|
[1] K. N. Abazajian, P. Adshead, Z. Ahmed, and S. W. Allen et al. CMB-S4 Science Book. arXiv:1610.02743, 2016. [2] D. Alonso, J. Sanchez, and A. Slosar. A unified pseudo-Cl framework. MNRAS, 484(3):4127—-4151, 2019. [3] D. Alonso S. Næss B. Thorne, J. Dunkley. The Python Sky Model: software for simulating the Galactic microwave sky. MNRAS, 469(3):2821—-2833, 2017. [4] D. Barkats, R. Aikin, and C. Bischoff et al. Degree-scale Cosmic Microwave Background Polarization Measurements from Three Years of BICEP1 Data. ApJ, 783(2):67, 2014. [5] D. Baumann and M. G. Jackson et al. Probing Inflation with CMB Polarization. AIP Conference Proceedings, 1141(10), 2009. [6] C. L. Bennett, D. Larson, J. L. Weiland, and N. Jarosik et al. Nine-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Final Maps and Results. Astrophys. J. Suppl. Ser., 208(2):20, 2013. [7] R. Brout, F. Englert, and E. Gunzig. The creation of the universe as a quantum phenomenon. Ann. Phys, 115(1):78–106, 1978. [8] S. A. Bryan, S. M. Simon, M. Gerbino, and G. Teply et al. Development of Calibration Strategies for the Simons Observatory. Proc. of SPIE, 10708(40):1–13, 2018. [9] R. S. Bussmann, W. L. Holzapfel, and C.-L. Kuo. Millimeter Wavelength Brightness Fluctuations of the Atmosphere Above the South Pole. ApJ, 622(2):1343–1355, 2005. [10] H. C. Chiang. Observation of Cosmic Microwave Background Polarization with BICEP. PhD thesis, California Institute of Technology, 2009. [11] H. C. Chiang, P. A. R. Ade, and D. Barkats et al. Measurement of Cosmic Microwave Background Polarization Power Spectra from Two Years of BICEP Data. ApJ, 711(2):1123–1140, 2010. [12] S. Church. Predicting Residual Levels of Atmospheric Sky Noise in Ground-Based Observations of the Cosmic Background Radiation. MNRAS, 272(3):551–569, 1995. [13]BICEP2 Collaboration, P. A. R. Ade, Z. Ahmed, R. W. Aikin, K. D. Alexander, and D. Barkats et al. BICEP2/Keck Array Array VIII: Measurement of Gravitational Lensing from Large-Scale B-mode Polarization. ApJ, 833(2):228, 2016. [14] BICEP2 Collaboration, P. A. R. Ade, Z. Ahmed, R. W. Aikin, K. D. Alexander, and D. Barkats et al. BICEP2/Keck Array IX: New Bounds on Anisotropies of CMB Polarization Rotation and Implications for Axion-Like Particles and Primordial Magnetic Fields. Phys. Rev. D, 96:102003, 2017. [15] BICEP2 Collaboration, P. A. R. Ade, R. W. Aikin, M. Amiri, and D. Barkats et al. BICEP2. II. Experiment and Three-year Data Set. ApJ, 792(1):62, 2014. [16] BICEP2 Collaboration, P. A. R. Ade, R. W. Aikin, M. Amiri, and D. Barkats et al. BICEP2. III. Instrumental Systematics. ApJ, 814(2):110, 2015. [17] BICEP2 Collaboration, P. A. R. Ade, R. W. Aikin, and D. Barkats et al. Detection of B-Mode Polarization at Degree Angular Scales by BICEP2. Phys. Rev. Lett., 112:241101, 2014. [18] Planck Collaboration, N. Aghanim, Y. Akrami, M. Ashdown, J. Aumont, C. Baccigalupi, M. Ballardini, A. J. Banday, R. B. Barreiro, and N. Bartolo et al. Planck 2018 results. V. CMB power spectra and likelihoods. arXiv:1807.06208, 2018. [19] Planck Collaboration, N. Aghanim, Y. Akrami, M. Ashdown, J. Aumont, C. Baccigalupi, M. Ballardini, A. J. Banday, R. B. Barreiro, and