跳到主要內容

臺灣博碩士論文加值系統

(44.220.44.148) 您好!臺灣時間:2024/06/14 12:08
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張庭嘉
研究生(外文):Ting-Jia Chang
論文名稱:高效面之上轉換效率:結合上轉換奈米粒子與具有雙曲色散曲線之奈米顆粒之內核-外殼超穎材料
論文名稱(外文):Integration of Uponconversion Nanoparticles and Core-Shell Meta-Structure: An Efficient Platform towards High Uponconversion Efficiency
指導教授:陳永芳陳永芳引用關係
指導教授(外文):Yang-Fang Chen
口試委員:謝馬利歐林泰源沈志霖
口試委員(外文):Mario HofmannTai-Yuan LinJi-Lin Shen
口試日期:2019-07-24
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:物理學研究所
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:英文
論文頁數:39
中文關鍵詞:上轉換奈米粒子 超穎材料 奈米光子學
外文關鍵詞:Upconversion nanoparticles,Hyperbolic meta-structure,Nanophotonics
DOI:10.6342/NTU202001430
相關次數:
  • 被引用被引用:0
  • 點閱點閱:86
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
上轉換奈米粒子可吸收近紅外光而發出可見光,且相對於其他多光子吸收之非線性光學具有更高的能量轉換效率及更低之激發能量。近年來,上轉換奈米粒子被廣泛應用於多種研究應用方面,例如:太陽能電池及生物影像等。然而,其所需的激發能量還是遠高於一般螢光所需。
在此論文中,藉由使用新穎之具有雙曲色散曲線之奈米顆粒之內核-外殼超穎材料,我們發現上轉換粒子的所需激發能量大幅下降,並有顯著提升的發光量。此奈米顆粒之內核-外殼超穎材料由多層球殼結構所組成,其核心材料為金與二氧化矽。此結構具有高度的上轉換效率是因為其背後機制讓持續的耦合效應產生在多層球殼結構之中,並生成顯著的能量進而可提高上轉換粒子的發光。這獨特的性質讓上轉換粒子只需要相當低的能量去激發出短波長的光。
我們對於雙曲色散曲線之超穎材料的研究讓在提高上轉換效率有了一個優異的選擇並在各種上轉換的應用上有了更深的了解。
Upconversion nanoparticles (UCNPs) absorb two and more photons to emit the light covering the whole visible wavelength light under the excitation of near infrared radiation, which is much more effective than other nonlinear optical materials, so that it has been used in a wide range of applications spanning from bio-imaging to solar battery. However, upconversion of photon still requires a relatively high pumping power density (MW/cm²).
To circumvent this challenge in this work, by using a newly designed hyperbolic meta structure, namely the core-shell hyperbolic meta-structure decorated UCNPs, we demonstrate that the pumping power density can be drastically reduced and the emission arising from UCNPs can be greatly enhanced. The core-shell hyperbolic meta-structure is composed of the multi-shells with the alternative layers of Au/ SiO2. The underlying mechanism of the observed giant upconversion efficiency arises from the strong coupling effect in between the multi-shells that can generate a pronounced energy to subsequently couple out. Then, the emission of UCNPs is enhanced. This unique characteristic makes the emission of UCNPs only require an ultra-low power density of light illumination with an extremely enlarged emission intensity. Our study therefore provides an excellent alternative for the design of hyperbolic meta-structure with spherical shape and offers a new platform for the enhancement of light emitters, which is very useful for the development of high-performance optoelectronic devices with practical applications covering from solid state lighting to infrared images.
口試委員會審定書 #
誌謝 1
中文摘要 2
ABSTRACT 3
CONTENTS 5
LIST OF FIGURES 7
LIST OF TABLES 9
Chapter 1 Introduction 10
Chapter 2 Theoretical background 12
2.1 Upconversion nanoparticles (UCNPs) 12
2.2 Hyperbolic meta-material (HMM) 13
2.3 Local density of states (LDOS) 14
2.4 Scattering efficiency 15
2.5 Spot-size of the pumping laser 15
Chapter 3 Equipment and Experiment Details 17
3.1 Equipment 17
3.1.1 Transmission Electron Microscopy (TEM) 17
3.1.2 Photoluminescence Measurement 18
3.1.3 Optics: Neutral Density filter (ND filter) 19
3.2 Experimental Details 19
3.2.1 Nanoscale core-shell HMM 19
3.2.2 Experimental Methods 20
3.2.3 980 nm Pumping Laser Current-Intensity 24
Chapter 4 Result and Discussion 25
Chapter 5 Conclusion 36
REFERENCE 37
1.Zhou, J.; Liu, Q.; Feng, W.; Sun, Y.; Li, F. Chem. Rev. 2015, 115, (1), 395-465.
2.Chen, G.; Qiu, H.; Prasad, P. N.; Chen, X. Chem. Rev. 2014, 114, (10), 5161-5214.
3.Bünzli, J.-C. G.; Eliseeva, S. V. J. Rare. Earths 2010, 28, (6), 824-842.
4.Auzel, F. Chem. Rev. 2004, 104, (1), 139-174.
5.Liu, Y.; Lu, Y.; Yang, X.; Zheng, X.; Wen, S.; Wang, F.; Vidal, X.; Zhao, J.; Liu, D.; Zhou, Z.; Ma, C.; Zhou, J.; Piper, J. A.; Xi, P.; Jin, D. Nature 2017, 543, 229.
6.Wen, S.; Zhou, J.; Zheng, K.; Bednarkiewicz, A.; Liu, X.; Jin, D. Nat. Commun. 2018, 9, (1), 2415.
7.González-Béjar, M.; Francés-Soriano, L.; Pérez-Prieto, J. Front Bioeng Biotechnol 2016, 4, 47-47.
