|
CHAPTER 1 (1) Lemme, M. C.; Koppens, F. H.; Falk, A. L.; Rudner, M. S.; Park, H.; Levitov, L. S.; Marcus, C. M., Gate-Activated Photoresponse in a Graphene p-n Junction. Nano Lett. 2011, 11, 4134-7. (2) Konstantatos, G.; Badioli, M.; Gaudreau, L.; Osmond, J.; Bernechea, M.; Garcia de Arquer, F. P.; Gatti, F.; Koppens, F. H., Hybrid Graphene-Quantum Dot Phototransistors with Ultrahigh Gain. Nat. Nanotechnol. 2012, 7, 363-8. (3) Koppens, F. H.; Mueller, T.; Avouris, P.; Ferrari, A. C.; Vitiello, M. S.; Polini, M., Photodetectors Based on Graphene, Other Two-Dimensional Materials and Hybrid Systems. Nat. Nanotechnol. 2014, 9, 780-93. (4) Rao, G.; Freitag, M.; Chiu, H.-Y.; Sundaram, R. S.; Avouris, P., Raman and Photocurrent Imaging of Electrical Stress-Induced p-n Junctions in Graphene. ACS Nano 2011, 5, 5848-5854. (5) Nevin, A.; Cesaratto, A.; Bellei, S.; D'Andrea, C.; Toniolo, L.; Valentini, G.; Comelli, D., Time-Resolved Photoluminescence Spectroscopy and Imaging: New Approaches to the Analysis of Cultural Heritage and Its Degradation. Sensors 2014, 14, 6338-55. (6) Lacroix, L.-M.; Gatel, C.; Arenal, R.; Garcia, C.; Lachaize, S.; Blon, T.; Warot-Fonrose, B.; Snoeck, E.; Chaudret, B.; Viau, G., Tuning Complex Shapes in Platinum Nanoparticles: From Cubic Dendrites to Fivefold Stars. Angew. Chem. Int. Ed. 2012, 51, 4690-4694. (7) Nusir, A. I.; Aguilar, J.; Bever, Z.; Manasreh, M. O., Uncooled Photodetectors Based on CdSe Nanocrystals with an Interdigital Metallization. Appl. Phys. Lett. 2014, 104, 051124. (8) Lähnemann, J.; Ajay, A.; Den Hertog, M. I.; Monroy, E., Near-Infrared Intersubband Photodetection in GaN/AIN Nanowires. Nano Lett. 2017, 17, 6954-6960. (9) Yang, Z.; Voznyy, O.; Walters, G.; Fan, J. Z.; Liu, M.; Kinge, S.; Hoogland, S.; Sargent, E. H., Quantum Dots in Two-Dimensional Perovskite Matrices for Efficient Near-Infrared Light Emission. ACS Photonics 2017, 4, 830-836. (10) LaPierre, R. R.; Robson, M.; Azizur-Rahman, K. M.; Kuyanov, P., A Review of III-V Nanowire Infrared Photodetectors and Sensors. J. Phys. D 2017, 50, 123001. (11) Shen, L.; Pun, E. Y. B.; Ho, J. C., Recent Developments in III-V Semiconducting Nanowires for High-Performance Photodetectors. Mater. Chem. Front. 2017, 1, 630-645. (12) Park, J.; Lee, K. H.; Galloway, J. F.; Searson, P. C., Synthesis of Cadmium Selenide Quantum Dots from a Non-Coordinating Solvent: Growth Kinetics and Particle Size Distribution. J. Phys. Chem. C 2008, 112, 17849-17854. (13) Huang, B.-R.; Yang, Y.-K.; Yang, W.-L., Efficiency Improvement of Silicon Nanostructure-Based Solar Cells. Nanotechnology 2013, 25, 035401. (14) Kang, S.-H.; Kumar, C. K.; Lee, Z.; Kim, K.-H.; Huh, C.; Kim, E.-T., Quantum-Dot Light-Emitting Diodes Utilizing CdSe∕ZnS Nanocrystals Embedded in TiO2 Thin Film. Appl. Phys. Lett. 2008, 93, 191116. (15) Zhong, H.; Wang, Z.; Bovero, E.; Lu, Z.; van Veggel, F. C. J. M.; Scholes, G. D., Colloidal CuInSe2 Nanocrystals in the Quantum Confinement Regime: Synthesis, Optical Properties, and Electroluminescence. J. Phys. Chem. C 2011, 115, 12396-12402. (16) Dasgupta, N. P.; Sun, J.; Liu, C.; Brittman, S.; Andrews, S. C.; Lim, J.; Gao, H.; Yan, R.; Yang, P., 25th Anniversary Article: Semiconductor Nanowires-Synthesis, Characterization, and Applications. Adv. Mater. 2014, 26, 2137-2184. (17) Bera, K. P.; Haider, G.; Huang, Y.-T.; Roy, P. K.; Paul Inbaraj, C. R.; Liao, Y.-M.; Lin, H.-I.; Lu, C.-H.; Shen, C.; Shih, W. Y.; Shih, W.-H.; Chen, Y.-F., Graphene Sandwich Stable Perovskite Quantum-Dot Light-Emissive Ultrasensitive and Ultrafast Broadband Vertical Phototransistors. ACS Nano 2019. (18) Bera, K. P.; Haider, G.; Usman, M.; Roy, P. K.; Lin, H.-I.; Liao, Y.-M.; Inbaraj, C. R. P.; Liou, Y.-R.; Kataria, M.; Lu, K.-L.; Chen, Y.-F., Trapped Photons Induced Ultrahigh External Quantum Efficiency and Photoresponsivity in Hybrid Graphene/Metal-Organic Framework Broadband Wearable Photodetectors. Adv. Funct. Mater. 2018, 28, 1804802. (19) Smith, A. M.; Nie, S., Semiconductor Nanocrystals: Structure, Properties, and Band Gap Engineering. Acc. Chem. Res. 2010, 43, 190-200. (20) Garnett, E.; Yang, P., Light Trapping in Silicon Nanowire Solar Cells. Nano Lett. 2010, 10, 1082-1087. (21) Li, G.; Tan, Z.-K.; Di, D.; Lai, M. L.; Jiang, L.; Lim, J. H.-W.; Friend, R. H.; Greenham, N. C., Efficient Light-Emitting Diodes Based on Nanocrystalline Perovskite in a Dielectric Polymer Matrix. Nano Lett. 2015, 15, 2640-2644. (22) Khan, A. H.; Brescia, R.; Polovitsyn, A.; Angeloni, I.; Martín-García, B.; Moreels, I., Near-Infrared Emitting Colloidal PbS Nanoplatelets: Lateral Size Control and Optical Spectroscopy. Chem. Mater. 2017, 29, 2883-2889. (23) Koole, R.; Groeneveld, E.; Vanmaekelbergh, D.; Meijerink, A.; de Mello Donegá, C., Size Effects on Semiconductor Nanoparticles. Nanoparticles 2014, 13-51. (24) Smith, A. M.; Nie, S., Semiconductor Nanocrystals: Structure, Properties, and Band Gap Engineering. Acc. Chem. Res. 2009, 43, 190-200. (25) Ekimov, A.; Efros, A. L.; Onushchenko, A., Quantum Size Effect in Semiconductor Microcrystals. Solid State Commun. 1993, 88, 947-950. (26) Manasreh, M. O., Introduction to Nanomaterials and Devices. Wiley Online Library: 2012. (27) Falcao, E. H.; Wudl, F., Carbon Allotropes: Beyond Graphite and Diamond. Journal of Chemical Technology & Biotechnology: International Research in Process, Environmental & Clean Technology 2007, 82, 524-531. (28) Tiwari, S. K.; Kumar, V.; Huczko, A.; Oraon, R.; Adhikari, A. D.; Nayak, G., Magical Allotropes of Carbon: Prospects and Applications. Crit. Rev. Solid State Mater. Sci. 2016, 41, 257-317. (29) Neto, A. C.; Guinea, F.; Peres, N. M.; Novoselov, K. S.; Geim, A. K., The Electronic Properties of Graphene. Rev. Mod. Phys. 2009, 81, 109. (30) Geim, A. K.; Novoselov, K. S., The Rise of Graphene. Nat. Mater. 2007, 6, 183-190. (31) Dresselhaus, G.; Riichiro, S., Physical Properties of Carbon Nanotubes. World scientific, 1998, 1-273 (32) Charlier, J.-C.; Blase, X.; Roche, S., Electronic and Transport Properties of Nanotubes. Rev. Mod. Phys. 2007, 79, 677. (33) Andreoni, W., The Physics of Fullerene-Based and Fullerene-Related Materials. Springer Science & Business Media, 2000, 23, 1-202 (34) Schurig, D.; Mock, J.; Justice, B.; Cummer, S. A.; Pendry, J. B.; Starr, A.; Smith, D. R., Metamaterial Electromagnetic Cloak at Microwave Frequencies. Science 2006, 314, 977-980. (35) Park, W.; Lu, D.; Ahn, S., Plasmon Enhancement of Luminescence Upconversion. Chem. Soc. Rev. 2015, 44, 2940-2962. (36) Haider, G.; Roy, P.; Chiang, C. W.; Tan, W. C.; Liou, Y. R.; Chang, H. T.; Liang, C. T.; Shih, W. H.; Chen, Y. F., Electrical‐Polarization‐Induced Ultrahigh Responsivity Photodetectors Based on Graphene and Graphene Quantum Dots. Adv. Funct. Mater. 2016, 26, 620-628. (37) Haider, G.; Ravindranath, R.; Chen, T. P.; Roy, P.; Roy, P. K.; Cai, S. Y.; Chang, H. T.; Chen, Y. F., Dirac Point Induced Ultralow-Threshold Laser and Giant Optoelectronic Quantum Oscillations in Graphene-Based Heterojunctions. Nat. Commun. 2017, 8, 256. (38) Yu, Y. J.; Zhao, Y.; Ryu, S.; Brus, L. E.; Kim, K. S.; Kim, P., Tuning the Graphene Work Function by Electric Field Effect. Nano Lett. 2009, 9, 3430-3434. (39) Nair, R. R.; Blake, P.; Grigorenko, A. N.; Novoselov, K. S.; Booth, T. J.; Stauber, T.; Peres, N. M.; Geim, A. K., Fine Structure Constant Defines Visual Transparency of Graphene. Science 2008, 320, 1308-1308. (40) Katsnelson, M.; Novoselov, K.; Geim, A., Chiral Tunnelling and the Klein Paradox in Graphene. Nat. Phys. 2006, 2, 620. (41) Mueller, T.; Xia, F.; Avouris, P., Graphene Photodetectors for High-Speed Optical Communications. Nat. Photonics 2010, 4, 297. (42) Kim, C. O.; Kim, S.; Shin, D. H.; Kang, S. S.; Kim, J. M.; Jang, C. W.; Joo, S. S.; Lee, J. S.; Kim, J. H.; Choi, S. H.; Hwang, E., High Photoresponsivity in an All-Graphene p-n Vertical Junction Photodetector. Nat. Commun. 2014, 5, 3249. (43) Koppens, F. H. L.; Mueller, T.; Avouris, P.; Ferrari, A. C.; Vitiello, M. S.; Polini, M., Photodetectors Based on Graphene, Other Two-Dimensional Materials and Hybrid Systems. Nat. Nanotechnol. 2014, 9, 780. (44) Yang, F.; Cong, H.; Yu, K.; Zhou, L.; Wang, N.; Liu, Z.; Li, C.; Wang, Q.; Cheng, B., Ultrathin Broadband Germanium-Graphene Hybrid Photodetector with High Performance. ACS Appl. Mater. Interfaces 2017, 9, 13422-13429. (45) Lee, C.; Wei, X.; Kysar, J. W.; Hone, J., Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene. science 2008, 321, 385-388. (46) Chiang, C.-W.; Haider, G.; Tan, W.-C.; Liou, Y.-R.; Lai, Y.-C.; Ravindranath, R.; Chang, H.-T.; Chen, Y.-F., Highly Stretchable and Sensitive Photodetectors Based on Hybrid Graphene and Graphene Quantum Dots. ACS Appl. Mater. Interfaces 2016, 8, 466-471. (47) Kim, M.; Kang, P.; Leem, J.; Nam, S., A Stretchable Crumpled Graphene Photodetector with Plasmonically Enhanced Photoresponsivity. Nanoscale 2017, 9, 4058-4065. (48) Zaworotko, M. J., Materials Science: Designer Pores Made Easy. Nature 2008, 451, 410. (49) Haider, G.; Usman, M.; Chen, T.