lagasse and J. U. Lee, “Theory of Landau level mixing in heavily graded graphene p-n junctions,” Phys. Rev. B, vol. 94, no. 16, pp. 1–8, 2016, doi: 10.1103/PhysRevB.94.165312.
[144]J. R. Williams, T. Low, M. S. Lundstrom, and C. M. Marcus, “Gate-controlled guiding of electrons in graphene,” Nat. Nanotechnol., vol. 6, no. 4, pp. 222–225, 2011, doi: 10.1038/nnano.2011.3.
[145]Z. Gao, H. Kang, C. H. Naylor, F. Streller, P. Ducos, M. D. Serrano, J. Ping, J. Zauberman, Rajesh, R. W. Carpick, Y. J. Wang, Y. W. Park, Z. Luo, L. Ren, and A. T. Charlie Johnson, “Scalable Production of Sensor Arrays Based on High-Mobility Hybrid Graphene Field Effect Transistors,” ACS Appl. Mater. Interfaces, vol. 8, no. 41, pp. 27546–27552, 2016, doi: 10.1021/acsami.6b09238.
[146]B. Li, G. Pan, A. Suhail, K. Islam, N. Avent, and P. Davey, “Deep UV hardening of photoresist for shaping of graphene and lift-off fabrication of back-gated field effect biosensors by ion-milling and sputter deposition,” Carbon N. Y., vol. 118, pp. 43–49, 2017, doi: 10.1016/j.carbon.2017.03.032.
[147]E. N. D. de Araujo, T. A. S. L. de Sousa, L. de Moura Guimarães, and F. Plentz, “Effects of post-lithography cleaning on the yield and performance of CVD graphene-based devices,” Beilstein J. Nanotechnol., vol. 9, no. 1, pp. 349–355, 2019, doi: 10.3762/bjnano.10.34.
[148]G. Y. Vasileva, Y. B. Vasileva, S. N. Novikov, S. N. Danilov, and S. D. Ganichev, “On the Fabrication of Graphene p–n Junctions and Their Application for Detecting Terahertz Radiation,” Semiconductors, vol. 52, no. 8, pp. 1077–1081, 2018, doi: 10.1134/S1063782618080225.
[149]S. Datta, “nanoHUB-U Fundamentals of Nanoelectronics II,” 2014. [Online]. Available: https://www.youtube.com/watch?v=0HRL1kBJCLQ&list=PLNRcSEWtli7s8ObN26rKTCRPDWmKtTPFG&index=1.
[150]S. Datta, “Electronics from the Bottom Up,” 2017. [Online]. Available: https://www.youtube.com/watch?v=ebSWZWubPbk&list=PLbokjpHITJ-UPeFLniaeR8s4q3PkbIDpY&index=1.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top