跳到主要內容

臺灣博碩士論文加值系統

(44.221.73.157) 您好!臺灣時間:2024/06/20 12:00
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:郭家愷
研究生(外文):Chia-Kai Kuo
論文名稱:平面易辛模型的對偶性
論文名稱(外文):Dualities for Planar Ising Networks
指導教授:黃宇廷黃宇廷引用關係
指導教授(外文):Yu-Tin Huang
口試委員:高英哲賀培銘
口試委員(外文):Ying-Jer KaoPei-Ming Ho
口試日期:2020-07-27
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:物理學研究所
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:英文
論文頁數:60
中文關鍵詞:正交格拉斯曼易辛模型相變換
外文關鍵詞:Positive Orthogonal GrassmannianIsing modelPhase transition
DOI:10.6342/NTU202002223
相關次數:
  • 被引用被引用:0
  • 點閱點閱:148
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
格拉斯曼是一個發展完善的數學結構,他可以用於計算微擾規範場論的散射幅度。在最近,該工具也被發現可以運用在平面易辛模型。本文討論了正交格拉斯曼的細胞結構與平面易辛模型之間的等價關係。我們提出了一種以微觀結構發法,來建立兩者之間的對應關係。由兩者之間的等效性,使我們可以引入兩種新遞歸方法來計算易辛網絡的關聯函數。第一種基於對偶變換,此種變換生成易辛模網絡屬於格拉斯曼中同一的細胞。我們可以用這種變換來解碎形晶格,其中遞歸公式成為有效耦合常數的精確重整化群方程。對於第二個,我們使用黏合方法,其中每次迭代將原始晶格的大小加倍。這導致更有效計算關聯函數,其中複雜度相對於辛模晶格點的數量呈對數比例增長。
Grassmannian is a well-developed mathematical structure to compute the scattering amplitudes of perturbative gauge theories. Recently, a new connection of this tool to the planar Ising model has been revealed. This thesis discusses the equivalence between planar Ising networks and cells in the positive orthogonal Grassmannian. We propose a microscopic construction based on amalgamation, which establishes the correspondence for any planar Ising network. The equivalence allows us to introduce two recursive methods for computing correlators of Ising networks. The first is based on duality moves, which generate networks belonging to the same cell in the Grassmannian. This leads to fractal lattices, where the recursion formulas become the exact RG equations of the effective couplings. For the second, we use amalgamation, where each iteration doubles the size of the seed lattice. This leads to an efficient way of computing the correlator where the complexity scales logarithmically with respect to the number of spin sites.
致謝i
中文摘要iii
Abstract v
Contents vii
List of Figures ix
List of Tables xiii
1 Introduction 1
2 Ising Model 3
2.1 Introduction to Ising Model . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Planar Ising Model in the Disk . . . . . . . . . . . . . . . . . . . . . . . 3
3 Introduction to the Positive Grassmannian and the Positive Orthogonal Grassmannian 7
3.1 Definition of Positive Grassmannian (Gr≥0) . . . . . . . . . . . . . . . . 7
3.2 Positive Orthogonal Grassmannian (OG≥0) . . . . . . . . . . . . . . . . 8
3.3 Cell Structure of Grassmannian . . . . . . . . . . . . . . . . . . . . . . . 9
4 Correspondence between Planar Ising Model and Cell of Positive Orthogonal Grassmannian 15
4.1 Embedding Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.2 Example: Free Edge Network and Its Variants . . . . . . . . . . . . . . . 16
5 Fundamental Move in Planar Ising Model 19
5.1 From Planar Ising Model to Bipartite Graph . . . . . . . . . . . . . . . . 19
5.2 Duality move . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
6 Why Planar Ising models Lives in OG≥0? 25
6.1 Amalgamation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
6.2 Microscopic Construction . . . . . . . . . . . . . . . . . . . . . . . . . . 26
7 Phase Transition and Renormalization Group 31
7.1 Phase Transition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
7.2 Renormalization Group and Scale Transformation . . . . . . . . . . . . . 33
7.3 Fractal Lattices and Recursion via Duality Transformation . . . . . . . . 35
7.3.1 Fractal Lattices . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
7.3.2 Recursion via Duality Transformation . . . . . . . . . . . . . . . 36
7.4 Fractal Lattice and Non-fractal Lattice and Recursion through Amalgamation. . 43
7.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
8 Conclusion and Outlook 51
A Example of the Correspondence 53
A.1 Example 1: Triangle network . . . . . . . . . . . . . . . . . . . . . . . . 53
A.2 Example 2: Square network . . . . . . . . . . . . . . . . . . . . . . . . . 55
B Derivation for identification two spin sites 57
Bibliography 59
[1] N. Arkani-Hamed, J. L. Bourjaily, F. Cachazo, A. B. Goncharov, A. Postnikov and J. Trnka, “Grassmannian Geometry of Scattering Amplitudes,” arXiv:1212.5605 [hep-th].