-P.; Perumal, P.; Lu, K.-L.; Chen, Y.-F., Electrically Driven White Light Emission from Intrinsic Metal-Organic Framework. ACS Nano 2016, 10, 8366-8375. (50) Ma, L.; Abney, C.; Lin, W., Enantioselective Catalysis with Homochiral Metal-Organic Frameworks. Chem. Soc. Rev. 2009, 38, 1248-1256. (51) Horcajada, P.; Chalati, T.; Serre, C.; Gillet, B.; Sebrie, C.; Baati, T.; Eubank, J. F.; Heurtaux, D.; Clayette, P.; Kreuz, C., Porous Metal-Organic-Framework Nanoscale Carriers as a Potential Platform for Drug Delivery and Imaging. Nat. Mater. 2010, 9, 172. (52) He, Y.; Zhou, W.; Qian, G.; Chen, B., Methane Storage in Metal-Organic Frameworks. Chem. Soc. Rev. 2014, 43, 5657-5678. (53) Zaworotko, M. J., Designer Pores Made Easy. Nature 2008, 451, 410. (54) Castaldelli, E.; Jayawardena, K. I.; Cox, D. C.; Clarkson, G. J.; Walton, R. I.; Le-Quang, L.; Chauvin, J.; Silva, S. R. P.; Demets, G. J.-F., Electrical Semiconduction Modulated by Light in a Cobalt and Naphthalene Diimide Metal-Organic Framework. Nat. Commun. 2017, 8, 2139. (55) Allendorf, M.; Bauer, C.; Bhakta, R.; Houk, R., Luminescent Metal-Organic Frameworks. Chem. Soc. Rev. 2009, 38, 1330-1352. (56) Haider, G.; Lin, H.-I.; Yadav, K.; Shen, K.-C.; Liao, Y.-M.; Hu, H.-W.; Roy, P. K.; Bera, K. P.; Lin, K.-H.; Lee, H.-M.; Chen, Y.-T.; Chen, F.-R.; Chen, Y.-F., A Highly-Efficient Single Segment White Random Laser. ACS Nano 2018, 12, 11847-11859. (57) Yang, Q.-Y.; Wu, K.; Jiang, J.-J.; Hsu, C.-W.; Pan, M.; Lehn, J.-M.; Su, C.-Y., Pure White-Light and Yellow-to-Blue Emission Tuning in Single Crystals of Dy (III) Metal-Organic Frameworks. ChemComm 2014, 50, 7702-7704. (58) Sansonetti, J.; Nave, G., Wavelengths, Transition Probabilities, and Energy Levels for the Spectrum of Neutral Strontium (Sr I). J. Phys. Chem. Ref. Data 2010, 39, 033103. (59) Chen, Z.-F.; Xiong, R.-G.; Zhang, J.; Chen, X.-T.; Xue, Z.-L.; You, X.-Z., 2D Molecular Square Grid with Strong Blue Fluorescent Emission: A Complex of Norfloxacin with Zinc (II). Inorg. Chem. 2001, 40, 4075-4077. (60) Chisholm, M. H.; Brown-Xu, S. E.; Spilker, T. F., Photophysical Studies of Metal to Ligand Charge Transfer Involving Quadruply Bonded Complexes of Molybdenum and Tungsten. Acc. Chem. Res. 2015, 48, 877-885. (61) Bergkamp, M.; Guetlich, P.; Netzel, T.; Sutin, N., Lifetimes of the Ligand-to-Metal Charge-Transfer Excited States of Iron (III) and Osmium (III) Polypyridine Complexes. Effects of Isotopic Substitution and Temperature. J. Phys. Chem. 1983, 87, 3877-3883. (62) Lee, M. M.; Teuscher, J.; Miyasaka, T.; Murakami, T. N.; Snaith, H. J., Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites. Science 2012, 338, 643. (63) Tan, Z.-K.; Moghaddam, R. S.; Lai, M. L.; Docampo, P.; Higler, R.; Deschler, F.; Price, M.; Sadhanala, A.; Pazos, L. M.; Credgington, D.; Hanusch, F.; Bein, T.; Snaith, H. J.; Friend, R. H., Bright Light-Emitting Diodes Based on Organometal Halide Perovskite. Nat. Nanotechnol. 2014, 9, 687. (64) Dou, L.; Yang, Y.; You, J.; Hong, Z.; Chang, W.-H.; Li, G.; Yang, Y., Solution-Processed Hybrid Perovskite Photodetectors with High Detectivity. Nat. Commun. 2014, 5, 5404. (65) Stoumpos, C. C.; Cao, D. H.; Clark, D. J.; Young, J.; Rondinelli, J. M.; Jang, J. I.; Hupp, J. T.; Kanatzidis, M. G., Ruddlesden-Popper Hybrid Lead Iodide Perovskite 2D Homologous Semiconductors. Chem. Mater. 2016, 28, 2852-2867. (66) Wei, T.-C.; Wang, H.-P.; Li, T.-Y.; Lin, C.-H.; Hsieh, Y.-H.; Chu, Y.-H.; He, J.-H., Photostriction of CH3NH3PbBr3 Perovskite Crystals. Adv. Mater. 2017, 29, 1701789. (67) Yang, K.; Li, F.; Veeramalai, C. P.; Guo, T., A Facile Synthesis of CH3NH3PbBr3 Perovskite Quantum Dots and Their Application in Flexible Nonvolatile Memory. Appl. Phys. Lett. 2017, 110, 083102. (68) Stranks, S. D.; Eperon, G. E.; Grancini, G.; Menelaou, C.; Alcocer, M. J.; Leijtens, T.; Herz, L. M.; Petrozza, A.; Snaith, H. J., Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber. Science 2013, 342, 341-344. (69) Noh, J. H.; Im, S. H.; Heo, J. H.; Mandal, T. N.; Seok, S. I., Chemical Management for Colorful, Efficient, and Stable Inorganic-Organic Hybrid Nanostructured Solar Cells. Nano Lett. 2013, 13, 1764-1769. (70) Yang, W. S.; Noh, J. H.; Jeon, N. J.; Kim, Y. C.; Ryu, S.; Seo, J.; Seok, S. I., High-Performance Photovoltaic Perovskite Layers Fabricated through Intramolecular Exchange. Science 2015, 348, 1234-1237. (71) Tan, Z.-K.; Moghaddam, R. S.; Lai, M. L.; Docampo, P.; Higler, R.; Deschler, F.; Price, M.; Sadhanala, A.; Pazos, L. M.; Credgington, D., Bright Light-Emitting Diodes Based on Organometal Halide Perovskite. Nat. Nanotechnol. 2014, 9, 687. (72) Burschka, J.; Pellet, N.; Moon, S.-J.; Humphry-Baker, R.; Gao, P.; Nazeeruddin, M. K.; Grätzel, M., Sequential Deposition as a Route to High-Performance Perovskite-Sensitized Solar Cells. Nature 2013, 499, 316. (73) Cho, H.; Jeong, S.-H.; Park, M.-H.; Kim, Y.-H.; Wolf, C.; Lee, C.-L.; Heo, J. H.; Sadhanala, A.; Myoung, N.; Yoo, S., Overcoming the Electroluminescence Efficiency Limitations of Perovskite Light-Emitting Diodes. Science 2015, 350, 1222-1225. (74) Yoo, E. J.; Lyu, M.; Yun, J. H.; Kang, C. J.; Choi, Y. J.; Wang, L., Resistive Switching Behavior in Organic-Inorganic Hybrid CH3NH3PbI3-XCIx Perovskite for Resistive Random Access Memory Devices. Adv. Mater. 2015, 27, 6170-6175. (75) Gu, C.; Lee, J.-S., Flexible Hybrid Organic-Inorganic Perovskite Memory. ACS Nano 2016, 10, 5413-5418. (76) Xing, G.; Mathews, N.; Lim, S. S.; Yantara, N.; Liu, X.; Sabba, D.; Grätzel, M.; Mhaisalkar, S.; Sum, T. C., Low-Temperature Solution-Processed Wavelength-Tunable Perovskites for Lasing. Nat. Mater. 2014, 13, 476. (77) Zhu, H.; Fu, Y.; Meng, F.; Wu, X.; Gong, Z.; Ding, Q.; Gustafsson, M. V.; Trinh, M. T.; Jin, S.; Zhu, X., Lead Halide Perovskite Nanowire Lasers with Low Lasing Thresholds and High Quality Factors. Nat. Mater. 2015, 14, 636. (78) Walters, G.; Sutherland, B. R.; Hoogland, S.; Shi, D.; Comin, R.; Sellan, D. P.; Bakr, O. M.; Sargent, E. H., Two-Photon Absorption in Organometallic Bromide Perovskites. ACS Nano 2015, 9, 9340-9346. (79) Zheng, X.; Chen, B.; Yang, M.; Wu, C.; Orler, B.; Moore, R. B.; Zhu, K.; Priya, S., The Controlling Mechanism for Potential Loss in CH3NH3PbBr3 Hybrid Solar Cells. ACS Energy Lett. 2016, 1, 424-430. (80) Tan, Z. K.; Moghaddam, R. S.; Lai, M. L.; Docampo, P.; Higler, R.; Deschler, F.; Price, M.; Sadhanala, A.; Pazos, L. M.; Credgington, D.; Hanusch, F.; Bein, T.; Snaith, H. J.; Friend, R. H., Bright Light-Emitting Diodes Based on Organometal Halide Perovskite. Nat. Nanotechnol. 2014, 9, 687-692. (81) Vybornyi, O.; Yakunin, S.; Kovalenko, M. V., Polar-Solvent-Free Colloidal Synthesis of Highly Luminescent Alkylammonium Lead Halide Perovskite Nanocrystals. Nanoscale 2016, 8, 6278-6283. (82) Xiao, Z.; Kerner, R. A.; Zhao, L.; Tran, N. L.; Lee, K. M.; Koh, T.-W.; Scholes, G. D.; Rand, B. P., Efficient Perovskite Light-Emitting Diodes Featuring Nanometre-Sized Crystallites. Nat. Photonics 2017, 11, 108. (83) Cho, H.; Jeong, S.-H.; Park, M.-H.; Kim, Y.; Wolf, C.; Lee, C.; Heo, J.; Sadhanala, A., Nos. Myoung, S. Yoo, Sh Im, Rh Friend and T.-W. Lee. Science 2015, 350. (84) Schmidt, L. C.; Pertegás, A.; González-Carrero, S.; Malinkiewicz, O.; Agouram, S.; Mínguez Espallargas, G.; Bolink, H. J.; Galian, R. E.; Pérez-Prieto, J., Nontemplate Synthesis of CH3NH3PbBr3 Perovskite Nanoparticles. J. Am. Chem. Soc. 2014, 136, 850-853. (85) Norris, D. J.; Bawendi, M., Measurement and Assignment of the Size-Dependent Optical Spectrum in CdSe Quantum Dots. Phys. Rev. B 1996, 53, 16338. (86) Wang, L.; Williams, N. E.; Malachosky, E. W.; Otto, J. P.; Hayes, D.; Wood, R. E.; Guyot-Sionnest, P.; Engel, G. S., Scalable Ligand-Mediated Transport Synthesis of Organic-Inorganic Hybrid Perovskite Nanocrystals with Resolved Electronic Structure and Ultrafast Dynamics. ACS Nano 2017, 11, 2689-2696. (87) Yakunin, S.; Protesescu, L.; Krieg, F.; Bodnarchuk, M. I.; Nedelcu, G.; Humer, M.; De Luca, G.; Fiebig, M.; Heiss, W.; Kovalenko, M. V., Low-Threshold Amplified Spontaneous Emission and Lasing from Colloidal Nanocrystals of Caesium Lead Halide Perovskites. Nat. Commun. 2015, 6, 8056. (88) Zhang, D.; Eaton, S. W.; Yu, Y.; Dou, L.; Yang, P., Solution-Phase Synthesis of Cesium Lead Halide Perovskite Nanowires. J. Am. Chem. Soc. 2015, 137, 9230-9233. (89) Zhang, F.; Zhong, H.; Chen, C.; Wu, X.-g.; Hu, X.; Huang, H.; Han, J.; Zou, B.; Dong, Y., Brightly Luminescent and Color-Tunable Colloidal CH3NH3PbX3 (X= Br, I, Cl) Quantum Dots: Potential Alternatives for Display Technology. ACS Nano 2015, 9, 4533-4542. (90) Lan, X.; Voznyy, O.; García de Arquer, F. P.; Liu, M.; Xu, J.; Proppe, A. H.; Walters, G.; Fan, F.; Tan, H.; Liu, M., 10.6% Certified Colloidal Quantum Dot Solar Cells via Solvent-Polarity-Engineered Halide Passivation. Nano Lett. 2016, 16, 4630-4634.
