跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.175) 您好!臺灣時間:2024/12/09 20:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:曾宇瀚
研究生(外文):Yu-Han Tseng
論文名稱:阿里宇宙微波背景輻射極化望遠鏡的觀測模擬與優化
論文名稱(外文):Optimization of AliCPT-1 Observing Strategy
指導教授:陳丕燊陳丕燊引用關係
指導教授(外文):Pisin Chen
口試委員:闕志鴻薛熙于梅津敬一奧村哲平
口試委員(外文):Tzihong ChiuehHsi-Yu SchiveKeiichi UmetsuTeppei Okumura
口試日期:2020-05-27
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:物理學研究所
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:英文
論文頁數:105
中文關鍵詞:宇宙微波背景輻射偏振地面觀測掃描策略響應校準模擬
外文關鍵詞:Cosmic Microwave BackgroundPolarizationGround-Based ObservationsScan StrategyGain CalibrationSimulations
DOI:10.6342/NTU202000956
相關次數:
  • 被引用被引用:0
  • 點閱點閱:121
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
阿里宇宙微波背景輻射極化望遠鏡(AliCPT-1)位於西藏高原的阿里地區, 由地面觀測宇宙微波背景輻射的大尺度偏振。精密的偏振量測可用於探測宇宙暴脹時產生的原初重力波,對宇宙學和基礎物理學皆有重要意義。此論文探討 AliCPT-1 望遠鏡觀測設計的兩個面向,包括掃描策略和探測器的響應校準。
論文的第一部分討論 AliCPT-1 的觀測位址、儀器設計及觀測方法,並特別側 重於與系統誤差控制有關的考量。我們提出一個初步的掃描策略,均勻地覆蓋了百分之十五低前景污染的天區。在論文的第二部份,我們首先討論大氣對 AliCPT-1 觀測的影響,發現若成對探測器的相對響應未能被精確校準,水汽所引發的大氣擾動可能成為觀測中極大的雜訊來源。接著,我們提出一個使用共模訊號校準相對響應的方式,並以模擬檢驗其在 AliCPT-1 的可行性。
Ali CMB Polarization Telescope (AliCPT-1) is a ground-based experiment designed to measure the polarization of the Cosmic Microwave Background (CMB) at degree angular scales. Such measurements provide invaluable insight into cosmology and fundamental physics. This thesis is dedicated to the optimization of AliCPT-1 observing strategy, including the scan strategy and detector gain calibration.
The first part of this work discusses the site, the instrument design, and the observation of AliCPT-1. We highlight the parts most relevant to the mitigation of instrumental systematics. We present a prototype scan strategy that provides uniform coverage of low-foreground emission region amount of 15% sky. Next, we discuss the impact of the atmosphere on AliCPT-1 observation, identifying the issue of sky brightness temperature fluctuations coupled to differential detector response. To mitigate the systematic error, we propose a methodology of calibrating relative detector gain using the unpolarized common-mode fluctuations. The proposed calibration scheme is assessed by realistic simulations, in which we find the approach shows initial promises.
Acknowledgements i
Abstract iii
List of Figures ix
List of Tables xi

Chapter 1 Introduction 1
1.1 The Expanding Universe 1
1.2 Inflation 3
1.2.1 Scalar Perturbations 3
1.2.2 Tensor Perturbations 5
1.3 Cosmic Microwave Background 6
1.3.1 Temperature 6
1.3.2 Polarization 8
1.4 Implications of CMB Polarization 13
1.4.1 Inflation 13
1.4.2 GravitationalLensing 14
1.4.3 Fundamental Physics 15
1.5 Observations 15
1.6 Thesis Outline 17

Chapter 2 Ali CMB Polarization Telescope 19
2.1 Site 19
2.2 Instrument design 21
2.2.1 Mount 22
2.2.2 Optics 23
2.2.3 Cryostat Receiver 23
2.2.4 Detector Module 25
2.3 Observation 26
2.3.1 Observing field 29
2.3.2 Scan strategy 31

Chapter 3 Atmosphere 37
3.1 Absorption and Emission 37
3.2 Impact on AliCPT-1 Observation 39
3.3 Unpolarized Fluctuations 39