N. Bartolo et al. Planck 2018 results. VI. Cosmological parameters. arXiv:1807.06209, 2018. [20] Planck Collaboration, N. Aghanim, Y. Akrami, M. Ashdown, J. Aumont, C. Baccigalupi, M. Ballardini, A. J. Banday, R. B. Barreiro, and N. Bartolo et al. Planck 2018 results. IV. Diffuse component separation. arXiv:1907.12875, 2019. [21] Planck Collaboration, N. Aghanim, Y. Akrami, M. Ashdown, and J. Aumont et al. Planck 2018 results. VIII. Gravitational lensing. arXiv:1807.06210, 2019. [22] Planck Collaboration, N. Aghanim, M. Arnaud, M. Ashdown, J. Aumont, C. Baccigalupi, M. Ballardini, A. J. Banday, R. B. Barreiro, and J. Bartlett et al. Planck 2015 results. XIII. Cosmological parameters. A & A, 594(A13), 2016. [23] Planck Collaboration, Y. Akrami, F. Arroja, M. Ashdown, J. Aumont, C. Baccigalupi, M. Ballardini, and A. J. Banday et al. Planck 2018 results. X. Constraints on inflation. arXiv:1807.06211, 2018. [24] POLARBEAR Collaboration, P. A. R. Ade, Y. Akiba, and A. E. Anthony et al. Measurement of the Cosmic Microwave Background Polarization Lensing Power Spectrum with the POLARBEAR Experiment. Phys. Rev. Lett., 113:021301, 2013. [25] S. Das, T. Louis, M. R. Nolta, and G. E. Addison et al. The Atacama Cosmology Telescope: temperature and gravitational lensing power spectrum measurements from three seasons of data. J. Cosmol. Astropart. Phys., 4:014, 2014. [26] J. D. David. Classical Electrodynamics. John Wiley & Sons, Hoboken, New Jersey, 1998. [27] S. Dodelson. Modern Cosmology. Academic Press, 2003. [28] J. Errard, P. A. R. Ade, and Y. Akiba et al. Modeling Atmospheric Emission for CMB Ground Based Observations. [29] M. A. Fedderke, P. W. Graham, and S. Rajendran. Axion dark matter detection with CMB polarization. Phys. Rev. D, 100(1):015040, 2019. [30] D. J. Fixsen, E. S. Cheng, J. M. Gales, J. C. Mather, R. A. Shafer, and E. L. Wright. The Cosmic Microwave Background Spectrum from the Full COBE FIRAS Data Set. ApJ, 473(2):576–587, 1996. [31] J. A. Grayson. The BICEP3 Millimeter-Wave Polarimeter: Measuring the Cosmic Microwave Background from the South Pole. PhD thesis, Stanford University, 2016. [32] A. H. Guth. Inflationary universe: A possible solution to the horizon and flatness problems. Phys. Rev. D, 23(2):347–356, 1981. [33] S. Hanany and P. Rosenkranz. Polarization of the Atmosphere as a Foreground for Cosmic Microwave Background Polarization Experiments. New Astronomy Review, 47(11-12):1159–1165, 2003. [34] E. Hivon, K. M. Gorski, C. B. Netterfield, B. P. Crill, S. Prunet, and F. Hansen. MASTER of the Cosmic Microwave Background Anisotropy Power Spectrum: A Fast Method for Statistical Analysis of Large and Complex Cosmic Microwave Background Data Sets. ApJ, 567(1):2—17, 2001. [35] W. Hu and N. Sugiyama. Toward understanding CMB anisotropies and their implications. Phys. Rev. D, 51(6):2599–2630, 1995. [36] W. Hu and M. White. A CMB Polarization Primer. New Astronomy, 2(4):323–344, 1997. [37] W. Hu and M. White. CMB anisotropies: Total angular momentum method. Phys. Rev. D, 56(2):596–615, 