跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.89) 您好!臺灣時間:2024/12/10 01:24
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李言光
研究生(外文):Yen-Guang Lee
論文名稱:具太陽光發射光譜和超高性能之可撓式石墨烯/金屬有機骨架/石墨烯/聚偏二氟乙烯異質接面光電晶體
論文名稱(外文):Solar-Spectrum White-Light Emission and Ultra-High Performance Flexible Phototransistor Based on Graphene/Metal-Organic Framework/Graphene/PVDF Heterojunction
指導教授:陳永芳陳永芳引用關係
指導教授(外文):Yang-Fang Chen
口試委員:謝雅萍許芳琪
口試委員(外文):Ya-Ping HsiehFang-Chi Hsu
口試日期:2020-07-20
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:物理學研究所
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:英文
論文頁數:59
中文關鍵詞:垂直型光電晶體可撓式元件金屬有機⾻架石墨烯發光體
外文關鍵詞:vertical phototransistorflexible devicemetal-organic frameworkgraphenelight emitter
DOI:10.6342/NTU202003091
相關次數:
  • 被引用被引用:0
  • 點閱點閱:130
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
隨著科技技術的發展,我們越發需要多功能且高性能的元件,以滿足可穿戴電子設備、顯示器、太空科技和數據通信的需求。藉著結合石墨烯和金屬有機骨架(MOFs)的特性,我們設計了一種輕巧、結構簡單、可撓且具有雙重功能的垂直型光電晶體。這個單一元件,能發出近似太陽光譜的白光也呈現高光電探測性,包括外部量子效率 >3 × 10^8%和 ~10^8 安培/瓦特的光響應度並 ~220 微秒的反應速度。此外,我們的實驗顯示出這個元件有自供電光檢測力且光電流能在不同應變下變化。我們的元件具有可撓性、感測光和放光的雙重功能、且能發白光並具有高性能,相信對於下一代高性能光電元件的開發極有吸引力。
With the development of technology, there is a global demand for multifunctional and high-performance device to meet the need of wearable electronics, display, space technology, and data communication. By the intergration of unique properties of graphene and metal-organic frameworks (MOFs), here we demonstrate a light-weight, simple structural, flexible, and dual-functional vertical phototransistor. With this single device, we observe solar spectrum white light emission and high photodetectivity, including the external quantum efficiency >3 × 10^8%, a photoresponsivity of ~10^8 AW^-1, and a response time of ~220 μs. In addition, the self-powered photodetection and the variation of photocurrent under different strain are also demonstrated. With the characteristics including flexibility, dual-functionality, white light emission, and high performance, our device is extremely attractive for the development of next generation high-performance optoelectronic devices.
致謝.................................................................................................................................... i
中文摘要........................................................................................................................... ii
Abstract ........................................................................................................................... iii
Contents .......................................................................................................................... iv
List of Figures ................................................................................................................. vi
Chpater 1 Introduction ................................................................................................... 1
References ................................................................................................................ 3
Chpater 2 Theoretical Background ............................................................................... 6
2.1 Single Layer Graphene ..................................................................................... 6
2.2 Graphene-Based Vertical Hybrid Photodetector ........................................... 9
2.3 Metal-Organic Framework ............................................................................ 12
2.4 Polyvinylidene Fluoride (PVDF) ................................................................... 14
2.5 Raman Spectroscopy ...................................................................................... 15
2.6 Photoluminescence Spectroscopy .................................................................. 18
2.7 Electroluminescence ....................................................................................... 19
References .............................................................................................................. 21
Chpater 3 Experimental Setup and Materials Preparation ...................................... 23
3.1 Experimental Method of Photodetection ...................................................... 23
3.2 Setup of Optical Measurement ...................................................................... 24
3.3 Chemical Vapor Deposition System .............................................................. 27
3.4 Electrodes Deposition by Thermal Evaporation .......................................... 29
3.5 Synthesis of Metal-Organic-Framework ...................................................... 31
3.6 Device Fabrication .......................................................................................... 33
References .............................................................................................................. 35
Chpater 4 Results and Discussion ............................................................................... 36
4.1 Study of Device Structure .............................................................................. 36
4.2 I-T and I-V Curve ........................................................................................... 38
4.3 Photodetection Performance of Vertical Flexible Phototransistor ............ 41
4.4 Electroluminescence ....................................................................................... 47
4.5 Flexibility ......................................................................................................... 52
References .............................................................................................................. 57
Chpater 5 Conclusion ................................................................................................... 59
Chapter 1
[1] Ban, D.; Han, S.; Lu, Z. H.; Oogarah, T.; SpringThorpe, A. J.; Liu, H. C. Near-Infrared to Visible Light Optical Upconversion by Direct Tandem Integration of Organic Light-Emitting Diode and Inorganic Photodetector. Appl. Phys. Lett. 2007, 90, 093108.