Chapter 4 Simulation Pipeline 43
4.1 Overview 44
4.2 Time-ordered Data 45
4.2.1 Instrument Configuration 45
4.2.2 Scan Trajectory 46
4.2.3 Timestream Sample 47
4.2.4 Characteristics 51
4.3 Timestream Filtering 55
4.3.1 Polynomial Filtering 55
4.3.2 Ground Subtraction 56
4.4 Mapmaking 56
4.5 Power Spectrum Estimation 60

Chapter 5 Gain Calibration 67
5.1 Background 67
5.1.1 Detector Gain Calibration 68
5.1.2 Gain Calibration for AliCPT-1 69
5.2 Impact on Observations 70
5.3 Intra-Pair Relative Gain 71
5.3.1 Atmosphere as a Calibration Source 71
5.3.2 Simulations 73
5.3.3 Deriving the Relative Gain 73
5.3.4 Results 78
5.4 Summary and Outlook 84

Chapter 6 Conclusion 87

Appendix A Units of Radio Maps 89
A.1 Specific Intensity 89
A.2 Brightness Temperature 90

Appendix B Simulating a Gaussian Random Field 93

Bibliography 97
[1] K. N. Abazajian, P. Adshead, Z. Ahmed, and S. W. Allen et al. CMB-S4 Science Book. arXiv:1610.02743, 2016.
[2] D. Alonso, J. Sanchez, and A. Slosar. A unified pseudo-Cl framework. MNRAS, 484(3):4127—-4151, 2019.
[3] D. Alonso S. Næss B. Thorne, J. Dunkley. The Python Sky Model: software for simulating the Galactic microwave sky. MNRAS, 469(3):2821—-2833, 2017.
[4] D. Barkats, R. Aikin, and C. Bischoff et al. Degree-scale Cosmic Microwave Background Polarization Measurements from Three Years of BICEP1 Data. ApJ, 783(2):67, 2014.
[5] D. Baumann and M. G. Jackson et al. Probing Inflation with CMB Polarization. AIP Conference Proceedings, 1141(10), 2009.
[6] C. L. Bennett, D. Larson, J. L. Weiland, and N. Jarosik et al. Nine-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Final Maps and Results. Astrophys. J. Suppl. Ser., 208(2):20, 2013.
[7] R. Brout, F. Englert, and E. Gunzig. The creation of the universe as a quantum phenomenon. Ann. Phys, 115(1):78–106, 1978.
[8] S. A. Bryan, S. M. Simon, M. Gerbino, and G. Teply et al. Development of Calibration Strategies for the Simons Observatory. Proc. of SPIE, 10708(40):1–13, 2018.
[9] R. S. Bussmann, W. L. Holzapfel, and C.-L. Kuo. Millimeter Wavelength Brightness Fluctuations of the Atmosphere Above the South Pole. ApJ, 622(2):1343–1355, 2005.
[10] H. C. Chiang. Observation of Cosmic Microwave Background Polarization with BICEP. PhD thesis, California Institute of Technology, 2009.
[11] H. C. Chiang, P. A. R. Ade, and D. Barkats et al. Measurement of Cosmic Microwave Background Polarization Power Spectra from Two Years of BICEP Data. ApJ, 711(2):1123–1140, 2010.
[12] S. Church. Predicting Residual Levels of Atmospheric Sky Noise in Ground-Based Observations of the Cosmic Background Radiation. MNRAS, 272(3):551–569, 1995.
[13]BICEP2 Collaboration, P. A. R. Ade, Z. Ahmed, R. W. Aikin, K. D. Alexander, and D. Barkats et al. BICEP2/Keck Array Array VIII: Measurement of Gravitational Lensing from Large-Scale B-mode Polarization. ApJ, 833(2):228, 2016.
[14] BICEP2 Collaboration, P. A. R. Ade, Z. Ahmed, R. W. Aikin, K. D. Alexander, and D. Barkats et al. BICEP2/Keck Array IX: New Bounds on Anisotropies of CMB Polarization Rotation and Implications for Axion-Like Particles and Primordial Magnetic Fields. Phys. Rev. D, 96:102003, 2017.
[15] BICEP2 Collaboration, P. A. R. Ade, R. W. Aikin, M. Amiri, and D. Barkats et al. BICEP2. II. Experiment and Three-year Data Set. ApJ, 792(1):62, 2014.