CHAPTER 2
(1) Rao, G.; Freitag, M.; Chiu, H.-Y.; Sundaram, R. S.; Avouris, P., Raman and Photocurrent Imaging of Electrical Stress-Induced p-n Junctions in Graphene. ACS Nano 2011, 5, 5848-5854. (2) Peters, E. C.; Lee, E. J.; Burghard, M.; Kern, K., Gate Dependent Photocurrents at a Graphene p-n Junction. Appl. Phys. Lett. 2010, 97, 193102. (3) Konstantatos, G.; Badioli, M.; Gaudreau, L.; Osmond, J.; Bernechea, M.; Garcia de Arquer, F. P.; Gatti, F.; Koppens, F. H., Hybrid Graphene-Quantum Dot Phototransistors with Ultrahigh Gain. Nat. Nanotechnol. 2012, 7, 363-368. (4) Richards, P., Bolometers for Infrared and Millimeter Waves. J. Appl. Phys. 1994, 76, 1-24. (5) Freitag, M.; Low, T.; Xia, F.; Avouris, P., Photoconductivity of Biased Graphene. Nat. Photonics 2013, 7, 53. (6) Lemme, M. C.; Koppens, F. H.; Falk, A. L.; Rudner, M. S.; Park, H.; Levitov, L. S.; Marcus, C. M., Gate-Activated Photoresponse in a Graphene p-n Junction. Nano Lett. 2011, 11, 4134-4137. (7) Huang, H.; Wang, J.; Hu, W.; Liao, L.; Wang, P.; Wang, X.; Gong, F.; Chen, Y.; Wu, G.; Luo, W., Highly Sensitive Visible to Infrared MoTe2 Photodetectors Enhanced by the Photogating Effect. Nanotechnology 2016, 27, 445201. (8) Koppens, F. H. L.; Mueller, T.; Avouris, P.; Ferrari, A. C.; Vitiello, M. S.; Polini, M., Photodetectors Based on Graphene, Other Two-Dimensional Materials and Hybrid Systems. Nat. Nanotechnol. 2014, 9, 780. (9) Xu, X.; Gabor, N. M.; Alden, J. S.; van der Zande, A. M.; McEuen, P. L., Photo-Thermoelectric Effect at a Graphene Interface Junction. Nano Lett. 2009, 10, 562-566. (10) Mattevi, C.; Kim, H.; Chhowalla, M., A Review of Chemical Vapour Deposition of Graphene on Copper. J. Mater. Chem. 2011, 21, 3324-3334. (11) Haider, G.; Roy, P.; Chiang, C. W.; Tan, W. C.; Liou, Y. R.; Chang, H. T.; Liang, C. T.; Shih, W. H.; Chen, Y. F., Electrical‐Polarization‐Induced Ultrahigh Responsivity Photodetectors Based on Graphene and Graphene Quantum Dots. Adv. Funct. Mater. 2016, 26, 620-628. (12) Bera, K. P.; Haider, G.; Usman, M.; Roy, P. K.; Lin, H.-I.; Liao, Y.-M.; Inbaraj, C. R. P.; Liou, Y.-R.; Kataria, M.; Lu, K.-L.; Chen, Y.-F., Trapped Photons Induced Ultrahigh External Quantum Efficiency and Photoresponsivity in Hybrid Graphene/Metal-Organic Framework Broadband Wearable Photodetectors. Adv. Funct. Mater. 2018, 28, 1804802. (13) Bera, K. P.; Haider, G.; Huang, Y.-T.; Roy, P. K.; Paul Inbaraj, C. R.; Liao, Y.-M.; Lin, H.-I.; Lu, C.-H.; Shen, C.; Shih, W. Y.; Shih, W.-H.; Chen, Y.-F., Graphene Sandwich Stable Perovskite Quantum-Dot Light-Emissive Ultrasensitive and Ultrafast Broadband Vertical Phototransistors. ACS Nano 2019. (14) Haider, G.; Usman, M.; Chen, T.-P.; Perumal, P.; Lu, K.-L.; Chen, Y.-F., Electrically Driven White Light Emission from Intrinsic Metal-Organic Framework. ACS Nano 2016, 10, 8366-8375. (15) Yu, W. J.; Li, Z.; Zhou, H.; Chen, Y.; Wang, Y.; Huang, Y.; Duan, X., Vertically Stacked Multi-Heterostructures of Layered Materials for Logic Transistors and Complementary Inverters. Nat. Mater. 2012, 12, 246. (16) Massicotte, M.; Schmidt, P.; Vialla, F.; Schadler, K. G.; Reserbat-Plantey, A.; Watanabe, K.; Taniguchi, T.; Tielrooij, K. J.; Koppens, F. H., Picosecond Photoresponse in van der Waals Heterostructures. Nat. Nanotechnol. 2016, 11, 42-6. (17) Fu, X.-W.; Liao, Z.-M.; Zhou, Y.-B.; Wu, H.-C.; Bie, Y.-Q.; Xu, J.; Yu, D.-P., Graphene/ZnO Nanowire/Graphene Vertical Structure Based Fast-Response Ultraviolet Photodetector. Appl. Phys. Lett. 2012, 100, 223114. (18) Gao, A.; Rizo, P.; Scaccabarozzi, L.; Lee, C.; Banine, V.; Bijkerk, F., Photoluminescence-Based Detection of Particle Contamination on Extreme Ultraviolet Reticles. Rev. Sci. Instrum. 2015, 86, 063109. (19) Romani, A.; Clementi, C.; Miliani, C.; Brunetti, B.; Sgamellotti, A.; Favaro, G., Portable Equipment for Luminescence Lifetime Measurements on Surfaces. Appl Spectrosc 2008, 62, 1395-1399. (20) Nevin, A.; Cesaratto, A.; Bellei, S.; D'Andrea, C.; Toniolo, L.; Valentini, G.; Comelli, D., Time-Resolved Photoluminescence Spectroscopy and Imaging: New Approaches to the Analysis of Cultural Heritage and Its Degradation. Sensors 2014, 14, 6338-6355. (21) Nevin, A.; Spoto, G.; Anglos, D., Laser Spectroscopies for Elemental and Molecular Analysis in Art and Archaeology. Appl. Phys. A 2012, 106, 339-361. (22) Graves, P.; Gardiner, D., Practical Raman Spectroscopy. Springer 1989, 1-12 (23) Degenhardt, H., Principles and Applications of Electroluminescence. Naturwissenschaften 1976, 63, 544-549. (24) Light-Emitting Diodes. Kirk‐Othmer Encyclopedia of Chemical Technology, pp 1-20. (25) Lee, M.; Callard, S.; Seassal, C.; Jeon, H., Taming of Random Lasers. Nat. Photonics 2019, 13, 445-448. (26) Redding, B.; Choma, M. A.; Cao, H., Speckle-Free Laser Imaging Using Random Laser Illumination. Nat. Photonics 2012, 6, 355-359. (27) Wiersma, D. S., The Physics and Applications of Random lasers. Nat. Phys. 2008, 4, 359. (28) Perumbilavil, S.; Piccardi, A.; Barboza, R.; Buchnev, O.; Kauranen, M.; Strangi, G.; Assanto, G., Beaming Random Lasers with Soliton Control. Nat. Commun. 2018, 9, 3863. (29) Wiersma, D., The Smallest Random Laser. Nature 2000, 406, 133-135. (30) Roy, P. K.; Haider, G.; Lin, H.-I.; Liao, Y.-M.; Lu, C.-H.; Chen, K.-H.; Chen, L.-C.; Shih, W.-H.; Liang, C.-T.; Chen, Y.-F., Multicolor Ultralow-Threshold Random Laser Assisted by Vertical-Graphene Network. Adv. Opt. Mater. 2018, 6, 1800382. (31) Shi, X.; Liao, Y.-M.; Lin, H.-Y.; Tsao, P.-W.; Wu, M.-J.; Lin, S.-Y.; Hu, H.-H.; Wang, Z.; Lin, T.-Y.; Lai, Y.-C.; Chen, Y.-F., Dissolvable and Recyclable Random Lasers. ACS Nano 2017, 11, 7600-7607. (32) Cao, H.; Xu, J. Y.; Zhang, D. Z.; Chang, S. H.; Ho, S. T.; Seelig, E. W.; Liu, X.; Chang, R. P. H., Spatial Confinement of Laser Light in Active Random Media. Phys. Rev. Lett. 2000, 84, 5584-5587. (33) Bischof, M., Introduction to Integrative Biophysics. Integrative Biophysics, Springer: 2003; pp 1-115. (34) Luan, F.; Gu, B.; Gomes, A. S.; Yong, K.-T.; Wen, S.; Prasad, P. N., Lasing in Nanocomposite Random Media. Nano Today 2015, 10, 168-192. (35) Wiersma, D. S., The Physics and Applications of Random Lasers. Nat. Phys. 2008, 4, 359. (36) Cao, H., Review on Latest Developments in Random Lasers with Coherent Feedback. J. Phys. A 2005, 38, 10497. (37) Redding, B.; Choma, M. A.; Cao, H., Speckle-Free Laser Imaging Using Random Laser Illumination. Nat. Photonics 2012, 6, 355. (38) Liao, Y. M.; Lai, Y. C.; Perumal, P.; Liao, W. C.; Chang, C. Y.; Liao, C. S.; Lin, S. Y.; Chen, Y. F., Highly Stretchable Label‐Like Random Laser on Universal Substrates. Adv. Mater. Technol.2016, 1, 1600068. (39) Luan, F.; Gu, B.; Gomes, A. S. L.; Yong, K.-T.; Wen, S.; Prasad, P. N., Lasing in Nanocomposite Random Media. Nano Today 2015, 10, 168-192. (40) Ohring, M., Materials Science of Thin Films. Elsevier: 2001, 2, 1-794 (41) Li, X.; Cai, W.; An, J.; Kim, S.; Nah, J.; Yang, D.; Piner, R.; Velamakanni, A.; Jung, I.; Tutuc, E.; Banerjee, S. K.; Colombo, L.; Ruoff, R. S., Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils. Science 2009, 324, 1312.
