跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.89) 您好!臺灣時間:2024/12/12 03:21
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:奎席納
研究生(外文):KRISHNA PRASAD BERA
論文名稱:基於有機金屬納米複合材料的半導體光電元件之研究與應用
論文名稱(外文):High-Performance Photodetectors, Light Emitting Diodes, and Lasers Based on Organometallic Compounds
指導教授:陳永芳陳永芳引用關係
指導教授(外文):Yang-Fang Chen
口試委員:張嘉升陳啟東朱治偉王偉華謝馬利歐
口試委員(外文):Chia-Seng ChangChii-Dong ChenChih-Wei ChuWei-Hua WangMario-Hofmann
口試日期:2020-01-10
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:物理學研究所
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:英文
論文頁數:197
中文關鍵詞:NO
外文關鍵詞:GRAPHENEORGANOMETALLIC COMPOUNDPHOTODETECTORPHOTOTRANSISTORLEDLASER
DOI:10.6342/NTU202000459
相關次數:
  • 被引用被引用:0
  • 點閱點閱:106
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
Optoelectronic devices converting light into electricity or vice versa based on quantum mechanical effects of light on electronic semiconductors have a tremendous attraction in modern nanotechnology, which has brought a revolution in the quality of our daily life. In order to eradicate the global challenges such as global warming, fabrication of low cost, low power consumption, wearable, portable, non-toxic, stable, reliable, durable, and environmentally friendly device, the optoelectronic industry demands high-performance optoelectronic semiconducting materials. Though different semiconductors, including nanomaterials, nanowires, and quantum dots, have been utilized for the demonstration of high-performance optoelectronic devices, however, the reported device used complicated fabrication techniques, raising concerns about cost-effectiveness, reliability, reproducibility, and durability. Despite the immense efforts of scientists around the globe over the last decade, progress related to this guideline continues to be insignificant and further improvements are desired. Recently, the hybrid material organometallic nanocomposite, which combines the metal and organic ligand are superior for multiple applications including drug delivery, sensing, and gas storage because of their tunable physiochemical properties and fascinating architectures. These organometallic nanocomposites are also applicable in the fabrication of high-performance optoelectronics owing to the inherent tenability. Such hybrid materials have outstanding photon to electron or electron to photon conversion efficiencies due to fundamental light-matter interactions, good optoelectronic properties, which include a direct and tunable bandgap with high carrier mobility, photoluminescence, and long exciton-lifetime. By utilizing the suitable design technique, the hybrid semiconductor organometallic nanocomposites can be used to fabricate the high-performance unique multifunctional optoelectronic device as compared to their counterparts. Therefore, in order to address the global challenges on the fabrication of high-performance optoelectronic devices, in this research work, we focussed to design, fabricate, and characterize the high-performance multifunctional novel optoelectronic devices include photodetectors, light-emitting diodes, and lasers based on semiconductor organometallic nano-composites. Our investigations are summarized into different sub-topics:
Wearable Photodetector: Trapped Photons Induced Ultrahigh External Quantum Efficiency and Photoresponsivity in Hybrid Graphene/Metal-Organic Framework Broadband Wearable Photodetectors
Metal-organic frameworks (MOFs) have recently emerged as attractive materials for their tunable properties, which have been utilized for diverse applications including sensors, gas storage, and drug delivery. However, the high porosity and poor electrical conductivity of MOFs restrict their optoelectronic applications. Owing to the inherent tunability, a broadband photon absorbing MOF can be designed. Combining the superior properties of the MOFs along with ultrahigh carrier mobility of graphene, for the first time, this study reports a highly sensitive, broadband, and wearable photodetector on a polydimethylsiloxane substrate. The external quantum efficiency of the hybrid photodetector is found to be >5 × 108%, which exceeds all the reported values of similar devices. The porosity of the MOF and ripple structure graphene can assist the trapping of photons at the lightharvesting layer. The device photoresponsivity is found to be >106 A W−1 with a response time of <150 ms, which is approximately ten times faster than the current standards of the graphene-organic hybrid photodetectors. In addition, utilizing the excellent flexibility of the graphene layer the wearability of the devices with stretchability up to 100% is demonstrated. The unique discovery of MOF-based high-performance photodetectors opens up a new avenue in organic–inorganic hybrid optoelectronics.
Light Emitting Diode (LED): Single-Molecule-Based Electroluminescent Device as Future White Light Source
During the last two decades, spectacular development of light-emitting diodes (LEDs) has been achieved owing to their widespread application possibilities. However, traditional LEDs suffer from unavoidable energy loss because of the down conversion of photons, toxicity due to the involvement of rare-earth materials in their production, higher manufacturing cost, and reduced thermal stability that prevent them from all-inclusive applications. To address the existing challenges associated with current commercially available white LEDs, herein, we report a broad-band emission originating from an intrinsic lanthanide-free single-molecule-based LED. Self-assembly of a butterflyshaped strontium-based compound was achieved through the reaction of Sr(NO3)2 with 1,2,3- benzenetricarboxylic acid hydrate (1,2,3-H3btc) under hydrothermal conditions. A white LED based on this single molecule exhibited a remarkable broad-band luminescence spectrum with Commission Internationale de l’Eclairage (CIE) coordinates at (0.33, 0.32) under 30 mA current injection. Such a broad luminescence spectrum can be attributed to the simultaneous existence of several emission lines originating from the intramolecular interactions within the structure. To further examine the nature of the observed transitions, density functional theory (DFT) calculations were carried out to explore the geometric and electronic properties of the complex. Our study thus paves the way toward a key step for developing a basic understanding and the development of high performance broad-band light-emitting devices with environment-friendly characteristics based on organic-inorganic supramolecular materials.
Dual Functional Vertical Phototransistor: Graphene Sandwich Stable Perovskite
Quantum-Dot Light-Emissive Ultrasensitive and Ultrafast Broadband Vertical Phototransistors
Dual-functional devices that can simultaneously detect light and emit light have a tremendous appeal for multiple applications, including displays, sensors, defense, and high-speed optical communication. Despite the tremendous efforts of scientists, the progress of integration of a phototransistor, where the built-in electric field separates the photogenerated excitons, and a light-emitting diode, where the radiative recombination can be enhanced by band offset, into a single device remains a challenge. Combining the superior properties of perovskite quantum dots (PQDs) and graphene, here we report a light-emissive, ultrasensitive, ultrafast, and broadband vertical phototransistor that can simultaneously act as an efficient photodetector and light emitter within a single device. The estimated value of the external quantum efficiency of the vertical phototransistor is ∼1.2 × 1010% with a photoresponsivity of >109 A W−1 and a response time of <50 μs, which exceed all the presently reported vertical phototransistor devices. We also demonstrate that the modulation of the Dirac point of graphene efficiently tunes both amplitude and polarity of the photocurrent. The device exhibits a green emission having a quantum efficiency of 5.6%. The moisture-insensitive and environmentally stable, light-emissive, ultrafast, and ultrasensitive broadband phototransistor creates a useful route for dual-functional optoelectronic devices.