1997. [38] K.D. Irwin and G.C. Hilton. Transition-Edge Sensors. Cryogenic Particle Detection, volume 99 of Topics in Applied Physics, page 63–150, 2005. [39] W. C. Jones, T. E. Montroy, B. P. Crill, C. R. Contaldi, T. S. Kisner, A. E. Lange, C. J. MacTavish, C. B. Netterfield, and J. E. Ruhl. Instrumental and analytic methods for bolometric polarimetry. A & A, 470(2):771–785, 2007. [40] M. Kamionkowski, A. Kosowsky, and A Stebbins. A Probe of Primordial Gravity Waves and Vorticity. Phys. Rev. Lett., 78(11):2058–2061, 1997. [41] M. Kamionkowski, A. Kosowsky, and A Stebbins. Statistics of Cosmic Microwave Background Polarization. Phys. Rev. D, 55(12):7368–7388, 1997. [42] J. M. Kovac, E. M. Leitch, C. Pryke, J. E. Carlstrom, N. W. Halverson, and W. L. Holzapfel. Detection of polarization in the cosmic microwave background using DASI. Nature, 420:772–787, 2002. [43] C.-L. Kuo. Assessments of Ali, Dome A, and Summit Camp for mm-wave Observations Using MERRA-2 Reanalysis. ApJ, 848:64, 2017. [44] O. P. Lay and N. W. Halverson. The Impact of Atmospheric Fluctuations on Degree-scale Imaging of the Cosmic Microwave Background. ApJ, 543(2):787–798, 2000. [45] A. Lewis and A. Challinor. Weak gravitational lensing of the CMB. Phys. Rep., 429(1):1–65, 2006. [46] H. Li, S.-Y. Li, Y. Liu, and Y.-P. Li et al. Probing Primordial Gravitational Waves: Ali CMB Polarization Telescope. National Science Review, 6(1):145–154, 2019. [47] S.-Y. Li, J.-Q. Xia, M. Li, H. Li, and X. Zhang. Testing CPT Symmetry with Current and Future CMB Measurements. ApJ, 799(2):211, 2015. [48] Y.-P. Li, Y. Liu, S.-Y. Li, H. Li, and X. Zhang. Tibet’s Ali: A New Window to Detect the CMB Polarization. arXiv:1709.09053, 2017. [49] A. D. Linde. A new inflationary universe scenario: A possible solution of the horizon, flatness, homogeneity, isotropy and primordial monopole problems. Phys. Lett. B, 108(6):389–393, 1982. [50] A. D. Linde. Chaotic inflation. Phys. Lett. B, 129(3-4):177–181, 1983. [51] V. F. Mukhanov. Gravitational instability of the universe filled with a scalar field. JETP Lett., 41(9):493–496, 1985. [52] J. M. Nagy, P. A. R. Ade, M. Amiri, S. J. Benton, and A. S. Bergman et al. A New Limit on CMB Circular Polarization from SPIDER. ApJ, 844(2):151–157, 2017. [53] N. Odegard and D. Watts. Tools for plotting cmb polarization power spectra. https://github.com/nasa-lambda/cmbpol_plotting/, 2020. [54] I. L. Padilla, J. R. Eimer, Y. Li, and G. E. Addison. Two-year Cosmology Large Angular Scale Surveyor (CLASS) Observations: A Measurement of Circular Polarization at 40 GHz. ApJ, 889(2):105, 2020. [55] H. V. Peiris, E. Komatsu, L. Verde, and D. N. Spergel et al. First-Year Wilkin- son Microwave Anisotropy Probe (WMAP) Observations: Implications For Inflation. Astrophys. J. Suppl. Ser., 148(1):213–231, 2003. [56] C. L. Reichardt, P. A. R. Ade, J. J. Bock, and J. R. Bond et al. High resolution CMB power spectrum from the complete ACBAR data set. ApJ, 694(2):1200– 1219, 2009. [57] G. B. Rybicki and A. P. Lightman. Radiative Process in Astrophysics. John Wiley & Sons, Hoboken, New Jersey, 1993. [58] M. Sasaki. Large Scale