CHAPTER 3
(1) Rauch, T.; Böberl, M.; Tedde, S. F.; Fürst, J.; Kovalenko, M. V.; Hesser, G.; Lemmer, U.; Heiss, W.; Hayden, O., Near-Infrared Imaging with Quantum-Dot-Sensitized Organic Photodiodes. Nat. Photonics 2009, 3, 332. (2) Kim, J.; Jeerapan, I.; Imani, S.; Cho, T. N.; Bandodkar, A.; Cinti, S.; Mercier, P. P.; Wang, J., Noninvasive Alcohol Monitoring Using a Wearable Tattoo-Based Iontophoretic-Biosensing System. ACS Sens. 2016, 1, 1011-1019. (3) Konstantatos, G.; Badioli, M.; Gaudreau, L.; Osmond, J.; Bernechea, M.; Garcia de Arquer, F. P.; Gatti, F.; Koppens, F. H., Hybrid Graphene-Quantum Dot Phototransistors with Ultrahigh Gain. Nat. Nanotechnol. 2012, 7, 363-368. (4) Bao, Z.; Chen, X., Flexible and Stretchable Devices. Adv. Mater. 2016, 28, 4177-4179. (5) Hu, J.; Li, L.; Lin, H.; Zhang, P.; Zhou, W.; Ma, Z., Flexible Integrated Photonics: Where Materials, Mechanics and Optics Meet. Opt. Mater. Express 2013, 3, 1313-1331. (6) Lu, N.; Kim, D.-H., Flexible and Stretchable Electronics Paving the Way for Soft Robotics. Soft Robot. 2014, 1, 53-62. (7) De Fazio, D.; Goykhman, I.; Yoon, D.; Bruna, M.; Eiden, A.; Milana, S.; Sassi, U.; Barbone, M.; Dumcenco, D.; Marinov, K.; Kis, A.; Ferrari, A. C., High Responsivity, Large-Area Graphene/MoS2 Flexible Photodetectors. ACS Nano 2016, 10, 8252-8262. (8) Shen, G.; Liang, B.; Wang, X.; Huang, H.; Chen, D.; Wang, Z. L., Ultrathin In2O3 Nanowires with Diameters Below 4 nm: Synthesis, Reversible Wettability Switching Behavior, and Transparent Thin-Film Transistor Applications. ACS Nano 2011, 5, 6148-6155. (9) Park, S. I.; Xiong, Y.; Kim, R. H.; Elvikis, P.; Meitl, M.; Kim, D. H.; Wu, J.; Yoon, J.; Yu, C. J.; Liu, Z.; Huang, Y.; Hwang, K. C.; Ferreira, P.; Li, X.; Choquette, K.; Rogers, J. A., Printed Assemblies of Inorganic Light-Emitting Diodes for Deformable and Semitransparent Displays. Science 2009, 325, 977-81. (10) Yoo, J.; Jeong, S.; Kim, S.; Je Jung, H., A Stretchable Nanowire UV-Vis-NIR Photodetector with High Performance. Adv. Mater. 2015, 27, 1712-1717. (11) Jang, H.; Park Yong, J.; Chen, X.; Das, T.; Kim, M. S.; Ahn, J. H., Graphene‐Based Flexible and Stretchable Electronics. Adv. Mater. 2016, 28, 4184-4202. (12) Nam, J.; Lee, Y.; Choi, W.; Kim Chang, S.; Kim, H.; Kim, J.; Kim, D. H.; Jo, S., Transfer Printed Flexible and Stretchable Thin Film Solar Cells Using a Water‐Soluble Sacrificial Layer. Adv. Energy Mater. 2016, 6, 1601269. (13) Cheng, Y. B.; Pascoe, A.; Huang, F.; Peng, Y., Print Flexible Solar Cells. Nature 2016, 539, 488-489. (14) Ji, Y.; Lee, S.; Cho, B.; Song, S.; Lee, T., Flexible Organic Memory Devices with Multilayer Graphene Electrodes. ACS Nano 2011, 5, 5995-6000. (15) Kim, S.-J.; Lee, J.-S., Flexible Organic Transistor Memory Devices. Nano Lett. 2010, 10, 2884-2890. (16) Palli, G.; Pirozzi, S., An Optical Torque Sensor for Robotic Applications. Int. J. Optomechatroni 2013, 7, 263-282. (17) Melchior, H.; Fisher, M. B.; Arams, F. R., Photodetectors for Optical Communication Systems. Proc. IEEE 1970, 58, 1466-1486. (18) Lochner, C. M.; Khan, Y.; Pierre, A.; Arias, A. C., All-Organic Optoelectronic Sensor for Pulse Oximetry. Nat. Commun. 2014, 5, 5745. (19) Yokota, T.; Zalar, P.; Kaltenbrunner, M.; Jinno, H.; Matsuhisa, N.; Kitanosako, H.; Tachibana, Y.; Yukita, W.; Koizumi, M.; Someya, T., Ultraflexible Organic Photonic Skin. Sci. Adv. 2016, 2, e1501856. (20) Lee, C.; Wei, X.; Kysar, J. W.; Hone, J., Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene. Science 2008, 321, 385-8. (21) Nair, R. R.; Blake, P.; Grigorenko, A. N.; Novoselov, K. S.; Booth, T. J.; Stauber, T.; Peres, N. M.; Geim, A. K., Fine Structure Constant Defines Visual Transparency of Graphene. Science 2008, 320, 1308. (22) Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A., Electric Field Effect in Atomically Thin Carbon Films. Science 2004, 306, 666-669. (23) Smith, A. D.; Niklaus, F.; Paussa, A.; Vaziri, S.; Fischer, A. C.; Sterner, M.; Forsberg, F.; Delin, A.; Esseni, D.; Palestri, P.; Östling, M.; Lemme, M. C., Electromechanical Piezoresistive Sensing in Suspended Graphene Membranes. Nano Lett. 2013, 13, 3237-3242. (24) Mueller, T.; Xia, F.; Avouris, P., Graphene Photodetectors for High-Speed Optical Communications. Nat. Photonics 2010, 4, 297. (25) Das Sarma, S.; Adam, S.; Hwang, E. H.; Rossi, E., Electronic Transport in Two-Dimensional Graphene. Rev. Mod. Phys. 2011, 83, 407-470. (26) Yu, Y.-J.; Zhao, Y.; Ryu, S.; Brus, L. E.; Kim, K. S.; Kim, P., Tuning the Graphene Work Function by Electric Field Effect. Nano Lett. 2009, 9, 3430-3434. (27) Haider, G.; Ravindranath, R.; Chen, T.-P.; Roy, P.; Roy, P. K.; Cai, S.-Y.; Chang, H.-T.; Chen, Y.-F., Dirac Point Induced Ultralow-Threshold Laser and Giant Optoelectronic Quantum Oscillations in Graphene-Based Heterojunctions. Nat. Commun. 2017, 8, 256. (28) Kim, C. O.; Kim, S.; Shin, D. H.; Kang, S. S.; Kim, J. M.; Jang, C. W.; Joo, S. S.; Lee, J. S.; Kim, J. H.; Choi, S.-H.; Hwang, E., High Photoresponsivity in an All-Graphene p-n Vertical Junction Photodetector. Nat. Commun. 2014, 5, 3249. (29) Huang, F.; Jia, F.; Cai, C.; Xu, Z.; Wu, C.; Ma, Y.; Fei, G.; Wang, M., High- and Reproducible-Performance Graphene/II-VI Semiconductor Film Hybrid Photodetectors. Sci. Rep. 2016, 6, 28943. (30) Yang, F.; Cong, H.; Yu, K.; Zhou, L.; Wang, N.; Liu, Z.; Li, C.; Wang, Q.; Cheng, B., Ultrathin Broadband Germanium-Graphene Hybrid Photodetector with High Performance. ACS Appl. Mater. Interfaces 2017, 9, 13422-13429. (31) Koppens, F. H. L.; Mueller, T.; Avouris, P.; Ferrari, A. C.; Vitiello, M. S.; Polini, M., Photodetectors Based on Graphene, Other Two-Dimensional Materials and Hybrid Systems. Nat. Nanotechnol. 2014, 9, 780. (32) Nikitskiy, I.; Goossens, S.; Kufer, D.; Lasanta, T.; Navickaite, G.; Koppens, F. H. L.; Konstantatos, G., Integrating an Electrically Active Colloidal Quantum Dot Photodiode with a Graphene Phototransistor. Nat. Commun. 2016, 7, 11954. (33) Babichev, A. V.; Zhang, H.; Lavenus, P.; Julien, F. H.; Egorov, A. Y.; Lin, Y. T.; Tu, L. W.; Tchernycheva, M., Gan Nanowire Ultraviolet Photodetector with a Graphene Transparent Contact. Appl. Phys. Lett. 2013, 103, 201103. (34) Lee, Y.; Kwon, J.; Hwang, E.; Ra, C. H.; Yoo, W. J.; Ahn, J. H.; Park, J. H.; Cho, J. H., High‐Performance Perovskite-Graphene Hybrid Photodetector. Adv. Mater. 2015, 27, 41-46. (35) Chang, P.-H.; Liu, S.-Y.; Lan, Y.-B.; Tsai, Y.-C.; You, X.-Q.; Li, C.-S.; Huang, K.-Y.; Chou, A.-S.; Cheng, T.-C.; Wang, J.-K.; Wu, C.-I., Ultrahigh Responsivity and Detectivity Graphene-Perovskite Hybrid Phototransistors by Sequential Vapor Deposition. Sci. Rep. 2017, 7, 46281. (36) Shao, Y.; Liu, Y.; Chen, X.; Chen, C.; Sarpkaya, I.; Chen, Z.; Fang, Y.; Kong, J.; Watanabe, K.; Taniguchi, T.; Taylor, A.; Huang, J.; Xia, F., Stable Graphene-Two-Dimensional Multiphase Perovskite Heterostructure Phototransistors with High Gain. Nano Lett. 2017, 17, 7330-7338. (37) Tseng, W.-S.; Jao, M.-H.; Hsu, C.-C.; Huang, J.-S.; Wu, C.-I.; Yeh, N. C., Stabilization of Hybrid Perovskite CH3NH3PbI3 Thin Films by Graphene Passivation. Nanoscale 2017, 9, 19227-19235. (38) Zaworotko, M. J., Designer Pores Made Easy. Nature 2008, 451, 410. (39) Ma, L.; Abney, C.; Lin, W., Enantioselective Catalysis with Homochiral Metal-Organic Frameworks. Chem. Soc. Rev. 2009, 38, 1248-56. (40) He, Y.; Zhou, W.; Qian, G.; Chen, B., Methane Storage in Metal-Organic Frameworks. Chem. Soc. Rev. 2014, 43, 5657-5678. (41) Horcajada, P.; Chalati, T.; Serre, C.; Gillet, B.; Sebrie, C.; Baati, T.; Eubank, J. F.; Heurtaux, D.; Clayette, P.; Kreuz, C.; Chang, J. S.; Hwang, Y. K.; Marsaud, V.; Bories, P. N.; Cynober, L.; Gil, S.; Ferey, G.; Couvreur, P.; Gref, R., Porous Metal-Organic-Framework Nanoscale Carriers as a Potential Platform for Drug Delivery and Imaging. Nat. Mater. 2010, 9, 172-8. (42) Meek, S. T.; Greathouse, J. A.; Allendorf, M. D., Metal-Organic Frameworks: A Rapidly Growing Class of Versatile Nanoporous Materials. Adv. Mater. 2011, 23, 249-67. (43) Haider, G.; Usman, M.; Chen, T.-P.; Perumal, P.; Lu, K.-L.; Chen, Y.-F., Electrically Driven White Light Emission from Intrinsic Metal-Organic Framework. ACS Nano 2016, 10, 8366-8375. (44) Usman, M.; Haider, G.; Mendiratta, S.; Luo, T.-T.; Chen, Y.-F.; Lu, K.-L., Continuous Broadband Emission from a Metal-Organic Framework as a Human-Friendly White Light Source. J. Phys. Chem. C 2016, 4, 4728-4732. (45) Allendorf, M. D.; Bauer, C. A.; Bhakta, R. K.; Houk, R. J., Luminescent Metal-Organic Frameworks. Chem. Soc. Rev. 2009, 38, 1330-52. (46) Stavila, V.; Talin, A. A.; Allendorf, M. D., MOF-Based Electronic and Opto-Electronic Devices. Chem. Soc. Rev. 2014, 43, 5994-6010. (47) Zhao, D.; Cui, Y.; Yang, Y.; Qian, G., Sensing-Functional Luminescent Metal-Organic Frameworks. CrystEngComm 2016, 18, 3746-3759. (48) Zhang, H.; Nai, J.; Yu, L.; Lou, X. W., Metal-Organic-Framework-Based Materials as Platforms for Renewable Energy and Environmental Applications. Joule 2017, 1, 77-107. (49) Castaldelli, E.; Imalka Jayawardena, K. D. G.; Cox, D. C.; Clarkson, G. J.; Walton, R. I.; Le-Quang, L.; Chauvin, J.; Silva, S. R. P.; Demets, G. J.-F., Electrical Semiconduction Modulated by Light in a Cobalt and Naphthalene Diimide Metal-Organic Framework. Nat. Commun. 