Intrinsic Ultra-low Threshold Laser Action from Rationally Molecular Design of Metal-Organic Frameworks Materials

Metal-organic frameworks (MOFs) are superior for multiple applications including drug delivery, sensing, and gas storage because of their tunable physiochemical properties and fascinating architectures. Optoelectronics appliance of MOFs is difficult because of porous geometry and conductivity issues. Recently, few optoelectronic devices have been fabricated by suitable design of integrating MOFs with other materials. However, demonstration of laser action arising from MOFs as intrinsic gain media still remains a dream, even though some researches endeavor on encapsulating of luminescence organic laser dyes into the porous skeleton of MOFs to achieve laser action. Unfortunately, the aggregation of such unstable laser dyes causes photoluminescence quenching and energy loss, which limits their practical application. In this research, unprecedently, we demonstrated ultralow threshold (~ 13 nJcm-2) MOFs micro-laser by judicious choice of metal nodes and organic linkers during synthesis of MOFs. We also observed white random lasing from the beautiful micro-flowers of our particularly designed organic linkers. In addition, we showed that the smooth facets of MOFs microcrystals can behave Fabry-Perot resonant cavities having a high quality factor of ~ 103 with excellent photostability. Our unique discovery of stable, non-toxic, high-performance MOFs micro-laser will open up a new route for development of new optoelectronic devices.
Table of Content

Chapter 1 : Introduction ……………………………………………….1
1.1 Nanoscience and Nanotechnology……………………………………………........1
1.2 Nanomaterials……………………………………………………………………...2
1.3 Semiconductor Nanomaterials……………………………………………………..3
1.4 Particle Size Quantum Mechanical Confinement…………………………………..4
1.5 Graphene: The First Discovered 2D Material……………………………………...6
1.6 Allotropies of Carbon in Different Dimensions……………………………………6
1.7 Crystal Structure of Graphene……………………………………………………...9
1.8 Electronic Structure of Graphene…………………………………………………10
1.9 The Optical Properties of Graphene………………………………………………11
1.10 Mechanical Properties of Graphene……………………………………………..13
1.11Metal-Organi Frameworks………………………………………………………14
1.12 Organic-Inorganic Hybrid Perovskite…………………………………………...16
1.13 Overview of the Thesis………………………………………………………….20
1.14 References………………………………………………………………………23
Chapter 2 : Theoretical Foundation of Different Optoelectronic Process, Experimental Techniques, and Material Synthesis………...34
2.1 The Light-Matter Interaction……………………………………………………..34
2.2 The Different Photodetection Methods in Graphene-Based Photodetector……….34
2.3. The Principle of Photodetection in Graphene-Based Hybrid Photodetector……...36
2.4 The Advantage of Vertical Phototransistor……………………………………….37
2.5 The Experimental Method of Photodetection……………………………………38
2.6 Optical Spectroscopy……………………………………………………………..39
2.6.1 Photoluminescence Spectroscopy………………………………………………39
2.6.2 Raman Spectroscopy……………………………………………………………42
2.7 Scanning Electron Microscope (SEM)……………………………………………44
2.8 Electroluminescence……………………………………………………………...46
2.9 Random Lasing Action…………………………………………………………...48
2.10 Material Synthesis. ……………………………………………………………...50
2.10.1 Synthesis of Monolayer-graphene by Chemical Vapor Deposition (CVD)……50
2.10.2 Deposition of ZnO by Radio Frequency Sputtering…………………………...53
2.10.3 The Electrodes Deposition by Thermal Evaporation…………………………..54
2.10.4 Synthesis of Metal-Organic framework (MOFs)………………………………55
2.10.5 Synthesis of CH3NH3PbBr3 Perovskite Quantum Dots………………………..56
2.11 References………………………………………………………………………57
Chapter 3 : Trapped Photons Induced Ultrahigh External Quantum Efficiency and Photoresponsivity in Hybrid Graphene/Metal-Organic Framework Broadband Wearable Photodetectors…………………..62
3.1 Introduction………………………………………………………………………62
3.2 Results and Discussion……………………………………………………………65
3.2.1 Structure and Characteristics of Component Materials…………………………65
3.2.2 The MOF-Graphene Composite Photodetector and its Operational Principle......67
3.2.3 Responsivity, Detectivity, Gain and Quantum Efficiency of the Device..............70
3.2.4 Broadband Frequency Detection of the Device....................................................77
3.2.5 Strain-Dependent Study.......................................................................................79
3.2.6 Device Flexibility................................................................................................81
3.2.7 Device Durability and Stability…………………………………………………83
3.3 Conclusions............................................................................................................84
3.4 Experimental Section..............................................................................................86
3.5 References..............................................................................................................90
Chapter 4 : Single-Molecule Based Electroluminescent Device as Future White Light Source…………………………………………….99
4.1 Introduction………………………………………………………………………99
4.2. Results and Discussion………………………………………………………….101
4.2.1 Self-assembly of Sr-based Supramolecular Compound 1 ……………………..101
4.2.2 Crystal Structure of Sr-based Supramolecular Compound 1 ………………….101
4.2.3 Photoluminescence Properties of Sr-based Supramolecular Compound 1 ……103
4.2.4 Photo and Electrochemical Stability of Material……………………………...106
4.2.5 Electronic Band Structures of Compound 1.......................................................108
4.2.6 Electroluminescent Device based on Single-Molecular Crystalline Assembly of Compound 1………………………………………………………………………...110
4.2.7 Device Performance, Quantum Efficiency and Stability………………………114
4.3 Conclusions……………………………………………………………………..115
4.4 Experimental Section……………………………………………………………116
4.5 References………………………………………………………………………121

Chapter 5 : Graphene Sandwich Stable Perovskite Quantum-Dots Light Emissive Ultrasensitive and Ultrafast Broadband Vertical Phototransistors………………………………………………………127

5.1 Introduction……………………………………………………………………..127
5.2 Results and Discussion…………………………………………………………..130

5.2.1 Synthesis, Structural, Microstructural and Characteristic Analysis of Component Materials…………………………………………………………………………….130
5.2.2 Optical Properties……………………………………………………………..132
5.2.3 Graphene-PQDs-Graphene Vertical Phototransistor and Its Principle of Operation....................................................................................................................135
5.2.4 Photoresponse Performance of Phototransistor..................................................138
5.2.5 Gate Tunable Photocurrent................................................................................143
5.2.6 Broadband Photodetection of the Device...........................................................145
5.2.7 Electroluminescence Study of Vertical Photodetector.......................................146
5.2.8 Device Performance and Stability……………………………………………..148
5.3 Conclusions..........................................................................................................149
5.4 Experimental Section............................................................................................150
5.5 References............................................................................................................153
Chapter 6 : Intrinsic Ultra-low Threshold Laser Action from Rationally Molecular Design of Metal-Organic Frameworks Materials………………………………………………………………162