[2] Y. T. Huang and C. Wen, “ABJM amplitudes and the positive orthogonal Grassmannian,” JHEP 1402, 104 (2014) [arXiv:1309.3252 [hep-th]].
[3] N. Arkani-Hamed and J. Trnka, “The Amplituhedron,” JHEP 1410, 030 (2014) [arXiv:1312.2007 [hep-th]].
[4] N. Arkani-Hamed, T-z Huang, and Y-t Huang: N. Arkani-Hamed, Y-t Huang and Shu-Heng Shao, To appear.
[5] R. K. Pathria and Paul D. Beale, “Statistical Mechanics,”
[6] “Ising model and the positive orthogonal Grassmannian”, P. Galashin, and P. Pylyavskyy, arXiv:1807.03282.
[7] S. Lee, “Yangian Invariant Scattering Amplitudes in Supersymmetric Chern-Simons Theory,” Phys. Rev. Lett. 105, 151603 (2010) [arXiv:1007.4772 [hep-th]].
[8] Higher-point functions can be written as products of two-point functions, and thus the correspondence generalizes easily [6].
[9] “The Planar Ising Model and Total Positivity” M. Lis, Journal of Statistical Physics, 166(1): 72-89, 2017 [arXiv:1606.06068 [math]]
[10] For planar networks, the four-point function can be recast as a sum of products of two-point functions, see, “Correlation-function identities for general planar Ising systems” J. Groeneveld and R.J. Boel and P.W. Kasteleyn, Physica A: Statistical Mechanics and its Applications, 93 (1) 138-154, 1978.
[11] Y. t. Huang, C. Wen, and D. Xie, “The Positive orthogonal Grassmannian and loop amplitudes of ABJM,” J. Phys. A 47, no. 47, 474008 (2014) [arXiv:1402.1479 [hepth]].
[12] The bubble reductions are the “decoration transformation” used by Naya, and the triangle move is the “start-triangle transformation” found by Onsager, see: “On the Spontaneous Magnetizations of Honeycomb and Kagom´e Ising Lattices”, S. Naya, Progress of Theoretical Physics, 11 53 (1954), and “Crystal Statistics. I. A Two-Dimensional Model with an Order-Disorder Transition”, L. Onsager, Phys. Rev. 65,117 (1944).
[13] H. Elvang and Y. t. Huang, arXiv:1308.1697 [hep-th].
[14] Y. Gefen, B. B. Mandelbrot and A. Aharony “Critical Phenomena on Fractal Lattices,” Phys. Rev. Lett. 45, 855 (1980)
[15] Y. Gefen, A. Aharony, Y. Shapir and B. B. Mandelbrot, “Phase transitions on fractals.II. Sierpinski gaskets,” Journal of Physics A: Mathematical and General, Volume 17, Issue 2, pp. 435-444 (1984)
[16] Hidetoshi Nishimon and Gerardo Ortiz “Elements of Phase Transitions and Critical Phenomena,” OXFORD University Press 45, (2011)
[17] Michael Aizenman, Hugo Duminil-Copin, Vincent Tassion, and Simone Warzel “Emergent Planarity in two-dimensional Ising Models with finite-range Interactions,” arXiv:1801.04960v2 [math-ph]
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top