2017, 8, 2139. (50) Reina, A.; Jia, X.; Ho, J.; Nezich, D.; Son, H.; Bulovic, V.; Dresselhaus, M. S.; Kong, J., Large Area, Few-Layer Graphene Films on Arbitrary Substrates by Chemical Vapor Deposition. Nano Lett. 2009, 9, 30-5. (51) Li, X.; Cai, W.; An, J.; Kim, S.; Nah, J.; Yang, D.; Piner, R.; Velamakanni, A.; Jung, I.; Tutuc, E.; Banerjee, S. K.; Colombo, L.; Ruoff, R. S., Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils. Science 2009, 324, 1312. (52) Sansonetti, J. E.; Nave, G., Wavelengths, Transition Probabilities, and Energy Levels for the Spectrum of Neutral Strontium (Sr I). J. Phys. Chem. Ref. Data 2010, 39, 033103. (53) Zou, L.; Feng, D.; Liu, T.-F.; Chen, Y.-P.; Yuan, S.; Wang, K.; Wang, X.; Fordham, S.; Zhou, H.-C., A Versatile Synthetic Route for the Preparation of Titanium Metal-Organic Frameworks. Chem. Sci. 2016, 7, 1063-1069. (54) Song, F.; Li, W.; Sun, Y., Metal-Organic Frameworks and Their Derivatives for Photocatalytic Water Splitting. Inorganics 2017, 5, 40. (55) Mattevi, C.; Kim, H.; Chhowalla, M., A Review of Chemical Vapour Deposition of Graphene on Copper. J. Mater. Chem. 2011, 21, 3324-3334. (56) Zhang, Q.; Zhang, C.; Cao, L.; Wang, Z.; An, B.; Lin, Z.; Huang, R.; Zhang, Z.; Wang, C.; Lin, W., Förster Energy Transport in Metal-Organic Frameworks Is Beyond Step-by-Step Hopping. J. Am. Chem. Soc. 2016, 138, 5308-5315. (57) Mahato, P.; Monguzzi, A.; Yanai, N.; Yamada, T.; Kimizuka, N., Fast and Long-Range Triplet Exciton Diffusion in Metal-Organic Frameworks for Photon Upconversion at Ultralow Excitation Power. Nat. Mater. 2015, 14, 924-30. (58) Milichko, V. A.; Makarov, S. V.; Yulin, A. V.; Vinogradov, A. V.; Krasilin, A. A.; Ushakova, E.; Dzyuba, V. P.; Hey-Hawkins, E.; Pidko, E. A.; Belov, P. A., Van Der Waals Metal-Organic Framework as an Excitonic Material for Advanced Photonics. Adv. Mater. 2017, 29. (59) Gélinas, S.; Paré-Labrosse, O.; Brosseau, C.-N.; Albert-Seifried, S.; McNeill, C. R.; Kirov, K. R.; Howard, I. A.; Leonelli, R.; Friend, R. H.; Silva, C., The Binding Energy of Charge-Transfer Excitons Localized at Polymeric Semiconductor Heterojunctions. J. Phys. Chem. C 2011, 115, 7114-7119. (60) Ramaswamy, P.; Wong, N. E.; Shimizu, G. K. H., MOFs as Proton Conductors-Challenges and Opportunities. Chem. Soc. Rev. 2014, 43, 5913-5932. (61) Haider, G.; Roy, P.; Chiang, C. W.; Tan, W. C.; Liou, Y. R.; Chang, H. T.; Liang, C. T.; Shih, W. H.; Chen, Y. F., Electrical‐Polarization‐Induced Ultrahigh Responsivity Photodetectors Based on Graphene and Graphene Quantum Dots. Adv. Funct. Mater. 2016, 26, 620-628. (62) Long, M.; Gao, A.; Wang, P.; Xia, H.; Ott, C.; Pan, C.; Fu, Y.; Liu, E.; Chen, X.; Lu, W.; Nilges, T.; Xu, J.; Wang, X.; Hu, W.; Miao, F., Room Temperature High-Detectivity Mid-Infrared Photodetectors Based on Black Arsenic Phosphorus. Sci. Adv. 2017, 3, e1700589. (63) Hou, C.; Yang, L.; Li, B.; Zhang, Q.; Li, Y.; Yue, Q.; Wang, Y.; Yang, Z.; Dong, L., Multilayer Black Phosphorus Near-Infrared Photodetectors. Sensors 2018, 18, 1668. (64) Sun, Z.; Aigouy, L.; Chen, Z., Plasmonic-Enhanced Perovskite-Graphene Hybrid Photodetectors. Nanoscale 2016, 8, 7377-7383. (65) Dincă, M.; Léonard, F., Metal-Organic Frameworks for Electronics and Photonics. MRS Bull. 2016, 41, 854-857. (66) Lidzey, D. G.; Bradley, D. D. C.; Skolnick, M. S.; Virgili, T.; Walker, S.; Whittaker, D. M., Strong Exciton-Photon Coupling in an Organic Semiconductor Microcavity. Nature 1998, 395, 53. (67) Lei, S.; G., C. M.; Mircea, D., Electrically Conductive Porous Metal-Organic Frameworks. Angew. Chem. Int. Ed. 2016, 55, 3566-3579. (68) Feldblyum, J. I.; Keenan, E. A.; Matzger, A. J.; Maldonado, S., Photoresponse Characteristics of Archetypal Metal-Organic Frameworks. J. Phys. Chem. C 2012, 116, 3112-3121. (69) Mihi, A.; Míguez, H., Origin of Light-Harvesting Enhancement in Colloidal-Photonic-Crystal-Based Dye-Sensitized Solar Cells. J. Phys. Chem. B 2005, 109, 15968-15976. (70) Han-Wen, H.; Golam, H.; Yu-Ming, L.; Kumar, R. P.; Rini, R.; Huan-Tsung, C.; Cheng-Hsin, L.; Chang-Yang, T.; Tai-Yung, L.; Wei-Heng, S.; Yang-Fang, C., Wrinkled 2D Materials: A Versatile Platform for Low-Threshold Stretchable Random Lasers. Adv. Mater. 2017, 29, 1703549. (71) Roy Pradip, K.; Haider, G.; Lin Hung, I.; Liao, Y.-M.; Lu, C.-H.; Chen, K.-H.; Chen, L.-C.; Shih, W.-H.; Liang, C.-T.; Chen, Y.-F., Multicolor Ultralow-Threshold Random Laser Assisted by Vertical-Graphene Network. Adv. Opt. Mater. 2018, 0, 1800382. (72) Cui, Y.; Li, B.; He, H.; Zhou, W.; Chen, B.; Qian, G., Metal-Organic Frameworks as Platforms for Functional Materials. Acc. Chem. Res. 2016, 49, 483-93. (73) Jiang, C. M.; Segev, G.; Hess, L. H.; Liu, G.; Zaborski, G.; Toma, F. M.; Cooper, J. K.; Sharp, I. D., Composition-Dependent Functionality of Copper Vanadate Photoanodes. ACS Appl. Mater. Interfaces 2018, 10, 10627-10633. (74) So, M. C.; Wiederrecht, G. P.; Mondloch, J. E.; Hupp, J. T.; Farha, O. K., Metal-Organic Framework Materials for Light-Harvesting and Energy Transfer. ChemComm 2015, 51, 3501-3510. (75) Lee, C. Y.; Farha, O. K.; Hong, B. J.; Sarjeant, A. A.; Nguyen, S. T.; Hupp, J. T., Light-Harvesting Metal-Organic Frameworks (MOFs): Efficient Strut-to-Strut Energy Transfer in Bodipy and Porphyrin-Based MOFs. J. Am. Chem. Soc. 2011, 133, 15858-61. (76) Chiang, C.-W.; Haider, G.; Tan, W.-C.; Liou, Y.-R.; Lai, Y.-C.; Ravindranath, R.; Chang, H.-T.; Chen, Y.-F., Highly Stretchable and Sensitive Photodetectors Based on Hybrid Graphene and Graphene Quantum Dots. ACS Appl. Mater. Interfaces 2016, 8, 466-471. (77) Roy, K.; Padmanabhan, M.; Goswami, S.; Sai, T. P.; Ramalingam, G.; Raghavan, S.; Ghosh, A., Graphene-MOS2 Hybrid Structures for Multifunctional Photoresponsive Memory Devices. Nat. Nanotechnol. 2013, 8, 826-30. (78) Sun, Z.; Liu, Z.; Li, J.; Tai, G. A.; Lau, S. P.; Yan, F., Infrared Photodetectors Based on CVD-Grown Graphene and PbS Quantum Dots with Ultrahigh Responsivity. Adv. Mater. 2012, 24, 5878-83. (79) Wenhao, G.; Shuigang, X.; Zefei, W.; Ning, W.; T., L. M. M.; Shengwang, D., Oxygen-Assisted Charge Transfer between ZnO Quantum Dots and Graphene. Small 2013, 9, 3031-3036. (80) Guo, F.; Yang, B.; Yuan, Y.; Xiao, Z.; Dong, Q.; Bi, Y.; Huang, J., A Nanocomposite Ultraviolet Photodetector Based on Interfacial Trap-Controlled Charge Injection. Nat. Nanotechnol. 2012, 7, 798. (81) Li, L.; Zhang, F.; Wang, J.; An, Q.; Sun, Q.; Wang, W.; Zhang, J.; Teng, F., Achieving EQE of 16,700% in P3HT:PC71BM Based Photodetectors by Trap-Assisted Photomultiplication. Sci. Rep. 2015, 5, 9181. (82) Hu, P.; Wen, Z.; Wang, L.; Tan, P.; Xiao, K., Synthesis of Few-Layer Gase Nanosheets for High Performance Photodetectors. ACS Nano 2012, 6, 5988-5994.
CHAPTER 4
(1)Pattison, P. M.; Tsao, J. Y.; Brainard, G. C.; Bugbee, B. LEDs for Photons, Physiology and Food. Nature 2018, 563, 493-500. (2)Oh, N.; Kim, B. H.; Cho, S.-Y.; Nam, S.; Rogers, S. P.; Jiang, Y.; Flanagan, J. C.; Zhai, Y.; Kim, J.-H.; Lee, J.; Yu, Y.; Cho, Y. K.; Hur, G.; Zhang, J.; Trefonas, P.; Rogers, J. A.; Shim, M. Double-Heterojunction Nanorod Light-Responsive LEDs for Display Applications. Science 2017, 355, 616. (3)Murawski, C.; Leo, K.; Gather, M. C. Efficiency Roll-Off in Organic Light-Emitting Diodes. Adv. Mater. 2013, 25, 6801-6827. (4)Pust, P.; Schmidt, P. J.; Schnick, W. A Revolution in Lighting. Nat. Mater. 2015, 14, 454. (5)Nanishi, Y. The Birth of the Blue LED. Nat. Photonics 2014, 8, 884. (6)Xia, Z.; Liu, Q. Progress in Discovery and Structural Design of Color Conversion Phosphors for LEDs. Prog. Mater. Sci. 2016, 84, 59–117. (7)Xia, Z.; Meijerink, A. Ce3+-Doped Garnet Phosphors: Composition Modification, Luminescence Properties and Applications. Chem. Soc. Rev. 2017, 46, 275-299. (8)Wang, L.; Xie, R.-J.; Suehiro, T.; Takeda, T.; Hirosaki, N. Down-Conversion Nitride Materials for Solid State Lighting: Recent Advances and Perspectives. Chem. Rev. 2018, 118, 1951-2009. (9)Reineke, S.; Lindner, F.; Schwartz, G.; Seidler, N.; Walzer, K.; Lüssem, B.; Leo, K. White Organic Light-Emitting Diodes with Fluorescent Tube Efficiency. Nature 2009, 459, 234. (10)Ye, S.; Xiao, F.; Pan, Y. X.; Ma, Y. Y.; Zhang, Q. Y. Phosphors in Phosphor-Converted White Light-Emitting Diodes: Recent Advances in Materials, Techniques and Properties. Mater. Sci. Eng. R 2010, 71, 1-34 (11)Haider, G.; Usman, M.; Chen, T.-P.; Perumal, P.; Lu, K.-L.; Chen, Y.-F. Electrically Driven White Light Emission from Intrinsic Metal-Organic Framework. ACS Nano 2016, 10, 8366-8375. (12)Usman, M.; Haider, G.; Mendiratta, S.; Luo, T.-T.; Chen, Y.-F.; Lu, K.-L. Continuous Broadband Emission from a Metal-Organic Framework as a Human-Friendly White Light Source. J. Mater. Chem. C 2016, 4, 4728-4732. (13)Cornelio, J.; Zhou, T.-Y.; Alkaş, A.; Telfer, S. G. Systematic Tuning of the Luminescence Output of Multicomponent Metal-Organic Frameworks. J. Am. Chem. Soc. 2018, 140, 15470-15476. (14)Packwood, D. M.; Hitosugi, T. Materials Informatics for Self-Assembly of Functionalized Organic Precursors on Metal Surfaces. Nat. Commun. 2018, 9, 2469. (15)Lescop, C., Coordination-Driven Syntheses of Compact Supramolecular Metallacycles toward Extended Metallo-organic Stacked Supramolecular Assemblies. Acc. Chem. Res. 2017, 50, 885-894. (16)Holliday, B. J. & Mirkin, C. A. Strategies for the Construction of Supramolecular Compounds through Coordination Chemistry. Angew. Chem. Int. Ed. 2001, 40, 2022-2043. (17)Fan, C.; Wu, W.; Chruma, J. J.; Zhao, J.; Yang, C. Enhanced Triplet-Triplet Energy Transfer and Upconversion Fluorescence through Host-Guest Complexation. J. Am. Chem. Soc. 2016, 138, 15405-15412. (18)Hou, X.; Ke, C.; Bruns, C. J.; McGonigal, P. R.; Pettman, R. B.; Stoddart, J. F. Tunable Solid-State Fluorescent Materials for Supramolecular Encryption. Nat. Commun. 2015, 6, 6884. (19)Zhu, X.