6.1 Introduction……………………………………………………………………..162
6.2 Results and Discussion…………………………………………………………..164
6.2.1 Synthesis of Single-crystalline Sr-Based MOF Compound…………………...164
6.2.2 Structural Study of Sr-Based MOF Compound………………………………..165
6.2.3 Thermal and Optical Stability of MOF Compound…………………………...168
6.2.4 The Calculation of Electronic Band Structure by Density Functional Theory....170
6.2.5 White Random Laser from Microflowers of Organic Linkers ………………...172
6.2.6 Random Laser from MOFs................................................................................177
6.3 Conclusions..........................................................................................................182
6.4 Experimental Method...........................................................................................183
6.5 References............................................................................................................185
Chapter 7 : Conclusion & Future Perspective……………………....190
7.1 Conclusions……………………………………………………………………..190
7.2 Future Perspective.................................................................................................195

List of Figures

Figure 1.1. Features of a nanomaterial at different dimensions with the plot of the density of states vs energy. …………………………………………………………….3
Figure 1.2. Features of graphite in different nanodimension. 2D graphene sheet can be stacked into 3D to form graphite, rolled into 1D to form carbon nanotubes (CNT), and wrapped up into 0D to form fullerene. …………………………………………………8
Figure 1.3. Crystal structure of graphene. (a) Triangular Bravais lattice of graphene. (b) First Brillouin zone of the crystal structure of graphene. …………………………...9
Figure 1.4. The electronic structure of graphene. (a) Schematic of electron transition according to tight-binding Hamiltonian. (b) Dirac points of the single-layer graphene corresponding to linear dispersion relation. ………………………………………….11
Figure 1.5. Schematic for demonstration of Klein paradox in graphene. ……………12
Figure 1.6. Schematic of graphene hanger. …………………………………………..13
Figure 1.7. Schematic of graphene ripple structure. …………………………………14
Figure 1.8. (a) Structure of the metal-organic frameworks (MOFs). (b) Schematic representation of the different light-emission mechanism of MOFs. …………………16
Figure 1.9. Structure of 2D RPPs of (BA)2(MA)n-1PbnI3n+1. The n indicates the number of inorganic octahedral layers present in the perovskite unit cell. For 2D layered perovskite n = 1,2,3, and etc. and n = ∞ represents the bulk 3D perovskite. …………..18
Figure 2.1. Schematic of the energy band diagram representing the principle of photodetection for graphene-based hybrid photodetector. …………………………36
Figure 2.2. Experimental setup of photodetection experiment. (a) Image of different source meter used for photodetection study. (b) Image of the optical microscope and other instruments used in photoresponse measurement. (c) Image of microprobes connected with the electrodes of the photodetector device. …………………………39
Figure 2.3. The working principle of photoluminescence instrument. ……………….40
Figure 2.4. (a) Photograph of the micro-photoluminescence instrument used for the investigation of PL spectra. (b) Photograph of Horiba Jobin Yvon iHR 550 spectrometer………………………………………………………………………….41
Figure 2.5. (a) Different Raman scattering spectrum. (b) Basic principle of operation of the Raman spectroscopy Instrument. A photograph of the Raman instrument used for Raman spectra study. ……………………………………………………………..43
Figure 2.6. (a) Schematic of the different components an SEM instrument. (b) Photograph of our SEM instrument used for imaging of the different nanomaterials and optoelectronic devices. (c) Photograph of HRTEM machine used for imaging the perovskite quantum dots. …………………………………………………………….45
Figure 2.7. Working principle of light emitting diode (LED). ………………………46
Figure 2.8. Schematic for demonstration of random lasing. …………………………50
Figure 2.9. Photograph of CVD machine used for the synthesis of the single-layer graphene. ……………………………………………………………………………..51
Figure 2.10. Schematic of the experimental set-up for electrolysis. …………………52
Figure 2.11. Schematic of the working principle of a sputtering technique. …………53
Figure 2.12. (a) Photograph of RF sputtering machine used for the deposition of ZnO. (b) Photograph of thermal evaporation machine used for deposition of electrode materials. ……………………………………………………………………………..55
Figure 3.1. (a) MOF structure. The ligand forms a bridge between two metallic layers to form the supramolecular composite. (b) Simulated and experimental PXRD data for MOF compound 1 under different temperature. (c) UV-Vis absorption spectra of MOF compound 1. (d) Photoluminescence spectra of the MOF sample at a pump flounce of 38 μW under the illumination of 266 nm laser………………………………………..66
Figure 3.2. (a) Schematic diagram of the photodetector. (b) SEM image of ripple structure. (c) Transient photoresponse of the device current under the illumination by 325 nm laser with 10 nW of power at the bias voltage of 0.1 V. (d) Energy band diagram of the graphene-MOF hybrid photodetector before and after the illumination of photons and applying an external bias. ......................................................................................68
Figure 3.3. The device performance. (a) Photocurrent-voltage characteristics of graphene/MOF under the illumination of the different power by 325 nm laser. (b) The power dependence of the transient photocurrent response under bias voltage VSD = 0.1 V. (c) Variation of photoresponsivity as a function of illumination power. (d) Schematic of multiple reflections process of an incident photon inside the ripple structure. ..........71
Figure 3.4. Response time and photocurrent gain of the device. (a) Response time, while the laser is turned ON, under light illumination of power 10 nW. (b) Response time, while the laser is turned OFF, under light illumination of power 10 nW. (c) Photocurrent gain as a function of the illumination power. The red spheres resemblance the experimental data, while the solid blue curve is the theoretical plot with the best fitting of the experimental data. ....................................................................................74
Figure 3.5. Broadband photodetection from UV to the visible regime of illuminating photons. (a) Temporal photoresponse curve under 325 nm, 457 nm, 535 nm, and 656 nm wavelength laser illuminations at bias voltage VSD = 0.1 V. (b) Comparison of excitation wavelength dependent photoresponsivity with absorption spectra. (c) Time-resolved photoluminescence (TRPL) spectra at different peak positions in the PL spectrum. ......................................................................................................................78
Figure 3.6. The stretchability of the device: the application of tensile strains. (a) Dynamic photoresponse under the application of different strains at bias voltage 0.1 V and the illumination of 10 nW laser power using of 325 nm laser. (b) Photocurrent gain of the device under different applied strain. (c) Dark conductivity ratio of the device under different strains. The blue line is drawn to guide the eyes. (d) The stability of the device under the application of repeated strain of 75% and releasing it back to the 0% strain. ...........................................................................................................................80