[2] McCarthy, M. A.; Liu, B.; Donoghue, E. P.; Kravchenko, I.; Kim, D. Y.; So, F.; Rinzler, A. G. Low-Voltage, Low-Power, Organic Light-Emitting Transistors for Active Matrix Displays. Science 2011, 332, 570,
[3] Yu, H.; Kim, D.; Lee, J.; Baek, S.; Lee, J.; Singh, R.; So, F. High-Gain Infrared-to-Visible Upconversion Light-Emitting Phototransistors. Nat. Photonics 2016, 10, 129.
[4] Mukai, T.; Yamada, M.; Nakamura, S. Characteristics of InGaN-Based UV/Blue/Green/Amber/Red Light-Emitting Diodes Jpn. J. Appl. Phys. 1999, 38, 3976.
[5] Hall, R. N.; Fenner, G. E.; Kingsley, J. D.; Soltys, T. J.; Carlson, R. O. Coherent Light Emission From GaAs Junctions Phys. Rev. Lett. 1962, 9, 366– 368.
[6] Nakamura, S.; Senoh, M.; Mukai, T. P-GaN/N-InGaN/N-GaN Double-Heterostructure Blue-Light-Emitting Diodes Jpn. J. Appl. Phys. 1993, 32, L8
[7] Xia, Z.; Liu, Q. Progress in Discovery and Structural Design of Color Conversion Phosphors for LEDs. Prog. Mater. Sci. 2016, 84, 59– 117,
[8] Xia, Z.; Meijerink, A. Ce3+-Doped Garnet Phosphors: Composition Modification, Luminescence Properties and Applications. Chem. Soc. Rev. 2017, 46, 275– 299,
[9] Wang, L.; Xie, R.-J.; Suehiro, T.; Takeda, T.; Hirosaki, N. Down-Conversion Nitride Materials for Solid State Lighting: Recent Advances and Perspectives. Chem. Rev. 2018, 118, 1951– 2009,
[10] Reineke, S.; Lindner, F.; Schwartz, G.; Seidler, N.; Walzer, K.; Lüssem, B.; Leo, K. White Organic Light-Emitting Diodes with Fluorescent Tube Efficiency. Nature 2009, 459, 234– 238,
[11] Ye, S.; Xiao, F.; Pan, Y. X.; Ma, Y. Y.; Zhang, Q. Y. Phosphors in Phosphor-Converted White Light-Emitting Diodes: Recent Advances in Materials, Techniques and
Properties. Mater. Sci. Eng. R 2010, 71, 1– 34,
[12] Rauch, T., Böberl, M., Tedde, S. et al. Near-infrared imaging with quantum-dotsensitized organic photodiodes. Nature Photon 3, 332–336 (2009).
[13] Jayoung Kim, Itthipon Jeerapan, Somayeh Imani, Thomas N. Cho, Amay Bandodkar, Stefano Cinti, Patrick P. Mercier, and Joseph Wang. Noninvasive Alcohol Monitoring Using a Wearable Tattoo-Based Iontophoretic-Biosensing System. ACS Sensors 2016 1 (8), 1011-1019
[14] Z. Bao, X. Chen. Flexible and Stretchable Devices. Adv. Mater. 2016, 28, 4177.
[15] Juejun Hu, Lan Li, Hongtao Lin, Ping Zhang, Weidong Zhou, and Zhenqiang Ma, "Flexible integrated photonics: where materials, mechanics and optics meet [Invited]," Opt. Mater. Express 3, 1313-1331 (2013)
[16] N. Lu, D.-H. Kim. Flexible and Stretchable Electronics Paving the Way for Soft Robotics. Soft Robotics 2014, 1, 53.
[17] Bonaccorso, F., Sun, Z., Hasan, T. et al. Graphene photonics and optoelectronics. Nature Photon 4, 611–622 (2010).
[18] Zhu, Y., Murali, S., Cai, W., Li, X., Suk, J.W., Potts, J.R. and Ruoff, R.S. (2010), Graphene and Graphene Oxide: Synthesis, Properties, and Applications. Adv. Mater., 22:3906-3924.
[19] A. K. GEIM. Graphene: Status and Prospects. SCIENCE 19 JUN 2009 : 1530-1534
[20] Geim, A., Novoselov, K. The rise of graphene. Nature Mater 6, 183–191 (2007).
[21] Golam Haider, Muhammad Usman, Tzu-Pei Chen, Packiyaraj Perumal, Kuang-Lieh Lu, and Yang-Fang Chen. Electrically Driven White Light Emission from Intrinsic Metal–Organic Framework. ACS Nano 2016 10 (9), 8366-8375
Chapter 2
[1] Wonbong Choi , Indranil Lahiri , Raghunandan Seelaboyina & Yong Soo Kang (2010) Synthesis of Graphene and Its Applications: A Review, Critical Reviews in Solid State and Materials Sciences, 35:1, 52-71
[2] J Hass et al 2008 J. Phys.: Condens. Matter 20 323202
[3] Yu, W., Liu, Y., Zhou, H. et al. Highly efficient gate-tunable photocurrent generation in vertical heterostructures of layered materials. Nature Nanotech 8, 952–958(2013).