-H.; Peng, J.; Cao, Y.; Roncali, J. Solution-processable Single-Material Molecular Emitters for Organic Light-Emitting Devices. Chem. Soc. Rev. 2011, 40, 3509-3524. (20)Welte, L., Calzolari, A., Felice, R. D., Zamora, F. & Gómez-Herrero, J. Highly Conductive Self-Assembled Nanoribbons of Coordination Polymers. Nat. Nanotechnol. 2009, 5, 110. (21)Khalily, M. A.; Bakan, G.; Kucukoz, B.; Topal, A. E.; Karatay, A.; Yaglioglu, H. G.; Dana, A.; Guler, M. O. Fabrication of Supramolecular n/p-Nanowires via Coassembly of Oppositely Charged Peptide-Chromophore Systems in Aqueous Media. ACS Nano 2017, 11 , 6881-6892. (22)Lafferentz, L.; Ample, F.; Yu, H.; Hecht, S.; Joachim, C.; Grill, L. Conductance of a Single Conjugated Polymer as a Continuous Function of its Length. Science 2009, 323, 1193. (23)Faramarzi, V. et al. Light-Triggered Self-Construction of Supramolecular Organic Nanowires as Metallic Interconnects. Nat. Chem. 2012, 4, 485. (24)Goswami, N. et al. Luminescent Metal Nanoclusters with Aggregation-Induced Emission. J. Phys. Chem. Lett. 2016, 7, 962-975. (25)Klein, J. E. M. N.; Mandal, D.; Ching, W.-M.; Mallick, D.; Que, L.; Shaik, S., Privileged Role of Thiolate as the Axial Ligand in Hydrogen Atom Transfer Reactions by Oxoiron(IV) Complexes in Shaping the Potential Energy Surface and Inducing Significant H-Atom Tunneling. J. Am. Chem. Soc. 2017, 139, 18705-18713. (26)Basu Baul, T. S., Kundu, S., Ng, S. W., Guchhait, N. & Tiekink, E. R. T. Synthesis, Characterization, Photoluminescent Properties and Supramolecular Aggregations in Diimine Chelated Cadmium Dihalides. J. Coord. Chem. 2014, 67, 96-119. (27)Usman, M., Mendiratta, S. & Lu, K. L. Semiconductor Metal-Organic Frameworks: Future Low‐Bandgap Materials. Adv. Mater. 2017, 29, 1605071. (28)Allendorf, M. D., Bauer, C. A., Bhakta, R. K. & Houk, R. J. T. Luminescent Metal-Organic Frameworks. Chem. Soc. Rev. 2009, 38, 1330-1352. (29)Rao, X.; Huang, Q.; Yang, X.; Cui, Y.; Yang, Y.; Wu, C.; Chen, B.; Qian, G. Color Tunable and White Light Emitting Tb3+ and Eu3+ Doped Lanthanide Metal-Organic Framework Materials. J. Mater. Chem. 2012, 22, 3210-3214. (30)Carlos, L. D., Ferreira, R. A. S., de Zea Bermudez, V., Julian-Lopez, B. & Escribano, P. Progress on Lanthanide-Based Organic-Inorganic Hybrid Phosphors. Chem. Soc. Rev. 2011, 40, 536-549. (31)Kan, D. et al. Blue-light Emission at Room Temperature From Ar+ Irradiated SrTiO3. Nat. Mater. 2005, 4, 816. (32)Dale, S. H., Elsegood, M. R. J. & Coombs, A. E. L. Hydrogen Bond Directed Supramolecular Arrays Utilising Hemimellitic Acid: Solvent Inclusion Clathrates. Cryst. Eng. Commun. 2004, 6, 328-335. (33)Usman, M.; Mendiratta, S.; Batjargal, S.; Haider, G.; Hayashi, M.; Rao Gade, N.; Chen, J.-W.; Chen, Y.-F.; Lu, K.-L. Semiconductor Behavior of a Three-Dimensional Strontium-Based Metal-Organic Framework. ACS Appl. Mater. Interfaces 2015, 7, 22767-22774. (34)Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865-3868. (35)Morales-García, Á.; Valero, R.; Illas, F. An Empirical, yet Practical Way To Predict the Band Gap in Solids by Using Density Functional Band Structure Calculations. J. Phys. Chem. C 2017, 121, 18862-18866. (36)Becke, A. D. Perspective: Fifty Years of Density-Functional Theory in Chemical Physics. J. Chem. Phys. 2014, 140, 18A301. (37)Shen, C.; Chu, J.; Qian, F.; Zou, X.; Zhong, C.; Li, K.; Jin, S. High Color Rendering Index White LED Based on Nano-YAG:Ce3+ Phosphor Hybrid With CdSe/CdS/ZnS Core/Shell/Shell Quantum Dots. J. Mod. Opt. 2012, 59, 1199-1203. (38)Chen, L., Lin, C. C., Yeh, C. W. & Liu, R. S. Light Converting Inorganic Phosphors for White Light-Emitting Diodes. Materials 2010, 3, 2172. (39)Goswami, S.; Ray, D.; Otake, K.-i.; Kung, C.-W.; Garibay, S. J.; Islamoglu, T.; Atilgan, A.; Cui, Y.; Cramer, C. J.; Farha, O. K.; Hupp, J. T. A Porous, Electrically Conductive Hexa-Zirconium(IV) Metal-Organic Framework. Chem. Sci. 2018, 9, 4477-4482. (40)Sun, L.; Campbell, M. G.; Dincă, M. Electrically Conductive Porous Metal-Organic Frameworks. Angew. Chem. Int. Ed. 2016, 55, 3566-3579. (41)Deng, H.; Grunder, S.; Cordova, K. E.; Valente, C.; Furukawa, H.; Hmadeh, M.; Gándara, F.; Whalley, A. C.; Liu, Z.; Asahina, S.; Kazumori, H.; O’Keeffe, M.; Terasaki, O.; Stoddart, J. F.; Yaghi, O. M. Large-Pore Apertures in a Series of Metal-Organic Frameworks. Science 2012, 336, 1018. (42)Ye, S.; Liu, Y.; Chen, J.; Lu, K.; Wu, W.; Du, C.; Liu, Y.; Wu, T.; Shuai, Z.; Yu, G. Solution-Processed Solid Solution of a Novel Carbazole Derivative for High-Performance Blue Phosphorescent Organic Light-Emitting Diodes. Adv. Mater. 2010, 22, 4167-4171. (43)Chang, Z., Yang, D. H., Xu, J., Hu, T. L. & Bu, X. H. Flexible Metal-Organic Frameworks: Recent Advances and Potential Applications. Adv. Mater. 2015, 27, 5432-5441. (44)Sheldrick, G., A short history of SHELX. Acta Crystallogr. A 2008, 64, 112-122.
CHAPTER 5
(1) Oh, N.; Kim, B. H.; Cho, S.-Y.; Nam, S.; Rogers, S. P.; Jiang, Y.; Flanagan, J. C.; Zhai, Y.; Kim, J.-H.; Lee, J.; Yu, Y.; Cho, Y. K.; Hur, G.; Zhang, J.; Trefonas, P.; Rogers, J. A.; Shim, M., Double-Heterojunction Nanorod Light-Responsive LEDs for Display Applications. Science 2017, 355, 616. (2) Tsonev, D.; Chun, H.; Rajbhandari, S.; McKendry, J. J. D.; Videv, S.; Gu, E.; Haji, M.; Watson, S.; Kelly, A. E.; Faulkner, G.; Dawson, M. D.; Haas, H.; Brien, D. O., A 3-Gb/s Single-LED OFDM-Based Wireless VLC Link Using a Gallium Nitride µLED. IEEE Photon. Technol. Lett. 2014, 26, 637-640. (3) Perumal, P.; Karuppiah, C.; Liao, W.-C.; Liou, Y.-R.; Liao, Y.-M.; Chen, Y.-F., Diverse Functionalities of Vertically Stacked Graphene/Single Layer n-MoS2/SiO2/p-GaN Heterostructures. Sci. Rep. 2017, 7, 10002. (4) Ban, D.; Han, S.; Lu, Z. H.; Oogarah, T.; SpringThorpe, A. J.; Liu, H. C., Near-Infrared to Visible Light Optical Upconversion by Direct Tandem Integration of Organic Light-Emitting Diode and Inorganic Photodetector. Appl. Phys. Lett. 2007, 90, 093108. (5) McCarthy, M. A.; Liu, B.; Donoghue, E. P.; Kravchenko, I.; Kim, D. Y.; So, F.; Rinzler, A. G., Low-Voltage, Low-Power, Organic Light-Emitting Transistors for Active Matrix Displays. Science 2011, 332, 570. (6) Yu, H.; Kim, D.; Lee, J.; Baek, S.; Lee, J.; Singh, R.; So, F., High-Gain Infrared-to-Visible Upconversion Light-Emitting Phototransistors. Nat. Photonics 2016, 10, 129. (7) Vogel, U.; Wartenberg, P.; Richter, B.; Brenner, S.; Thomschke, M.; Fehse, K.; Baumgarten, J., Paper No S16.1: Svga Bidirectional OLED Microdisplay for Near-to-Eye Projection. Dig. Tech. Pap. 2015, 46, 66. (8) Bera, K. P.; Haider, G.; Usman, M.; Roy, P. K.; Lin, H.-I.; Liao, Y.-M.; Inbaraj, C. R. P.; Liou, Y.-R.; Kataria, M.; Lu, K.-L.; Chen, Y.-F., Trapped Photons Induced Ultrahigh External Quantum Efficiency and Photoresponsivity in Hybrid Graphene/Metal-Organic Framework Broadband Wearable Photodetectors. Adv. Funct. Mater. 2018, 28, 1804802. (9) Nair, R. R.; Blake, P.; Grigorenko, A. N.; Novoselov, K. S.; Booth, T. J.; Stauber, T.; Peres, N. M.; Geim, A. K., Fine Structure Constant Defines Visual Transparency of Graphene. Science 2008, 320, 1308. (10) Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A., Electric Field Effect in Atomically Thin Carbon Films. Science 2004, 306, 666-669. (11) Smith, A. D.; Niklaus, F.; Paussa, A.; Vaziri, S.; Fischer, A. C.; Sterner, M.; Forsberg, F.; Delin, A.; Esseni, D.; Palestri, P.; Östling, M.; Lemme, M. C., Electromechanical Piezoresistive Sensing in Suspended Graphene Membranes. Nano Lett. 2013, 13, 3237-3242. (12) Haider, G.; Ravindranath, R.; Chen, T. P.; Roy, P.; Roy, P. K.; Cai, S. Y.; Chang, H. T.; Chen, Y. F., Dirac Point Induced Ultralow-Threshold Laser and Giant Optoelectronic Quantum Oscillations in Graphene-Based Heterojunctions. Nat. Commun. 2017, 8, 256. (13) Yu, Y. J.; Zhao, Y.; Ryu, S.; Brus, L. E.; Kim, K. S.; Kim, P., Tuning the Graphene Work Function by Electric Field Effect. Nano Lett. 2009, 9, 3430-3434. (14) Das Sarma, S.; Adam, S.; Hwang, E. H.; Rossi, E., Electronic Transport in Two-Dimensional Graphene. Rev. Mod. Phys. 2011, 83, 407-470. (15) Liu, Y.; Cheng, R.; Liao, L.; Zhou, H.; Bai, J.; Liu, G.; Liu, L.; Huang, Y.; Duan, X., Plasmon Resonance Enhanced Multicolour Photodetection by Graphene. Nat. Commun. 2011, 2, 579. (16) Echtermeyer, T. J.; Britnell, L.; Jasnos, P. K.; Lombardo, A.; Gorbachev, R. V.; Grigorenko, A. N.; Geim, A. K.; Ferrari, A. C.; Novoselov, K. S., Strong Plasmonic Enhancement of Photovoltage in Graphene. Nat. Commun. 2011, 2, 458. (17) Mueller, T.; Xia, F.; Avouris, P., Graphene Photodetectors for High-Speed Optical Communications. Nat. Photonics 2010, 4, 297. (18) Koppens, F. H. L.; Mueller, T.; Avouris, P.; Ferrari, A. C.; Vitiello, M. S.; Polini, M., Photodetectors Based on Graphene, Other Two-Dimensional Materials and Hybrid Systems. Nat. Nanotechnol. 2014, 9, 780. (19) Kim, C. O.; Kim, S.; Shin, D. H.; Kang, S. S.; Kim, J. M.; Jang, C. W.; Joo, S. S.; Lee, J. S.; Kim, J. H.; Choi, S. H.; Hwang, E., High Photoresponsivity in an All-Graphene p-n Vertical Junction Photodetector. Nat. Commun. 2014, 5, 3249. (20) Babichev, A. V.; Zhang, H.; Lavenus, P.; Julien, F. H.; Egorov, A. Y.; Lin, Y. T.; Tu, L. W.; Tchernycheva, M., Gan Nanowire Ultraviolet Photodetector with a Graphene Transparent Contact. Appl. Phys. Lett. 2013, 103, 201103. (21) Nikitskiy, I.; Goossens, S.; Kufer, D.; Lasanta, T.; Navickaite, G.; Koppens, F. H.; Konstantatos, G., Integrating an Electrically Active Colloidal Quantum Dot Photodiode with a Graphene Phototransistor. Nat. Commun. 