Figure 3.7. Device flexibility: application of bending strain. (a) Schematic illustration of the device under bending strain. (b) Dynamic photoresponse of the device under the application of different bending strains at bias voltage 0.1 V and the illumination of 10 nW laser power using of 325 nm laser. (c) Obtained photocurrent of the device under different bending strains. (d) Obtained photocurrent the device under repeated application of the bending strain of 1 cm diameter and releasing it back to the flat condition.......................................................................................................................82
Figure 3.8. Stability of the device performance, the photocurrent of the device, measured over a long period of time. ............................................................................84
Figure 3.9. Schematic illustration of the different steps of the device fabrication process. (i) PDMS put on the top of the glass plate. (ii) PDMS was stretched and clamped with glass plate by using clips. (iii) Monolayer graphene grown by CVD was transferred on the top of the stretched PDMS. (iv) 100 nm Au electrodes were deposited by a thermal evaporation technique after putting the mask on the top of the graphene. (v) MOF was spin coated on the top of the graphene. (vi) Finally, the clips were carefully released to produce the regular rippled structure. ...........................................................................88
Figure 4.1. (a) Compound 1 is connected in an ABAB fashion in the c-axis, which is extended into 2D sheets. (b) The weak parallel displaced parallel-displaced π-stacking interactions in between the neighbouring supramolecular arrays in compound 1. (c) Hydrogen-bonding interactions (O10-H10E···O3 = 1.892 Å; O10-H10D···O4 = 1.863 Å; (O2-H2···O10 = 1.811 Å; O6-H6···O10 = 1.850 Å; O9-H9B···O8 = 2.262 Å; O8-H8···O4 = 2.215~2.616 Å) are shown in between the four neighbouring supramolecular units.………………………………………………………………………………102
Figure 4.2. (a) Photoluminescence spectra of compound 1 at variable laser power under illumination by a 266 nm pulsed laser. (b) CIE chromaticity diagram highlighting corresponding chromaticity coordinates of compound 1. The CIE coordinate corresponding to the emission was found to be (0.19, 0.25). The inset is a picture taken by a mobile camera while the material is exposed to 266 nm laser during the PL measurements. (c) Photoluminescence spectrum of organic molecule (benzene-1,2,3-tricarboxylic acid hydrate). (d) Time Resolved Photo luminescence (TRPL) measurement: TRPL decay curve at different peak positions of PL spectra under 374 nm laser illumination. …............................................................................................104
Figure 4.3. (a) A schematic of the device for electrochemical study, (b) current–voltage characteristic of compound 1 at ambient conditions before and after the application of a constant voltage (20 V) for 8 hours, (c) photoluminescent spectra and (d) Raman spectra of the compound under the same experimental conditions, respectively. ………………………………………………………………………...107
Figure 4.4. (a) Optimized periodic structure of compound 1 with solvent molecules and energy band structure for HOMO-LUMO states of compound 1 with solvent molecules (solvent molecules highlighted), (b) optimized periodic structure of compound 1 without solvent molecules and energy bands structure for HOMO-LUMO states of compound 1 without solvent molecules. (Magenta: strontium; red: oxygen; dark gray: carbon; light gray: hydrogen). ……………………………………………………....109
Figure 4.5. (a) Schematic illustration of visible broadband LED device, where the p-n junction is formed by 155.5 nm ZnO and Sr-compound on the top of the Ag 199.6 nm film. p-type Si/SiO2 and ITO were used as the substrate and the top electrode, respectively. (b) Optical photo of light emission from device taken by mobile camera. (c) Electroluminescence (EL) spectrum of Sr-compound based LED device. (d) Scanning electron microscopic image of the solid-state light emitting device (cross sectional view). e) Energy band diagram for the constituent materials of the device showing different transitions during carrier injections………………………………111
Figure 4.6. (a) EL spectra of the device under a forward injection current of 20 mA and 30 mA. (b) Stability of the device performance over time. ………………………….113
Figure 5.1. Structural and microstructural studies of PQDs. (a) Schematic representation of organic-inorganic hybrid perovskite with MBr6 octahedra drawn by using VESTA with CIF file corresponds to the JCPDS file no mp-977012 for CH3NH3PbBr3. (b) The experimental XRD patterns at room temperature (red line) with the theoretical simulated curve (blue line) by Rietveld refinement using the same CIF file. (c) HRTEM micrograph of an isolated perovskite nanoparticle. (d) HRTEM image of the crystalline lattice plane (221) has an interplanar distance ~ 2.2 Å corresponding to lattice plane (221) and corresponding FFT (Fast Fourier Transform) arrangement. HRTEM analysis reveals clear-cut lattice spacing and FFT arrangement have explicit spots, which are consistent with the CH3NH3PbBr3 bulk. …………………………..131
Figure 5.2. Optical study of PQDs. (a) Photoluminescence spectrum of PQDs at a laser power of 26 µJ under excitation from 374 nm laser. The inset picture shows the mobile camera image of light emission from PQDs during the PL measurements. (b) The TRPL spectrum at different emission wavelengths in the PL spectrum. (c) UV-Vis absorption spectrum of PQDs compound. Inset indicates a zoomed view of the absorption spectrum. (d) Raman spectrum of the compound under the excitation by a 532 nm laser. ..........134
Figure 5.3. Graphene/PQDs/graphene vertical phototransistor. (a) Schematic design of vertical phototransistor. (b) The corresponding SEM micrograph of fabricated phototransistor. (c) I-V curve under dark (blue line) and 325 nm laser irradiation (red line) with laser power density 0.3 µWcm-2. (d) Energy band representation of the graphene/PQDs/graphene vertical phototransistor under the excitation of photons and applying an external bias. ...........................................................................................137
Figure 5.4. The photoresponse performance of the device. (a) The temporal photoresponse of the vertical phototransistor under 457 nm laser irradiation having laser power 10 nW with a spot size of radius 1mm at the bias voltage of 2V. (b) Current-voltage curves of the phototransistor under the excitation of the diverse light-power by 457 nm laser. (c) The variation of temporal photocurrent with the power of illumination light. (d) The illumination light-power dependent photoresponsivity curve of the phototransistor. ..........................................................................................................139
Figure 5.5. Photoresponse-time and quantum efficiency of vertical phototransistor. (a) Photoresponse-time, while the 457 nm laser is OFF condition. (b) Photoresponse-time, while the 457 nm laser is ON condition. (c) Variation of EQE with excitation light power. (d) The variation of photocurrent gain with excitation light power. The blue spheres indicate the experimentally observed data, while the red curve represents the theoretically simulated plot. There is good agreement between theoretical simulation and experimental observation. ...................................................................................141