[16] BICEP2 Collaboration, P. A. R. Ade, R. W. Aikin, M. Amiri, and D. Barkats et al. BICEP2. III. Instrumental Systematics. ApJ, 814(2):110, 2015.
[17] BICEP2 Collaboration, P. A. R. Ade, R. W. Aikin, and D. Barkats et al. Detection of B-Mode Polarization at Degree Angular Scales by BICEP2. Phys. Rev. Lett., 112:241101, 2014.
[18] Planck Collaboration, N. Aghanim, Y. Akrami, M. Ashdown, J. Aumont, C. Baccigalupi, M. Ballardini, A. J. Banday, R. B. Barreiro, and N. Bartolo et al. Planck 2018 results. V. CMB power spectra and likelihoods. arXiv:1807.06208, 2018.
[19] Planck Collaboration, N. Aghanim, Y. Akrami, M. Ashdown, J. Aumont, C. Baccigalupi, M. Ballardini, A. J. Banday, R. B. Barreiro, and N. Bartolo et al. Planck 2018 results. VI. Cosmological parameters. arXiv:1807.06209, 2018.
[20] Planck Collaboration, N. Aghanim, Y. Akrami, M. Ashdown, J. Aumont, C. Baccigalupi, M. Ballardini, A. J. Banday, R. B. Barreiro, and N. Bartolo et al. Planck 2018 results. IV. Diffuse component separation. arXiv:1907.12875, 2019.
[21] Planck Collaboration, N. Aghanim, Y. Akrami, M. Ashdown, and J. Aumont et al. Planck 2018 results. VIII. Gravitational lensing. arXiv:1807.06210, 2019.
[22] Planck Collaboration, N. Aghanim, M. Arnaud, M. Ashdown, J. Aumont, C. Baccigalupi, M. Ballardini, A. J. Banday, R. B. Barreiro, and J. Bartlett et al. Planck 2015 results. XIII. Cosmological parameters. A & A, 594(A13), 2016.
[23] Planck Collaboration, Y. Akrami, F. Arroja, M. Ashdown, J. Aumont, C. Baccigalupi, M. Ballardini, and A. J. Banday et al. Planck 2018 results. X. Constraints on inflation. arXiv:1807.06211, 2018.
[24] POLARBEAR Collaboration, P. A. R. Ade, Y. Akiba, and A. E. Anthony et al. Measurement of the Cosmic Microwave Background Polarization Lensing Power Spectrum with the POLARBEAR Experiment. Phys. Rev. Lett., 113:021301, 2013.
[25] S. Das, T. Louis, M. R. Nolta, and G. E. Addison et al. The Atacama Cosmology Telescope: temperature and gravitational lensing power spectrum measurements from three seasons of data. J. Cosmol. Astropart. Phys., 4:014, 2014.
[26] J. D. David. Classical Electrodynamics. John Wiley & Sons, Hoboken, New Jersey, 1998.
[27] S. Dodelson. Modern Cosmology. Academic Press, 2003.
[28] J. Errard, P. A. R. Ade, and Y. Akiba et al. Modeling Atmospheric Emission for CMB Ground Based Observations.
[29] M. A. Fedderke, P. W. Graham, and S. Rajendran. Axion dark matter detection
with CMB polarization. Phys. Rev. D, 100(1):015040, 2019.
[30] D. J. Fixsen, E. S. Cheng, J. M. Gales, J. C. Mather, R. A. Shafer, and E. L. Wright. The Cosmic Microwave Background Spectrum from the Full COBE FIRAS Data Set. ApJ, 473(2):576–587, 1996.
[31] J. A. Grayson. The BICEP3 Millimeter-Wave Polarimeter: Measuring the Cosmic Microwave Background from the South Pole. PhD thesis, Stanford University, 2016.
[32] A. H. Guth. Inflationary universe: A possible solution to the horizon and flatness problems. Phys. Rev. D, 23(2):347–356, 1981.
[33] S. Hanany and P. Rosenkranz. Polarization of the Atmosphere as a Foreground for Cosmic Microwave Background Polarization Experiments. New Astronomy Review, 47(11-12):1159–1165, 2003.
[34] E. Hivon, K. M. Gorski, C. B. Netterfield, B. P. Crill, S. Prunet, and F. Hansen. MASTER of the Cosmic Microwave Background Anisotropy Power Spectrum: A Fast Method for Statistical Analysis of Large and Complex Cosmic Microwave Background Data Sets. ApJ, 567(1):2—17, 2001.