2016, 7, 11954. (22) Bessonov, A. A.; Allen, M.; Liu, Y.; Malik, S.; Bottomley, J.; Rushton, A.; Medina-Salazar, I.; Voutilainen, M.; Kallioinen, S.; Colli, A.; Bower, C.; Andrew, P.; Ryhänen, T., Compound Quantum Dot-Perovskite Optical Absorbers on Graphene Enhancing Short-Wave Infrared Photodetection. ACS Nano 2017, 11, 5547-5557. (23) Xia, F.; Mueller, T.; Lin, Y. M.; Valdes-Garcia, A.; Avouris, P., Ultrafast Graphene Photodetector. Nat. Nanotechnol. 2009, 4, 839-843. (24) Sun, D.; Aivazian, G.; Jones, A. M.; Ross, J. S.; Yao, W.; Cobden, D.; Xu, X., Ultrafast Hot-Carrier-Dominated Photocurrent in Graphene. Nat. Nanotechnol. 2012, 7, 114. (25) Yu, W. J.; Liu, Y.; Zhou, H.; Yin, A.; Li, Z.; Huang, Y.; Duan, X., Highly Efficient Gate-Tunable Photocurrent Generation in Vertical Heterostructures of Layered Materials. Nat. Nanotechnol. 2013, 8, 952. (26) Massicotte, M.; Schmidt, P.; Vialla, F.; Schädler, K. G.; Reserbat-Plantey, A.; Watanabe, K.; Taniguchi, T.; Tielrooij, K. J.; Koppens, F. H. L., Picosecond Photoresponse in van der Waals Heterostructures. Nat. Nanotechnol. 2015, 11, 42. (27) Fu, X.-W.; Liao, Z.-M.; Zhou, Y.-B.; Wu, H.-C.; Bie, Y.-Q.; Xu, J.; Yu, D.-P., Graphene/ZnO Nanowire/Graphene Vertical Structure Based Fast-Response Ultraviolet Photodetector. Appl. Phys. Lett. 2012, 100, 223114. (28) Lee, M. M.; Teuscher, J.; Miyasaka, T.; Murakami, T. N.; Snaith, H. J., Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites. Science 2012, 338, 643-647. (29) Dou, L.; Yang, Y.; You, J.; Hong, Z.; Chang, W.-H.; Li, G.; Yang, Y., Solution-Processed Hybrid Perovskite Photodetectors with High Detectivity. Nat. Commun. 2014, 5, 5404. (30) Tan, Z. K.; Moghaddam, R. S.; Lai, M. L.; Docampo, P.; Higler, R.; Deschler, F.; Price, M.; Sadhanala, A.; Pazos, L. M.; Credgington, D.; Hanusch, F.; Bein, T.; Snaith, H. J.; Friend, R. H., Bright Light-Emitting Diodes Based on Organometal Halide Perovskite. Nat. Nanotechnol. 2014, 9, 687-692. (31) Wei, T.-C.; Wang, H.-P.; Li, T.-Y.; Lin, C.-H.; Hsieh, Y.-H.; Chu, Y.-H.; He, J.-H., Photostriction of CH3NH3PbBr3 Perovskite Crystals. Adv. Mater. 2017, 29, 1701789. (32) Yang, K.; Li, F.; Veeramalai, C. P.; Guo, T., A Facile Synthesis of CH3NH3PbBr3 Perovskite Quantum Dots and Their Application in Flexible Nonvolatile Memory. Appl. Phys. Lett. 2017, 110, 083102. (33) Walters, G.; Sutherland, B. R.; Hoogland, S.; Shi, D.; Comin, R.; Sellan, D. P.; Bakr, O. M.; Sargent, E. H., Two-Photon Absorption in Organometallic Bromide Perovskites. ACS Nano 2015, 9, 9340-9346. (34) Zheng, X.; Chen, B.; Yang, M.; Wu, C.; Orler, B.; Moore, R. B.; Zhu, K.; Priya, S., The Controlling Mechanism for Potential Loss in CH3NH3PbBr3 Hybrid Solar Cells. ACS Energy Lett. 2016, 1, 424-430. (35) Schmidt, L. C.; Pertegás, A.; González-Carrero, S.; Malinkiewicz, O.; Agouram, S.; Mínguez Espallargas, G.; Bolink, H. J.; Galian, R. E.; Pérez-Prieto, J., Nontemplate Synthesis of CH3NH3PbBr3 Perovskite Nanoparticles. J. Am. Chem. Soc. 2014, 136, 850-853. (36) Reina, A.; Jia, X.; Ho, J.; Nezich, D.; Son, H.; Bulovic, V.; Dresselhaus, M. S.; Kong, J., Large Area, Few-Layer Graphene Films on Arbitrary Substrates by Chemical Vapor Deposition. Nano Lett. 2009, 9, 30-35. (37) Lee, Y.; Kwon, J.; Hwang, E.; Ra, C. H.; Yoo, W. J.; Ahn, J. H.; Park, J. H.; Cho, J. H., High-Performance Perovskite-Graphene Hybrid Photodetector. Adv. Mater. 2015, 27, 41-46. (38) Wang, Y.; Zhang, Y.; Lu, Y.; Xu, W.; Mu, H.; Chen, C.; Qiao, H.; Song, J.; Li, S.; Sun, B.; Cheng, Y.-B.; Bao, Q., Hybrid Graphene-Perovskite Phototransistors with Ultrahigh Responsivity and Gain. Adv. Opt. Mater. 2015, 3, 1389-1396. (39) Sun, Z.; Aigouy, L.; Chen, Z., Plasmonic-Enhanced Perovskite-Graphene Hybrid Photodetectors. Nanoscale 2016, 8, 7377-7383. (40) Huang, H.; Susha, A. S.; Kershaw, S. V.; Hung, T. F.; Rogach, A. L., Control of Emission Color of High Quantum Yield CH3NH3PbBr3 Perovskite Quantum Dots by Precipitation Temperature. Adv. Sci. 2015, 2, 1500194. (41) Kojima, A.; Ikegami, M.; Teshima, K.; Miyasaka, T., Highly Luminescent Lead Bromide Perovskite Nanoparticles Synthesized with Porous Alumina Media. Chem. Lett. 2012, 41, 397-399. (42) Zhang, F.; Zhong, H.; Chen, C.; Wu, X.-g.; Hu, X.; Huang, H.; Han, J.; Zou, B.; Dong, Y., Brightly Luminescent and Color-Tunable Colloidal CH3NH3PbX3 (X = Br, I, Cl) Quantum Dots: Potential Alternatives for Display Technology. ACS Nano 2015, 9, 4533-4542. (43) Tyagi, P.; Arveson, S. M.; Tisdale, W. A., Colloidal Organohalide Perovskite Nanoplatelets Exhibiting Quantum Confinement. J. Phys. Chem. Lett. 2015, 6, 1911-1916. (44) Bouduban, M. E. F.; Burgos-Caminal, A.; Ossola, R.; Teuscher, J.; Moser, J.-E., Energy and Charge Transfer Cascade in Methylammonium Lead Bromide Perovskite Nanoparticle Aggregates. Chem. Sci. 2017, 8, 4371-4380. (45) Jana, A.; Mittal, M.; Singla, A.; Sapra, S., Solvent-Free, Mechanochemical Syntheses of Bulk Trihalide Perovskites and Their Nanoparticles. ChemComm 2017, 53, 3046-3049. (46) Lu, C.-H.; Hu, J.; Shih, W. Y.; Shih, W.-H., Control of Morphology, Photoluminescence, and Stability of Colloidal Methylammonium Lead Bromide Nanocrystals by Oleylamine Capping Molecules. J. Colloid Interface Sci. 2016, 484, 17-23. (47) Mittal, M.; Jana, A.; Sarkar, S.; Mahadevan, P.; Sapra, S., Size of the Organic Cation Tunes the Band Gap of Colloidal Organolead Bromide Perovskite Nanocrystals. J. Phys. Chem. Lett. 2016, 7, 3270-3277. (48) Bhaumik, S.; Veldhuis, S. A.; Ng, Y. F.; Li, M.; Muduli, S. K.; Sum, T. C.; Damodaran, B.; Mhaisalkar, S.; Mathews, N., Highly Stable, Luminescent Core-Shell Type Methylammonium-Octylammonium Lead Bromide Layered Perovskite Nanoparticles. ChemComm 2016, 52, 7118-7121. (49) Bouduban, M. E. F.; Burgos-Caminal, A.; Teuscher, J.; Moser, J.-E., Unveiling the Nature of Charge Carrier Interactions by Electroabsorption Spectroscopy: An Illustration with Lead-Halide Perovskites. Chimia 2017, 71, 231-235. (50) Teunis, M. B.; Johnson, M. A.; Muhoberac, B. B.; Seifert, S.; Sardar, R., Programmable Colloidal Approach to Hierarchical Structures of Methylammonium Lead Bromide Perovskite Nanocrystals with Bright Photoluminescent Properties. Chem. Mater. 2017, 29, 3526-3537. (51) Ryu, S.; Liu, L.; Berciaud, S.; Yu, Y. J.; Liu, H.; Kim, P.; Flynn, G. W.; Brus, L. E., Atmospheric Oxygen Binding and Hole Doping in Deformed Graphene on a SiO2 Substrate. Nano Lett. 2010, 10, 4944-4951. (52) Mattevi, C.; Kim, H.; Chhowalla, M., A Review of Chemical Vapour Deposition of Graphene on Copper. J. Mater. Chem. 2011, 21, 3324-3334. (53) Yu, W. J.; Vu, Q. A.; Oh, H.; Nam, H. G.; Zhou, H.; Cha, S.; Kim, J.-Y.; Carvalho, A.; Jeong, M.; Choi, H.; Castro Neto, A. H.; Lee, Y. H.; Duan, X., Unusually Efficient Photocurrent Extraction in Monolayer van der Waals Heterostructure by Tunnelling through Discretized Barriers. Nat. Commun. 2016, 7, 13278. (54) Lan, X.; Voznyy, O.; García de Arquer, F. P.; Liu, M.; Xu, J.; Proppe, A. H.; Walters, G.; Fan, F.; Tan, H.; Liu, M.; Yang, Z.; Hoogland, S.; Sargent, E. H., 10.6% Certified Colloidal Quantum Dot Solar Cells via Solvent-Polarity-Engineered Halide Passivation. Nano Lett. 2016, 16, 4630-4634. (55) Konstantatos, G.; Badioli, M.; Gaudreau, L.; Osmond, J.; Bernechea, M.; Garcia de Arquer, F. P.; Gatti, F.; Koppens, F. H., Hybrid Graphene-Quantum Dot Phototransistors with Ultrahigh Gain. Nat. Nanotechnol. 2012, 7, 363-368. (56) Hu, P.; Wen, Z.; Wang, L.; Tan, P.; Xiao, K., Synthesis of Few-Layer Gase Nanosheets for High Performance Photodetectors. ACS Nano 2012, 6, 5988-5994. (57) Li, L.; Zhang, F.; Wang, J.; An, Q.; Sun, Q.; Wang, W.; Zhang, J.; Teng, F., Achieving EQE of 16,700% in P3HT:PC71BM Based Photodetectors by Trap-Assisted Photomultiplication. Sci. Rep. 2015, 5, 9181. (58) Konstantatos, G.; Badioli, M.; Gaudreau, L.; Osmond, J.; Bernechea, M.; de Arquer, F. P. G.; Gatti, F.; Koppens, F. H. L., Hybrid Graphene-Quantum Dot Phototransistors with Ultrahigh Gain. Nat. Nanotechnol. 2012, 7, 363. (59) Britnell, L.; Gorbachev, R. V.; Jalil, R.; Belle, B. D.; Schedin, F.; Mishchenko, A.; Georgiou, T.; Katsnelson, M. I.; Eaves, L.; Morozov, S. V.; Peres, N. M. R.; Leist, J.; Geim, A. K.; Novoselov, K. S.; Ponomarenko, L. A., Field-Effect Tunneling Transistor Based on Vertical Graphene Heterostructures. Science 2012, 335, 947-950. (60) Yu, W. J.; Li, Z.; Zhou, H.; Chen, Y.; Wang, Y.; Huang, Y.; Duan, X., Vertically Stacked Multi-Heterostructures of Layered Materials for Logic Transistors and Complementary Inverters. Nat. Mater. 2012, 12, 246. (61) Yang, H.; Heo, J.; Park, S.; Song, H. J.; Seo, D. H.; Byun, K.-E.; Kim, P.; Yoo, I.; Chung, H.-J.; Kim, K., Graphene Barristor, a Triode Device with a Gate-Controlled Schottky Barrier. Science 2012, 336, 1140-1143. (62) Georgiou, T.; Jalil, R.; Belle, B. D.; Britnell, L.; Gorbachev, R. V.; Morozov, S. V.; Kim, Y.-J.; Gholinia, A.; Haigh, S. J.; Makarovsky, O.; Eaves, L.; Ponomarenko, L. A.; Geim, A. K.; Novoselov, K. S.; Mishchenko, A., Vertical Field-Effect Transistor Based on Graphene-WS2 Heterostructures for Flexible and Transparent Electronics. Nat. Nanotechnol. 2012, 8, 100. (63) Yu, J.; Cui, Y.; Xu, H.; Yang, Y.; Wang, Z.; Chen, B.; Qian, G., Confinement of Pyridinium Hemicyanine Dye within an Anionic Metal-Organic Framework for Two-Photon-Pumped Lasing. Nat. Commun. 2013, 4, 2719. (64) Medishetty, R.; Nalla, V.; Nemec, L.; Henke, S.; Mayer, D.; Sun, H.; Reuter, K.; Fischer, R. A., A New Class of Lasing Materials: Intrinsic Stimulated Emission from Nonlinear Optically Active Metal-Organic Frameworks. Adv. Mater. 2017, 29, 1605637.