Figure 5.6. Gate voltage tunable photocurrent of the vertical phototransistor device. (a) The ID vs VD curve measured at + 40 V gate voltage. The two crimps because of the Dirac point of top graphene (red cursor) and bottom graphene (green cursor). (b) The current-voltage (ID-VD) curves obtained in the dark (black curve), under 532 nm laser irradiation (green curve), and an application of - 10 V gate voltage with laser irradiation, respectively. (c) The current-voltage (ID-VD) curves obtained under 532 nm laser irradiation (black curve) and an application of + 10 V gate voltage with laser irradiation (red curve), respectively. (d) A series of ID-VD plots with increasing positive gate voltage………………………………………………………………………………144
Figure 5.7. Broadband photoresponse of phototransistor. (a) Transient photoresponse curve by the excitation from various laser sources ranging from UV-IR range at bias voltage VSD = 2V. (b) Comparison of observed absorption spectrum with illumination-wavelength dependent photoresponsivity...................................................................146
Figure 5.8. Demonstration of the electroluminescence of the vertical phototransistor device. (a) EL spectrum of phototransistor under different bias currents. Inset shows an image of light emission from the device by using a mobile camera. (b) CIE diagram of light emissions measured at an injection current 30 mA. The circle with CIE coordinates (0.27, 0.50) indicates the green emission as observed in PL study. (c) Energy band diagram for light emission. (d) The durability of the device performance in both the photocurrent and electroluminescence, measured at an ambient condition over an extended period of time. .............................................................................................147
Figure 5.9. Schematic description of the fabrication process of light-emissive phototransistor. ..........................................................................................................151

Figure 6.1. (a) Asymmetric unit of MOFs compound. (b) Coordination model of organic ndc2- ligand. (c) A layered structure connected through pillar ligands and the arrangement of the one dimensional inorganic chain by edge-sharing forms pentagonal prisms. (d) The three dimensional structural view of MOFs along b-axis...................166
Figure 6.2. The optical stability of MOFs compound. (a) Schematic for the investigation of electro-optical stability of MOFs compound. (b) Raman spectra of MOFs compound under the application of a constant electric field under ambient condition. (c) Photoluminescence spectra of MOFs under excitation by a 374 nm laser having power density 10 nJcm-2 before and after the application of a constant electric field 150 Vcm-1. The photoluminescence spectrum of free ligand under the same experimental conditions. Inset shows the photograph of light emission taken by using mobile camera under the illumination of laser on the MOFs (green) and organic ligand (white). ……………………………………………………………………………...169
Figure 6.3. (a) Band structure, (b) Total DOS (green area) and PDOS (other color). The dashed line representing the Fermi level. The orbital feature of the (c) VBM and (d) CBM, respectively. Here, the black box illustrates the periodic unit cell. ...................171
Figure 6.4. White random lasing of organic linker. (a) SEM micrograph of organic linker micro-flowers over a large area (b) SEM image of the single micro-flowers. (c) The enlarged view of the porous nest like network inside a micro-flower. (d) The optical pumping energy density-dependent white random lasing spectra by excitation of 374 nm laser. …………………………………………………………………………….173
Figure 6.5. (a) Variation of FWHM and emission intensity versus the optical pumping energy density for the pure organic linker. (b) The TRPL spectra of the pure organic linker under different excitation energy density. (c) Pumping energy density dependence of excited state carrier lifetime of organic ligand. (d) Angular dependence of the lasing spectra………………………………………………………………….175
Figure 6.6. Angular dependence of the lasing spectra recorded at pump energy density of 60 nJcm-2 by using a 374 nm laser source…………………………………………176
Figure 6.7. Random laser action for MOFs compound. (a) SEM micrograph of synthesized MOFs nano-cubes with smooth facets. (b) The optical pumping energy density dependent random laser spectra of MOFs nano-cubes. (c) The variation of FWHM and emission intensity of MOFs random laser versus optical pumping energy density. (d) The TRPL spectra of MOFs nano-cubes under different excitation energy density. ……………………………………………………………………………...178
Figure 6.8. Angular dependence of the lasing spectra of MOFs compound recorded at pump energy density of 35 nJ/cm2 by using a 374 nm laser source. …………………179
Figure 6.9. Fabry-Parot features of MOFs microcrystals. The lasing spectra of microcrystals having different size under the pump fluence from 374 nm laser with pumping power density 56 nJcm-2. Bottom shows the optical microscope image of MOFs microcrystal corresponding to each lasing spectrum. ………………………..180
Figure 6.10. (a) The variation of optical mode spacing with the size of MOFs microcrystal. (b) The electric field distribution of optical mode observed in FDTD simulation. The electric field distribution study indicates the confinement of photons within the MOFs microcrystal. ...................................................................................181

List of Tables

Table 3.1 : The photoluminescence carrier lifetime of MOF Compound...................79
Table 4.1 : The photoluminescence carrier lifetime of compound 1 and the ligand....106
Table 4.2 : Crystal and structure refinement data for compound 1………………….118
Table 6.1 : Crystal data and structure refinement for CCDC number1950187...........167
CHAPTER 1
(1) Lemme, M. C.; Koppens, F. H.; Falk, A. L.; Rudner, M. S.; Park, H.; Levitov, L. S.; Marcus, C. M., Gate-Activated Photoresponse in a Graphene p-n Junction. Nano Lett. 2011, 11, 4134-7.
(2) Konstantatos, G.; Badioli, M.; Gaudreau, L.; Osmond, J.; Bernechea, M.; Garcia de Arquer, F. P.; Gatti, F.; Koppens, F. H., Hybrid Graphene-Quantum Dot Phototransistors with Ultrahigh Gain. Nat. Nanotechnol. 2012, 7, 363-8.
(3) Koppens, F. H.; Mueller, T.; Avouris, P.; Ferrari, A. C.; Vitiello, M. S.; Polini, M., Photodetectors Based on Graphene, Other Two-Dimensional Materials and Hybrid Systems. Nat. Nanotechnol. 2014, 9, 780-93.
(4) Rao, G.; Freitag, M.; Chiu, H.-Y.; Sundaram, R. S.; Avouris, P., Raman and Photocurrent Imaging of Electrical Stress-Induced p-n Junctions in Graphene. ACS Nano 2011, 5, 5848-5854.
(5) Nevin, A.; Cesaratto, A.; Bellei, S.; D'Andrea, C.; Toniolo, L.; Valentini, G.; Comelli, D., Time-Resolved Photoluminescence Spectroscopy and Imaging: New Approaches to the Analysis of Cultural Heritage and Its Degradation. Sensors 2014, 14, 6338-55.
(6) Lacroix, L.-M.; Gatel, C.; Arenal, R.; Garcia, C.; Lachaize, S.; Blon, T.; Warot-Fonrose, B.; Snoeck, E.; Chaudret, B.; Viau, G., Tuning Complex Shapes in Platinum Nanoparticles: From Cubic Dendrites to Fivefold Stars. Angew. Chem. Int. Ed. 2012, 51, 4690-4694.
(7) Nusir, A. I.; Aguilar, J.; Bever, Z.; Manasreh, M. O., Uncooled Photodetectors Based on CdSe Nanocrystals with an Interdigital Metallization. Appl. Phys. Lett. 2014, 104, 051124.
(8) Lähnemann, J.; Ajay, A.; Den Hertog, M. I.; Monroy, E., Near-Infrared Intersubband Photodetection in GaN/AIN Nanowires. Nano Lett. 2017, 17, 6954-6960.
(9) Yang, Z.; Voznyy, O.; Walters, G.; Fan, J. Z.; Liu, M.; Kinge, S.; Hoogland, S.; Sargent, E. H., Quantum Dots in Two-Dimensional Perovskite Matrices for Efficient Near-Infrared Light Emission. ACS Photonics 2017, 4, 830-836.