8.Gargas, D. J.; Chan, E. M.; Ostrowski, A. D.; Aloni, S.; Altoe, M. V. P.; Barnard, E. S.; Sanii, B.; Urban, J. J.; Milliron, D. J.; Cohen, B. E.; Schuck, P. J. Nat. Nanotechnol. 2014, 9, 300.
9.Fernandez-Bravo, A.; Yao, K.; Barnard, E. S.; Borys, N. J.; Levy, E. S.; Tian, B.; Tajon, C. A.; Moretti, L.; Altoe, M. V.; Aloni, S.; Beketayev, K.; Scotognella, F.; Cohen, B. E.; Chan, E. M.; Schuck, P. J. Nat Nanotechnol. 2018, 13, (7), 572-577.
10.Lin, X.; Chen, X.; Zhang, W.; Sun, T.; Fang, P.; Liao, Q.; Chen, X.; He, J.; Liu, M.; Wang, F.; Shi, P. Nano Lett. 2018, 18, (2), 948-956.
11.Wang, Y.; Deng, R.; Xie, X.; Huang, L.; Liu, X. Nanoscale 2016, 8, (12), 6666-6673.
12.Wang, F.; Deng, R.; Wang, J.; Wang, Q.; Han, Y.; Zhu, H.; Chen, X.; Liu, X. Nat. Mater. 2011, 10, 968.
13.Poddubny, A.; Iorsh, I.; Belov, P.; Kivshar, Y. Nat. Photonics 2013, 7, 948.
14.Chan, E. M. Chem. Soc. Rev. 2015, 44, (6), 1653-1679.
15.Liu, X.; Yan, C.-H.; Capobianco, J. A. Chem. Soc. Rev. 2015, 44, (6), 1299-1301.
16.Wilhelm, S. ACS Nano 2017, 11, (11), 10644-10653.
17.Lin, H.-I.; Yadav, K.; Shen, K.-C.; Haider, G.; Roy, P. K.; Kataria, M.; Chang, T.-J.; Li, Y.-H.; Lin, T.-Y.; Chen, Y.-T.; Chen, Y.-F. ACS Appl. Mater. Interfaces 2019, 11, (1), 1163-1173.
18.Shekhar, P.; Jacob, Z. Phys. Rev. B 2014, 90, (4), 045313.
19.Song, C.-C.; Wang, T.-B.; Liao, Q.-H.; Yu, T.-B.; Liu, N.-H. Eur. Phys. J. B 2017, 90, (10).
20.Cortes, C. L.; Newman, W.; Molesky, S.; Jacob, Z. J. Opt. 2012, 14, (6), 063001.
21.Wu, S.; Han, G.; Milliron, D. J.; Aloni, S.; Altoe, V.; Talapin, D. V.; Cohen, B. E.; Schuck, P. J. Proc. Natl. Acad. Sci. 2009, 106, (27), 10917-10921.
22.Miyakawa, T.; Dexter, D. L. Phys. Rev. B 1970, 1, (1), 70-80.
23.Dexter, D. L. Phys. Rev. 1957, 108, (3), 630-633.
24.Zhu, X.; Su, Q.; Feng, W.; Li, F. Chem. Rev. 2017, 46, (4), 1025-1039.
25.Chen, C.; Wang, F.; Wen, S.; Su, Q. P.; Wu, M. C. L.; Liu, Y.; Wang, B.; Li, D.; Shan, X.; Kianinia, M.; Aharonovich, I.; Toth, M.; Jackson, S. P.; Xi, P.; Jin, D. Nat. Commun. 2018, 9, (1), 3290.
26.Hasegawa, Y.; Yamamuro, M.; Wada, Y.; Kanehisa, N.; Kai, Y.; Yanagida, S. J. Phys. Chem. A 2003, 107, (11), 1697-1702.
27.Galfsky, T.; Krishnamoorthy, H.; Menon, V. M.; Newman, W.; Jacob, Z.; Narimanov, E. In Extracting Light from High-K Modes in a Hyperbolic Metamaterial, 2014 IEEE Photonics Society Summer Topical Meeting Series, 14-16 July 2014, 2014; pp 7-8.
28.Vasilantonakis, N.; Nasir, M. E.; Dickson, W.; Wurtz, G. A.; Zayats, A. V. Laser Photon Rev. 2015, 9, (3), 345-353.
29.Zhukovsky, S. V.; Kidwai, O.; Sipe, J. E. Opt. Express 2013, 21, (12), 14982-14987.
30.Sreekanth, K. V.; Alapan, Y.; ElKabbash, M.; Ilker, E.; Hinczewski, M.; Gurkan, U. A.; De Luca, A.; Strangi, G. Nat. Mater. 2016, 15, (6), 621-627.
31.Baqir, A.; Farmani, A.; Fatima, T.; R Raza, M.; F Shaukat, S.; Mir, A., A Nanoscale, Tunable and Highly Sensitive Biosensor Utilizing Hyperbolic Metamaterials in the THz Range. 2018.
32.Shahbazyan, T. V. Phys. Rev. Lett. 2016, 117, (20), 207401.
33.Haider, G.; Lin, H.-I.; Yadav, K.; Shen, K.-C.; Liao, Y.-M.; Hu, H.-W.; Roy, P. K.; Bera, K. P.; Lin, K.-H.; Lee, H.-M.; Chen, Y.-T.; Chen, F.-R.; Chen, Y.-F. ACS Nano 2018, 12, (12), 11847-11859.
34.Liu, Q.; Zhang, Y.; Peng, C. S.; Yang, T.; Joubert, L.-M.; Chu, S. Nat. Photonics 2018, 12, (9), 548-553.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top