CHAPTER 6 (1) Lee, M.; Callard, S.; Seassal, C.; Jeon, H., Taming of Random Lasers. Nat. Photonics 2019, 13, 445-448. (2) Perumbilavil, S.; Piccardi, A.; Barboza, R.; Buchnev, O.; Kauranen, M.; Strangi, G.; Assanto, G., Beaming Random Lasers with Soliton Control. Nat. Commun. 2018, 9, 3863. (3) Redding, B.; Choma, M. A.; Cao, H., Speckle-Free Laser Imaging Using Random Laser Illumination. Nat. Photonics 2012, 6, 355-359. (4) Wiersma, D. S., The Physics and Applications of Random lasers. Nat. Phys. 2008, 4, 359. (5) Wang, Z.; Tian, B.; Pantouvaki, M.; Guo, W.; Absil, P.; Van Campenhout, J.; Merckling, C.; Van Thourhout, D., Room-Temperature InP Distributed Feedback Laser Array Directly Grown on Silicon. Nat. Photonics 2015, 9, 837. (6) Liang, D.; Bowers, J. E., Recent Progress in Lasers on Silicon. Nat. Photonics 2010, 4, 511. (7) Wiersma, D., The Smallest Random Laser. Nature 2000, 406, 133-135. (8) Cao, H.; Xu, J. Y.; Zhang, D. Z.; Chang, S. H.; Ho, S. T.; Seelig, E. W.; Liu, X.; Chang, R. P. H., Spatial Confinement of Laser Light in Active Random Media. Phys. Rev. Lett. 2000, 84, 5584-5587. (9) Shi, X.; Liao, Y.-M.; Lin, H.-Y.; Tsao, P.-W.; Wu, M.-J.; Lin, S.-Y.; Hu, H.-H.; Wang, Z.; Lin, T.-Y.; Lai, Y.-C.; Chen, Y.-F., Dissolvable and Recyclable Random Lasers. ACS Nano 2017, 11, 7600-7607. (10) Roy, P. K.; Haider, G.; Lin, H.-I.; Liao, Y.-M.; Lu, C.-H.; Chen, K.-H.; Chen, L.-C.; Shih, W.-H.; Liang, C.-T.; Chen, Y.-F., Multicolor Ultralow-Threshold Random Laser Assisted by Vertical-Graphene Network. Adv. Opt. Mater. 2018, 6, 1800382. (11) He, H.; Ma, E.; Cui, Y.; Yu, J.; Yang, Y.; Song, T.; Wu, C.-D.; Chen, X.; Chen, B.; Qian, G., Polarized Three-Photon-Pumped Laser in a Single MOF Microcrystal. Nat. Commun. 2016, 7, 11087. (12) Huang, M. H.; Mao, S.; Feick, H.; Yan, H.; Wu, Y.; Kind, H.; Weber, E.; Russo, R.; Yang, P., Room-Temperature Ultraviolet Nanowire Nanolasers. Science 2001, 292, 1897. (13) Tong, L.; Gattass, R. R.; Ashcom, J. B.; He, S.; Lou, J.; Shen, M.; Maxwell, I.; Mazur, E., Subwavelength-Diameter Silica Wires for Low-Loss Optical Wave Guiding. Nature 2003, 426, 816-819. (14) Zhang, Q.; Su, R.; Du, W.; Liu, X.; Zhao, L.; Ha, S. T.; Xiong, Q., Advances in Small Perovskite-Based Lasers. Small Methods 2017, 1, 1700163. (15) Deschler, F.; Price, M.; Pathak, S.; Klintberg, L. E.; Jarausch, D.-D.; Higler, R.; Hüttner, S.; Leijtens, T.; Stranks, S. D.; Snaith, H. J.; Atatüre, M.; Phillips, R. T.; Friend, R. H., High Photoluminescence Efficiency and Optically Pumped Lasing in Solution-Processed Mixed Halide Perovskite Semiconductors. J. Phys. Chem. Lett. 2014, 5, 1421-1426. (16) Yuan, Z.; Zhou, C.; Tian, Y.; Shu, Y.; Messier, J.; Wang, J. C.; van de Burgt, L. J.; Kountouriotis, K.; Xin, Y.; Holt, E.; Schanze, K.; Clark, R.; Siegrist, T.; Ma, B., One-Dimensional Organic Lead Halide Perovskites with Efficient Bluish White-Light Emission. Nat. Commun. 2017, 8, 14051. (17) Kim, G. Y.; Senocrate, A.; Yang, T.-Y.; Gregori, G.; Grätzel, M.; Maier, J., Large Tunable Photoeffect on Ion Conduction in Halide Perovskites and Implications for Photodecomposition. Nat. Mater. 2018, 17, 445-449. (18) Zaworotko, M. J., Designer Pores Made Easy. Nature 2008, 451, 410. (19) Usman, M.; Bera, K. P.; Haider, G.; Sainbileg, B.; Hayashi, M.; Lee, G.-H.; Peng, S.-M.; Chen, Y.-F.; Lu, K.-L., Single-Molecule-Based Electroluminescent Device as Future White Light Source. ACS Appl. Mater. Interfaces 2019, 11, 4084-4092. (20) Haider, G.; Usman, M.; Chen, T.-P.; Perumal, P.; Lu, K.-L.; Chen, Y.-F., Electrically Driven White Light Emission from Intrinsic Metal-Organic Framework. ACS Nano 2016, 10, 8366-8375. (21) Bera, K. P.; Haider, G.; Usman, M.; Roy, P. K.; Lin, H.-I.; Liao, Y.-M.; Inbaraj, C. R. P.; Liou, Y.-R.; Kataria, M.; Lu, K.-L.; Chen, Y.-F., Trapped Photons Induced Ultrahigh External Quantum Efficiency and Photoresponsivity in Hybrid Graphene/Metal-Organic Framework Broadband Wearable Photodetectors. Adv. Funct. Mater. 2018, 28, 1804802. (22) Yu, J.; Cui, Y.; Xu, H.; Yang, Y.; Wang, Z.; Chen, B.; Qian, G., Confinement of Pyridinium Hemicyanine Dye within an Anionic Metal-Organic Framework for Two-Photon-Pumped Lasing. Nat. Commun. 2013, 4, 2719. (23) Wei, Y.; Dong, H.; Wei, C.; Zhang, W.; Yan, Y.; Zhao, Y. S., Wavelength-Tunable Microlasers Based on the Encapsulation of Organic Dye in Metal-Organic Frameworks. Adv. Mater. 2016, 28, 7424-7429. (24) Medishetty, R.; Nalla, V.; Nemec, L.; Henke, S.; Mayer, D.; Sun, H.; Reuter, K.; Fischer, R. A., A New Class of Lasing Materials: Intrinsic Stimulated Emission from Nonlinear Optically Active Metal-Organic Frameworks. Adv. Mater. 2017, 29, 1605637. (25) Wu, Z.-F.; Tan, B.; Deng, Z.-H.; Xie, Z.-L.; Fu, J.-J.; Shen, N.-N.; Huang, X.-Y., Dual-Emission Luminescence of Magnesium Coordination Polymers Based on Mixed Organic Ligands. Chem.Eur.J 2016, 22, 1334-1339. (26) Wu, Z.-F.; Tan, B.; Wang, J.-Y.; Du, C.-F.; Deng, Z.-H.; Huang, X.-Y., Tunable Photoluminescence and Direct White-Light Emission in Mg-Based Coordination Networks. ChemComm 2015, 51, 157-160. (27) Kresse, G.; Furthmüller, J., Efficient Iterative Schemes for Ab-initio Total-Energy Calculations Using a Plane-Wave Basis Set. Phys. Rev. B 1996, 54, 11169-11186. (28) Yuan, F.; Wu, Z.; Dong, H.; Xi, J.; Xi, K.; Divitini, G.; Jiao, B.; Hou, X.; Wang, S.; Gong, Q., High Stability and Ultralow Threshold Amplified Spontaneous Emission from Formamidinium Lead Halide Perovskite Films. J. Phys. Chem. C 2017, 121, 15318-15325. (29) Wang, Y.; Duan, Z.; Qiu, Z.; Zhang, P.; Wu, J.; Zhang, D.; Xiang, T., Random Lasing in Human Tissues Embedded with Organic Dyes for Cancer Diagnosis. Sci. Rep. 2017, 7, 8385. (30) Hu, H. W.; Haider, G.; Liao, Y. M.; Roy, P. K.; Ravindranath, R.; Chang, H. T.; Lu, C. H.; Tseng, C. Y.; Lin, T. Y.; Shih, W. H.; Chen, Y. F., Wrinkled 2D Materials: A Versatile Platform for Low-Threshold Stretchable Random Lasers. Adv. Mater. 2017, 29, 1703549. (31) Lin, H.-I.; Shen, K.-C.; Liao, Y.-M.; Li, Y.-H.; Perumal, P.; Haider, G.; Cheng, B. H.; Liao, W.-C.; Lin, S.-Y.; Lin, W.-J.; Lin, T.-Y.; Chen, Y.-F., Integration of Nanoscale Light Emitters and Hyperbolic Metamaterials: An Efficient Platform for the Enhancement of Random Laser Action. ACS Photonics 2018, 5, 718-727. (32) Haider, G.; Lin, H.-I.; Yadav, K.; Shen, K.-C.; Liao, Y.-M.; Hu, H.-W.; Roy, P. K.; Bera, K. P.; Lin, K.-H.; Lee, H.-M.; Chen, Y.-T.; Chen, F.-R.; Chen, Y.-F., A Highly-Efficient Single Segment White Random Laser. ACS Nano 2018, 12, 11847-11859. (33) Yoshioka, H.; Ota, T.; Chen, C.; Ryu, S.; Yasui, K.; Oki, Y., Extreme Ultra-Low Lasing Threshold of Full-Polymeric Fundamental Microdisk Printed with Room-Temperature Atmospheric Ink-Jet Technique. Sci. Rep. 2015, 5, 10623. (34) Zhang, Y.; Dong, H.; Liu, Y.; Zhang, C.; Hu, F.; Zhao, Y. S., Dual-Wavelength Lasing from Organic Dye Encapsulated Metal-Organic Framework Microcrystals. ChemComm 2019, 55, 3445-3448. (35) Yuan, F.; Xi, Z.; Shi, X.; Li, Y.; Li, X.; Wang, Z.; Fan, L.; Yang, S., Ultrastable and Low-Threshold Random Lasing from Narrow-Bandwidth-Emission Triangular Carbon Quantum Dots. Adv. Opt. Mater. 2019, 7, 1801202. (36) Yakunin, S.; Protesescu, L.; Krieg, F.; Bodnarchuk, M. I.; Nedelcu, G.; Humer, M.; De Luca, G.; Fiebig, M.; Heiss, W.; Kovalenko, M. V., Low-Threshold Amplified Spontaneous Emission and Lasing from Colloidal Nanocrystals of Caesium Lead Halide Perovskites. Nat. Commun. 2015, 6, 8056. (37) Chen, R.; Van Duong, T.; Sun, H. D., Single Mode Lasing from Hybrid Hemispherical Microresonators. Sci. Rep. 2012, 2, 244. (38) Cui, Y.; Li, B.; He, H.; Zhou, W.; Chen, B.; Qian, G., Metal-Organic Frameworks as Platforms for Functional Materials. Acc. Chem. Res. 2016, 49, 483-493. (39) Zhai, T.; Zhang, X.; Pang, Z.; Su, X.; Liu, H.; Feng, S.; Wang, L., Random Laser Based on Waveguided Plasmonic Gain Channels. Nano Lett. 2011, 11, 4295-4298. (40) Xu, Z.; Liao, Q.; Shi, Q.; Zhang, H.; Yao, J.; Fu, H., Low-Threshold Nanolasers Based on Slab-Nanocrystals of H-Aggregated Organic Semiconductors. Adv. Mater. 2012, 24, OP216-220. (41) Dai, J.; Zhou, P.; Lu, J.; Zheng, H.; Guo, J.; Wang, F.; Gu, N.; Xu, C., The Excitonic Photoluminescence Mechanism and Lasing Action in Band-Gap-Tunable CdS1-XSeX Nanostructures. Nanoscale 2016, 8, 804-811. (42) Perdew, J. P.; Burke, K.; Ernzerhof, M., Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1997, 78, 1396-1396.
|