(10) LaPierre, R. R.; Robson, M.; Azizur-Rahman, K. M.; Kuyanov, P., A Review of III-V Nanowire Infrared Photodetectors and Sensors. J. Phys. D 2017, 50, 123001.
(11) Shen, L.; Pun, E. Y. B.; Ho, J. C., Recent Developments in III-V Semiconducting Nanowires for High-Performance Photodetectors. Mater. Chem. Front. 2017, 1, 630-645.
(12) Park, J.; Lee, K. H.; Galloway, J. F.; Searson, P. C., Synthesis of Cadmium Selenide Quantum Dots from a Non-Coordinating Solvent: Growth Kinetics and Particle Size Distribution. J. Phys. Chem. C 2008, 112, 17849-17854.
(13) Huang, B.-R.; Yang, Y.-K.; Yang, W.-L., Efficiency Improvement of Silicon Nanostructure-Based Solar Cells. Nanotechnology 2013, 25, 035401.
(14) Kang, S.-H.; Kumar, C. K.; Lee, Z.; Kim, K.-H.; Huh, C.; Kim, E.-T., Quantum-Dot Light-Emitting Diodes Utilizing CdSe∕ZnS Nanocrystals Embedded in TiO2 Thin Film. Appl. Phys. Lett. 2008, 93, 191116.
(15) Zhong, H.; Wang, Z.; Bovero, E.; Lu, Z.; van Veggel, F. C. J. M.; Scholes, G. D., Colloidal CuInSe2 Nanocrystals in the Quantum Confinement Regime: Synthesis, Optical Properties, and Electroluminescence. J. Phys. Chem. C 2011, 115, 12396-12402.
(16) Dasgupta, N. P.; Sun, J.; Liu, C.; Brittman, S.; Andrews, S. C.; Lim, J.; Gao, H.; Yan, R.; Yang, P., 25th Anniversary Article: Semiconductor Nanowires-Synthesis, Characterization, and Applications. Adv. Mater. 2014, 26, 2137-2184.
(17) Bera, K. P.; Haider, G.; Huang, Y.-T.; Roy, P. K.; Paul Inbaraj, C. R.; Liao, Y.-M.; Lin, H.-I.; Lu, C.-H.; Shen, C.; Shih, W. Y.; Shih, W.-H.; Chen, Y.-F., Graphene Sandwich Stable Perovskite Quantum-Dot Light-Emissive Ultrasensitive and Ultrafast Broadband Vertical Phototransistors. ACS Nano 2019.
(18) Bera, K. P.; Haider, G.; Usman, M.; Roy, P. K.; Lin, H.-I.; Liao, Y.-M.; Inbaraj, C. R. P.; Liou, Y.-R.; Kataria, M.; Lu, K.-L.; Chen, Y.-F., Trapped Photons Induced Ultrahigh External Quantum Efficiency and Photoresponsivity in Hybrid Graphene/Metal-Organic Framework Broadband Wearable Photodetectors. Adv. Funct. Mater. 2018, 28, 1804802.
(19) Smith, A. M.; Nie, S., Semiconductor Nanocrystals: Structure, Properties, and Band Gap Engineering. Acc. Chem. Res. 2010, 43, 190-200.
(20) Garnett, E.; Yang, P., Light Trapping in Silicon Nanowire Solar Cells. Nano Lett. 2010, 10, 1082-1087.
(21) Li, G.; Tan, Z.-K.; Di, D.; Lai, M. L.; Jiang, L.; Lim, J. H.-W.; Friend, R. H.; Greenham, N. C., Efficient Light-Emitting Diodes Based on Nanocrystalline Perovskite in a Dielectric Polymer Matrix. Nano Lett. 2015, 15, 2640-2644.
(22) Khan, A. H.; Brescia, R.; Polovitsyn, A.; Angeloni, I.; Martín-García, B.; Moreels, I., Near-Infrared Emitting Colloidal PbS Nanoplatelets: Lateral Size Control and Optical Spectroscopy. Chem. Mater. 2017, 29, 2883-2889.
(23) Koole, R.; Groeneveld, E.; Vanmaekelbergh, D.; Meijerink, A.; de Mello Donegá, C., Size Effects on Semiconductor Nanoparticles. Nanoparticles 2014, 13-51.
(24) Smith, A. M.; Nie, S., Semiconductor Nanocrystals: Structure, Properties, and Band Gap Engineering. Acc. Chem. Res. 2009, 43, 190-200.
(25) Ekimov, A.; Efros, A. L.; Onushchenko, A., Quantum Size Effect in Semiconductor Microcrystals. Solid State Commun. 1993, 88, 947-950.
(26) Manasreh, M. O., Introduction to Nanomaterials and Devices. Wiley Online Library: 2012.
(27) Falcao, E. H.; Wudl, F., Carbon Allotropes: Beyond Graphite and Diamond. Journal of Chemical Technology & Biotechnology: International Research in Process, Environmental & Clean Technology 2007, 82, 524-531.
(28) Tiwari, S. K.; Kumar, V.; Huczko, A.; Oraon, R.; Adhikari, A. D.; Nayak, G., Magical Allotropes of Carbon: Prospects and Applications. Crit. Rev. Solid State Mater. Sci. 2016, 41, 257-317.
(29) Neto, A. C.; Guinea, F.; Peres, N. M.; Novoselov, K. S.; Geim, A. K., The Electronic Properties of Graphene. Rev. Mod. Phys. 2009, 81, 109.
(30) Geim, A. K.; Novoselov, K. S., The Rise of Graphene. Nat. Mater. 2007, 6, 183-190.
(31) Dresselhaus, G.; Riichiro, S., Physical Properties of Carbon Nanotubes. World scientific, 1998, 1-273
(32) Charlier, J.-C.; Blase, X.; Roche, S., Electronic and Transport Properties of Nanotubes. Rev. Mod. Phys. 2007, 79, 677.
(33) Andreoni, W., The Physics of Fullerene-Based and Fullerene-Related Materials. Springer Science & Business Media, 2000, 23, 1-202
(34) Schurig, D.; Mock, J.; Justice, B.; Cummer, S. A.; Pendry, J. B.; Starr, A.; Smith, D. R., Metamaterial Electromagnetic Cloak at Microwave Frequencies. Science 2006, 314, 977-980.
(35) Park, W.; Lu, D.; Ahn, S., Plasmon Enhancement of Luminescence Upconversion. Chem. Soc. Rev. 2015, 44, 2940-2962.
(36) Haider, G.; Roy, P.; Chiang, C. W.; Tan, W. C.; Liou, Y. R.; Chang, H. T.; Liang, C. T.; Shih, W. H.; Chen, Y. F., Electrical‐Polarization‐Induced Ultrahigh Responsivity Photodetectors Based on Graphene and Graphene Quantum Dots. Adv. Funct. Mater. 2016, 26, 620-628.