[35] W. Hu and N. Sugiyama. Toward understanding CMB anisotropies and their implications. Phys. Rev. D, 51(6):2599–2630, 1995.
[36] W. Hu and M. White. A CMB Polarization Primer. New Astronomy, 2(4):323–344, 1997.
[37] W. Hu and M. White. CMB anisotropies: Total angular momentum method. Phys. Rev. D, 56(2):596–615, 1997.
[38] K.D. Irwin and G.C. Hilton. Transition-Edge Sensors. Cryogenic Particle Detection, volume 99 of Topics in Applied Physics, page 63–150, 2005.
[39] W. C. Jones, T. E. Montroy, B. P. Crill, C. R. Contaldi, T. S. Kisner, A. E. Lange, C. J. MacTavish, C. B. Netterfield, and J. E. Ruhl. Instrumental and analytic methods for bolometric polarimetry. A & A, 470(2):771–785, 2007.
[40] M. Kamionkowski, A. Kosowsky, and A Stebbins. A Probe of Primordial Gravity Waves and Vorticity. Phys. Rev. Lett., 78(11):2058–2061, 1997.
[41] M. Kamionkowski, A. Kosowsky, and A Stebbins. Statistics of Cosmic Microwave Background Polarization. Phys. Rev. D, 55(12):7368–7388, 1997.
[42] J. M. Kovac, E. M. Leitch, C. Pryke, J. E. Carlstrom, N. W. Halverson, and W. L. Holzapfel. Detection of polarization in the cosmic microwave background using DASI. Nature, 420:772–787, 2002.
[43] C.-L. Kuo. Assessments of Ali, Dome A, and Summit Camp for mm-wave Observations Using MERRA-2 Reanalysis. ApJ, 848:64, 2017.
[44] O. P. Lay and N. W. Halverson. The Impact of Atmospheric Fluctuations on Degree-scale Imaging of the Cosmic Microwave Background. ApJ, 543(2):787–798, 2000.
[45] A. Lewis and A. Challinor. Weak gravitational lensing of the CMB. Phys. Rep., 429(1):1–65, 2006.
[46] H. Li, S.-Y. Li, Y. Liu, and Y.-P. Li et al. Probing Primordial Gravitational Waves: Ali CMB Polarization Telescope. National Science Review, 6(1):145–154, 2019.
[47] S.-Y. Li, J.-Q. Xia, M. Li, H. Li, and X. Zhang. Testing CPT Symmetry with Current and Future CMB Measurements. ApJ, 799(2):211, 2015.
[48] Y.-P. Li, Y. Liu, S.-Y. Li, H. Li, and X. Zhang. Tibet’s Ali: A New Window to Detect the CMB Polarization. arXiv:1709.09053, 2017.
[49] A. D. Linde. A new inflationary universe scenario: A possible solution of the horizon, flatness, homogeneity, isotropy and primordial monopole problems. Phys. Lett. B, 108(6):389–393, 1982.
[50] A. D. Linde. Chaotic inflation. Phys. Lett. B, 129(3-4):177–181, 1983.
[51] V. F. Mukhanov. Gravitational instability of the universe filled with a scalar field. JETP Lett., 41(9):493–496, 1985.
[52] J. M. Nagy, P. A. R. Ade, M. Amiri, S. J. Benton, and A. S. Bergman et al. A New Limit on CMB Circular Polarization from SPIDER. ApJ, 844(2):151–157, 2017.
[53] N. Odegard and D. Watts. Tools for plotting cmb polarization power spectra. https://github.com/nasa-lambda/cmbpol_plotting/, 2020.
[54] I. L. Padilla, J. R. Eimer, Y. Li, and G. E. Addison. Two-year Cosmology Large Angular Scale Surveyor (CLASS) Observations: A Measurement of Circular Polarization at 40 GHz. ApJ, 889(2):105, 2020.
[55] H. V. Peiris, E. Komatsu, L. Verde, and D. N. Spergel et al. First-Year Wilkin- son Microwave Anisotropy Probe (WMAP) Observations: Implications For Inflation. Astrophys. J. Suppl. Ser., 148(1):213–231, 2003.
[56] C. L. Reichardt, P. A. R. Ade, J. J. Bock, and J. R. Bond et al. High resolution CMB power spectrum from the complete ACBAR data set. ApJ, 694(2):1200– 1219, 2009.