Quantum Fluctuations in the Inflationary Universe. Progress of Theoretical Physics, 76(5):1036–1046, 1986. [59] K. Sato. First-order phase transition of a vacuum and the expansion of the Universe. MNRAS, 195(3):467–479, 1981. [60] J. Sayers, S. R. Golwala, P. A. R. Ade, and J. E. Aguirre et al. Studies of Millimeter-Wave Atmospheric Noise Above Mauna Kea. ApJ, 708(2):1674—1691, 2010. [61] U. Seljak and M. Zaldarriaga. Signature of Gravity Waves in the Polarization of the Microwave Background. Phys. Rev. Lett., 78(11):2054–2057, 1997. [62] C. D. Sheehy. Progress Toward a Detection of Inflationary B-Modes with the BICEP2 and Keck Array Polarimeters. PhD thesis, The University of Chicago, 2013. [63] S. M. Simion. Cosmic Microwave Background Polarimetry with ABS and ACT: Instrumental Design, Characterization, and Analysis. PhD thesis, Princeton University, 2016. [64] S. Spinelli, G. Fabbian, A. Tartari, M. Zannoni, and M. Gervasi. A Template of Atmospheric O2 Circularly Polarized Emission for Cosmic Microwave Background Experiments. MNRAS, 414(4):3272–3280, 2011. [65] A. A. Starobinsky. A new type of isotropic cosmological models without singularity. Phys. Lett. B, 91(1):99–102, 1980. [66] K. T. Story, C. L. Reichardt, Z. Hou, and R. Keisler et al. A Measurement of the Cosmic Microwave Background Damping Tail from the 2500-Square- Degree SPT-SZ Survey. ApJ, 779(1):86, 2013. [67] Y. D. Takahashi, P. A. R. Ade, and D. Barkats et al. Characterization of the BICEP Telescope for High-Precision Cosmic Microwave Background Polarimetry. ApJ, 711(2):1141–1156, 2010. 72 [68] S. Takakura, M. A. O. Aguilar-Fau ́ndez, and Y. Akiba et al. Measurements of Tropospheric Ice Clouds with a Ground-based CMB Polarization Experiment, POLARBEAR. ApJ, 870(2):102, 2019. 38 [69] G. I. Taylor. The Spectrum of Turbulence. Proc. R. Soc. London A, 164(919):476–490, 1938. [70] J. Tolan. Testing Inflationary Cosmology with BICEP2 and the Keck Array. PhD thesis, Stanford University, 2014. [71] S. Weinberg. Cosmology. Oxford University Press, 2008. [72] W. L. K. Wu. BICEP3 and CMB-S4: Current and Future CMB Polarization Experiments to Probe Fundamental Physics. PhD thesis, Stanford University, 2015. [73] W. L. K. Wu, J. Errard, C. Dvorkin, C.-L. Kuo, A. T. Lee, P. McDonald, A. Slosar, and O. Zahn. A Guide to Designing Future Ground-based CMB Experiments. ApJ, 788(2):138, 2015. [74] W. L. K. Wu, L. M. Mocanu, P. A. R. Ade, and A. J. Anderson. A Measurement of the Cosmic Microwave Background Lensing Potential and Power Spectrum from 500 deg2 of SPTpol Temperature and Polarization Data. ApJ, 884(1):70, 2019. [75] J.-Q. Xia, H. Li, and X.Zhang. Probing CPT Violation with CMB Polarization Measurements. Phys. Lett. B, 687(2-3):129–132, 2010. [76] Q.-Z. Ye, M. Su, H. Li, and X. Zhang. Tibet’s Ali: Asia’s Atacama? MNRAS, 457(1):L1–L4, 2016. [77] M. Zaldarriaga and U. Seljak. All-sky Analysis of Polarization in the Microwave Background. Phys. Rev. D, 55(4):1830–1840, 1997. [78] M. Zaldarriaga and U. Seljak. Gravitational Lensing Effect on Cosmic Microwave Background Polarization. Phys. Rev. D, 58:023003, 1998.
|