(37) Haider, G.; Ravindranath, R.; Chen, T. P.; Roy, P.; Roy, P. K.; Cai, S. Y.; Chang, H. T.; Chen, Y. F., Dirac Point Induced Ultralow-Threshold Laser and Giant Optoelectronic Quantum Oscillations in Graphene-Based Heterojunctions. Nat. Commun. 2017, 8, 256.
(38) Yu, Y. J.; Zhao, Y.; Ryu, S.; Brus, L. E.; Kim, K. S.; Kim, P., Tuning the Graphene Work Function by Electric Field Effect. Nano Lett. 2009, 9, 3430-3434.
(39) Nair, R. R.; Blake, P.; Grigorenko, A. N.; Novoselov, K. S.; Booth, T. J.; Stauber, T.; Peres, N. M.; Geim, A. K., Fine Structure Constant Defines Visual Transparency of Graphene. Science 2008, 320, 1308-1308.
(40) Katsnelson, M.; Novoselov, K.; Geim, A., Chiral Tunnelling and the Klein Paradox in Graphene. Nat. Phys. 2006, 2, 620.
(41) Mueller, T.; Xia, F.; Avouris, P., Graphene Photodetectors for High-Speed Optical Communications. Nat. Photonics 2010, 4, 297.
(42) Kim, C. O.; Kim, S.; Shin, D. H.; Kang, S. S.; Kim, J. M.; Jang, C. W.; Joo, S. S.; Lee, J. S.; Kim, J. H.; Choi, S. H.; Hwang, E., High Photoresponsivity in an All-Graphene p-n Vertical Junction Photodetector. Nat. Commun. 2014, 5, 3249.
(43) Koppens, F. H. L.; Mueller, T.; Avouris, P.; Ferrari, A. C.; Vitiello, M. S.; Polini, M., Photodetectors Based on Graphene, Other Two-Dimensional Materials and Hybrid Systems. Nat. Nanotechnol. 2014, 9, 780.
(44) Yang, F.; Cong, H.; Yu, K.; Zhou, L.; Wang, N.; Liu, Z.; Li, C.; Wang, Q.; Cheng, B., Ultrathin Broadband Germanium-Graphene Hybrid Photodetector with High Performance. ACS Appl. Mater. Interfaces 2017, 9, 13422-13429.
(45) Lee, C.; Wei, X.; Kysar, J. W.; Hone, J., Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene. science 2008, 321, 385-388.
(46) Chiang, C.-W.; Haider, G.; Tan, W.-C.; Liou, Y.-R.; Lai, Y.-C.; Ravindranath, R.; Chang, H.-T.; Chen, Y.-F., Highly Stretchable and Sensitive Photodetectors Based on Hybrid Graphene and Graphene Quantum Dots. ACS Appl. Mater. Interfaces 2016, 8, 466-471.
(47) Kim, M.; Kang, P.; Leem, J.; Nam, S., A Stretchable Crumpled Graphene Photodetector with Plasmonically Enhanced Photoresponsivity. Nanoscale 2017, 9, 4058-4065.
(48) Zaworotko, M. J., Materials Science: Designer Pores Made Easy. Nature 2008, 451, 410.
(49) Haider, G.; Usman, M.; Chen, T.-P.; Perumal, P.; Lu, K.-L.; Chen, Y.-F., Electrically Driven White Light Emission from Intrinsic Metal-Organic Framework. ACS Nano 2016, 10, 8366-8375.
(50) Ma, L.; Abney, C.; Lin, W., Enantioselective Catalysis with Homochiral Metal-Organic Frameworks. Chem. Soc. Rev. 2009, 38, 1248-1256.
(51) Horcajada, P.; Chalati, T.; Serre, C.; Gillet, B.; Sebrie, C.; Baati, T.; Eubank, J. F.; Heurtaux, D.; Clayette, P.; Kreuz, C., Porous Metal-Organic-Framework Nanoscale Carriers as a Potential Platform for Drug Delivery and Imaging. Nat. Mater. 2010, 9, 172.
(52) He, Y.; Zhou, W.; Qian, G.; Chen, B., Methane Storage in Metal-Organic Frameworks. Chem. Soc. Rev. 2014, 43, 5657-5678.
(53) Zaworotko, M. J., Designer Pores Made Easy. Nature 2008, 451, 410.
(54) Castaldelli, E.; Jayawardena, K. I.; Cox, D. C.; Clarkson, G. J.; Walton, R. I.; Le-Quang, L.; Chauvin, J.; Silva, S. R. P.; Demets, G. J.-F., Electrical Semiconduction Modulated by Light in a Cobalt and Naphthalene Diimide Metal-Organic Framework. Nat. Commun. 2017, 8, 2139.
(55) Allendorf, M.; Bauer, C.; Bhakta, R.; Houk, R., Luminescent Metal-Organic Frameworks. Chem. Soc. Rev. 2009, 38, 1330-1352.
(56) Haider, G.; Lin, H.-I.; Yadav, K.; Shen, K.-C.; Liao, Y.-M.; Hu, H.-W.; Roy, P. K.; Bera, K. P.; Lin, K.-H.; Lee, H.-M.; Chen, Y.-T.; Chen, F.-R.; Chen, Y.-F., A Highly-Efficient Single Segment White Random Laser. ACS Nano 2018, 12, 11847-11859.
(57) Yang, Q.-Y.; Wu, K.; Jiang, J.-J.; Hsu, C.-W.; Pan, M.; Lehn, J.-M.; Su, C.-Y., Pure White-Light and Yellow-to-Blue Emission Tuning in Single Crystals of Dy (III) Metal-Organic Frameworks. ChemComm 2014, 50, 7702-7704.
(58) Sansonetti, J.; Nave, G., Wavelengths, Transition Probabilities, and Energy Levels for the Spectrum of Neutral Strontium (Sr I). J. Phys. Chem. Ref. Data 2010, 39, 033103.
(59) Chen, Z.-F.; Xiong, R.-G.; Zhang, J.; Chen, X.-T.; Xue, Z.-L.; You, X.-Z., 2D Molecular Square Grid with Strong Blue Fluorescent Emission: A Complex of Norfloxacin with Zinc (II). Inorg. Chem. 2001, 40, 4075-4077.
(60) Chisholm, M. H.; Brown-Xu, S. E.; Spilker, T. F., Photophysical Studies of Metal to Ligand Charge Transfer Involving Quadruply Bonded Complexes of Molybdenum and Tungsten. Acc. Chem. Res. 2015, 48, 877-885.
(61) Bergkamp, M.; Guetlich, P.; Netzel, T.; Sutin, N., Lifetimes of the Ligand-to-Metal Charge-Transfer Excited States of Iron (III) and Osmium (III) Polypyridine Complexes. Effects of Isotopic Substitution and Temperature. J. Phys. Chem. 1983, 87, 3877-3883.
(62) Lee, M. M.; Teuscher, J.; Miyasaka, T.; Murakami, T. N.; Snaith, H. J., Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites. Science 2012, 338, 643.