[4] Usman, M., Mendiratta, S., Lu, K.-L., Adv. Mater. 2017, 29, 1605071.
[5] Allendorf, M. D.; Bauer, C. A.; Bhakta, R. K.; Houk, R. J. T. Luminescent Metal-Organic Frameworks. Chem. Soc. Rev. 2009, 38, 1330−1352.
[6] M. Poulsen and S. Ducharme, "Why ferroelectric polyvinylidene fluoride is special," in IEEE Transactions on Dielectrics and Electrical Insulation, vol. 17, no. 4, pp. 1028-1035, August 2010
[7] Bystrov, Bdikin, I.D., & Silibin, M.V. (2017). Ferroelectric Composites Based on PVDF / P ( VDF-Trfe ) Ferroelectric Films and Graphene / Graphene Oxide :Experimental Observation and Molecular Modeling.
[8] L.M. Malard, M.A. Pimenta, G. Dresselhaus, M.S. Dresselhaus, Raman spectroscopy in graphene, Physics Reports, Volume 473, Issues 5–6, 2009, Pages 51-87,
Chapter 3
[1] 米.,Muhammad.(2015).鍶金屬有機骨架化合物之介電與光學性質研究與應用. http://ir.lib.ncu.edu.tw:88/thesis/view_etd.asp?URN=992202608992202608\
Chapter 4
[1] Di Wu, Jiawen Guo, Juan Du, Congxin Xia, Longhui Zeng, Yongzhi Tian, Zhifeng Shi, Yongtao Tian, Xin Jian Li, Yuen Hong Tsang, and Jiansheng Jie. Highly Polarization-Sensitive, Broadband, Self-Powered Photodetector Based on Graphene/PdSe2/Germanium Heterojunction. ACS Nano 2019 13 (9), 9907-9917
[2] Young Rae Kim, Thanh Luan Phan, Yong Seon Shin, Won Tae Kang, Ui Yeon Won, Ilmin Lee, Ji Eun Kim, Kunnyun Kim, Young Hee Lee, and Woo Jong Yu. Unveiling the Hot Carrier Distribution in Vertical Graphene/h-BN/Au van der Waals Heterostructures for High-Performance Photodetector. ACS Applied Materials & Interfaces 2020 12 (9), 10772-10780
[3] X. Wei, F. Yan, Q. Lv, W. Zhu, C. Hu, A. Patanè, K. Wang.Enhanced photoresponse in MoTe2 photodetectors with asymmetric graphene contacts. Adv. Opt. Mater., 7 (2019) 1900190.
[4] Hu, P.; Wen, Z.; Wang, L.; Tan, P.; Xiao, K. Synthesis of Few-Layer Gase Nanosheets for High Performance Photodetectors. ACS Nano 2012, 6, 5988– 5994.
[5] Krishna Prasad Bera, Golam Haider, Yu-Ting Huang, Pradip Kumar Roy, Christy Roshini Paul Inbaraj, Yu-Ming Liao, Hung-I Lin, Cheng-Hsin Lu, Chun Shen, Wan Y Shih, Wei-Heng Shih, and Yang-Fang Chen. Graphene Sandwich Stable Perovskite Quantum-Dot Light-Emissive Ultrasensitive and Ultrafast Broadband Vertical Phototransistors ACS Nano 2019 13 (11), 12540-12552
[6] Yu, H., Kim, D., Lee, J. et al. High-gain infrared-to-visible upconversion lightemitting phototransistors. Nature Photon 10, 129–134 (2016).
[7] PingAn Hu, Zhenzhong Wen, Lifeng Wang, Pingheng Tan, and Kai Xiao. Synthesis of Few-Layer GaSe Nanosheets for High Performance Photodetectors ACS Nano 2012 6 (7), 5988-5994
[8] Li, L., Zhang, F., Wang, J. et al. Achieving EQE of 16,700% in P3HT:PC71BM based photodetectors by trap-assisted photomultiplication. Sci Rep 5, 9181 (2015).
[9] Shang YM, Wang GS, Sliney D, Yang CH, Lee LL. White light-emitting diodes (LEDs)
at domestic lighting levels and retinal injury in a rat model. Environ Health Perspect. 2014;122(3):269-276.
[10] Allendorf, M. D.; Bauer, C. A.; Bhakta, R. K.; Houk, R. J. T. Luminescent Metal-
Organic Frameworks. Chem. Soc. Rev. 2009, 38, 1330−1352.
[11] J. E. Sansonetti. Wavelengths, Transition Probabilities, and Energy Levels for the Spectra of Strontium Ions (Sr II through Sr XXXVIII). Journal of Physical and Chemical Reference Data 41, 013102 (2012).
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top