[57] G. B. Rybicki and A. P. Lightman. Radiative Process in Astrophysics. John Wiley & Sons, Hoboken, New Jersey, 1993.
[58] M. Sasaki. Large Scale Quantum Fluctuations in the Inflationary Universe. Progress of Theoretical Physics, 76(5):1036–1046, 1986.
[59] K. Sato. First-order phase transition of a vacuum and the expansion of the Universe. MNRAS, 195(3):467–479, 1981.
[60] J. Sayers, S. R. Golwala, P. A. R. Ade, and J. E. Aguirre et al. Studies of Millimeter-Wave Atmospheric Noise Above Mauna Kea. ApJ, 708(2):1674—1691, 2010.
[61] U. Seljak and M. Zaldarriaga. Signature of Gravity Waves in the Polarization of the Microwave Background. Phys. Rev. Lett., 78(11):2054–2057, 1997.
[62] C. D. Sheehy. Progress Toward a Detection of Inflationary B-Modes with the BICEP2 and Keck Array Polarimeters. PhD thesis, The University of Chicago, 2013.
[63] S. M. Simion. Cosmic Microwave Background Polarimetry with ABS and ACT: Instrumental Design, Characterization, and Analysis. PhD thesis, Princeton University, 2016.
[64] S. Spinelli, G. Fabbian, A. Tartari, M. Zannoni, and M. Gervasi. A Template of Atmospheric O2 Circularly Polarized Emission for Cosmic Microwave Background Experiments. MNRAS, 414(4):3272–3280, 2011.
[65] A. A. Starobinsky. A new type of isotropic cosmological models without singularity. Phys. Lett. B, 91(1):99–102, 1980.
[66] K. T. Story, C. L. Reichardt, Z. Hou, and R. Keisler et al. A Measurement of the Cosmic Microwave Background Damping Tail from the 2500-Square- Degree SPT-SZ Survey. ApJ, 779(1):86, 2013.
[67] Y. D. Takahashi, P. A. R. Ade, and D. Barkats et al. Characterization of the BICEP Telescope for High-Precision Cosmic Microwave Background Polarimetry. ApJ, 711(2):1141–1156, 2010. 72
[68] S. Takakura, M. A. O. Aguilar-Fau ́ndez, and Y. Akiba et al. Measurements of Tropospheric Ice Clouds with a Ground-based CMB Polarization Experiment, POLARBEAR. ApJ, 870(2):102, 2019. 38
[69] G. I. Taylor. The Spectrum of Turbulence. Proc. R. Soc. London A, 164(919):476–490, 1938.
[70] J. Tolan. Testing Inflationary Cosmology with BICEP2 and the Keck Array. PhD thesis, Stanford University, 2014.
[71] S. Weinberg. Cosmology. Oxford University Press, 2008.
[72] W. L. K. Wu. BICEP3 and CMB-S4: Current and Future CMB Polarization Experiments to Probe Fundamental Physics. PhD thesis, Stanford University, 2015.
[73] W. L. K. Wu, J. Errard, C. Dvorkin, C.-L. Kuo, A. T. Lee, P. McDonald, A. Slosar, and O. Zahn. A Guide to Designing Future Ground-based CMB Experiments. ApJ, 788(2):138, 2015.
[74] W. L. K. Wu, L. M. Mocanu, P. A. R. Ade, and A. J. Anderson. A Measurement of the Cosmic Microwave Background Lensing Potential and Power Spectrum from 500 deg2 of SPTpol Temperature and Polarization Data. ApJ, 884(1):70, 2019.
[75] J.-Q. Xia, H. Li, and X.Zhang. Probing CPT Violation with CMB Polarization Measurements. Phys. Lett. B, 687(2-3):129–132, 2010.
[76] Q.-Z. Ye, M. Su, H. Li, and X. Zhang. Tibet’s Ali: Asia’s Atacama? MNRAS, 457(1):L1–L4, 2016.
[77] M. Zaldarriaga and U. Seljak. All-sky Analysis of Polarization in the Microwave Background. Phys. Rev. D, 55(4):1830–1840, 1997.
[78] M. Zaldarriaga and U. Seljak. Gravitational Lensing Effect on Cosmic Microwave Background Polarization. Phys. Rev. D, 58:023003, 1998.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top