(63) Tan, Z.-K.; Moghaddam, R. S.; Lai, M. L.; Docampo, P.; Higler, R.; Deschler, F.; Price, M.; Sadhanala, A.; Pazos, L. M.; Credgington, D.; Hanusch, F.; Bein, T.; Snaith, H. J.; Friend, R. H., Bright Light-Emitting Diodes Based on Organometal Halide Perovskite. Nat. Nanotechnol. 2014, 9, 687.
(64) Dou, L.; Yang, Y.; You, J.; Hong, Z.; Chang, W.-H.; Li, G.; Yang, Y., Solution-Processed Hybrid Perovskite Photodetectors with High Detectivity. Nat. Commun. 2014, 5, 5404.
(65) Stoumpos, C. C.; Cao, D. H.; Clark, D. J.; Young, J.; Rondinelli, J. M.; Jang, J. I.; Hupp, J. T.; Kanatzidis, M. G., Ruddlesden-Popper Hybrid Lead Iodide Perovskite 2D Homologous Semiconductors. Chem. Mater. 2016, 28, 2852-2867.
(66) Wei, T.-C.; Wang, H.-P.; Li, T.-Y.; Lin, C.-H.; Hsieh, Y.-H.; Chu, Y.-H.; He, J.-H., Photostriction of CH3NH3PbBr3 Perovskite Crystals. Adv. Mater. 2017, 29, 1701789.
(67) Yang, K.; Li, F.; Veeramalai, C. P.; Guo, T., A Facile Synthesis of CH3NH3PbBr3 Perovskite Quantum Dots and Their Application in Flexible Nonvolatile Memory. Appl. Phys. Lett. 2017, 110, 083102.
(68) Stranks, S. D.; Eperon, G. E.; Grancini, G.; Menelaou, C.; Alcocer, M. J.; Leijtens, T.; Herz, L. M.; Petrozza, A.; Snaith, H. J., Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber. Science 2013, 342, 341-344.
(69) Noh, J. H.; Im, S. H.; Heo, J. H.; Mandal, T. N.; Seok, S. I., Chemical Management for Colorful, Efficient, and Stable Inorganic-Organic Hybrid Nanostructured Solar Cells. Nano Lett. 2013, 13, 1764-1769.
(70) Yang, W. S.; Noh, J. H.; Jeon, N. J.; Kim, Y. C.; Ryu, S.; Seo, J.; Seok, S. I., High-Performance Photovoltaic Perovskite Layers Fabricated through Intramolecular Exchange. Science 2015, 348, 1234-1237.
(71) Tan, Z.-K.; Moghaddam, R. S.; Lai, M. L.; Docampo, P.; Higler, R.; Deschler, F.; Price, M.; Sadhanala, A.; Pazos, L. M.; Credgington, D., Bright Light-Emitting Diodes Based on Organometal Halide Perovskite. Nat. Nanotechnol. 2014, 9, 687.
(72) Burschka, J.; Pellet, N.; Moon, S.-J.; Humphry-Baker, R.; Gao, P.; Nazeeruddin, M. K.; Grätzel, M., Sequential Deposition as a Route to High-Performance Perovskite-Sensitized Solar Cells. Nature 2013, 499, 316.
(73) Cho, H.; Jeong, S.-H.; Park, M.-H.; Kim, Y.-H.; Wolf, C.; Lee, C.-L.; Heo, J. H.; Sadhanala, A.; Myoung, N.; Yoo, S., Overcoming the Electroluminescence Efficiency Limitations of Perovskite Light-Emitting Diodes. Science 2015, 350, 1222-1225.
(74) Yoo, E. J.; Lyu, M.; Yun, J. H.; Kang, C. J.; Choi, Y. J.; Wang, L., Resistive Switching Behavior in Organic-Inorganic Hybrid CH3NH3PbI3-XCIx Perovskite for Resistive Random Access Memory Devices. Adv. Mater. 2015, 27, 6170-6175.
(75) Gu, C.; Lee, J.-S., Flexible Hybrid Organic-Inorganic Perovskite Memory. ACS Nano 2016, 10, 5413-5418.
(76) Xing, G.; Mathews, N.; Lim, S. S.; Yantara, N.; Liu, X.; Sabba, D.; Grätzel, M.; Mhaisalkar, S.; Sum, T. C., Low-Temperature Solution-Processed Wavelength-Tunable Perovskites for Lasing. Nat. Mater. 2014, 13, 476.
(77) Zhu, H.; Fu, Y.; Meng, F.; Wu, X.; Gong, Z.; Ding, Q.; Gustafsson, M. V.; Trinh, M. T.; Jin, S.; Zhu, X., Lead Halide Perovskite Nanowire Lasers with Low Lasing Thresholds and High Quality Factors. Nat. Mater. 2015, 14, 636.
(78) Walters, G.; Sutherland, B. R.; Hoogland, S.; Shi, D.; Comin, R.; Sellan, D. P.; Bakr, O. M.; Sargent, E. H., Two-Photon Absorption in Organometallic Bromide Perovskites. ACS Nano 2015, 9, 9340-9346.
(79) Zheng, X.; Chen, B.; Yang, M.; Wu, C.; Orler, B.; Moore, R. B.; Zhu, K.; Priya, S., The Controlling Mechanism for Potential Loss in CH3NH3PbBr3 Hybrid Solar Cells. ACS Energy Lett. 2016, 1, 424-430.
(80) Tan, Z. K.; Moghaddam, R. S.; Lai, M. L.; Docampo, P.; Higler, R.; Deschler, F.; Price, M.; Sadhanala, A.; Pazos, L. M.; Credgington, D.; Hanusch, F.; Bein, T.; Snaith, H. J.; Friend, R. H., Bright Light-Emitting Diodes Based on Organometal Halide Perovskite. Nat. Nanotechnol. 2014, 9, 687-692.
(81) Vybornyi, O.; Yakunin, S.; Kovalenko, M. V., Polar-Solvent-Free Colloidal Synthesis of Highly Luminescent Alkylammonium Lead Halide Perovskite Nanocrystals. Nanoscale 2016, 8, 6278-6283.
(82) Xiao, Z.; Kerner, R. A.; Zhao, L.; Tran, N. L.; Lee, K. M.; Koh, T.-W.; Scholes, G. D.; Rand, B. P., Efficient Perovskite Light-Emitting Diodes Featuring Nanometre-Sized Crystallites. Nat. Photonics 2017, 11, 108.
(83) Cho, H.; Jeong, S.-H.; Park, M.-H.; Kim, Y.; Wolf, C.; Lee, C.; Heo, J.; Sadhanala, A., Nos. Myoung, S. Yoo, Sh Im, Rh Friend and T.-W. Lee. Science 2015, 350.
(84) Schmidt, L. C.; Pertegás, A.; González-Carrero, S.; Malinkiewicz, O.; Agouram, S.; Mínguez Espallargas, G.; Bolink, H. J.; Galian, R. E.; Pérez-Prieto, J., Nontemplate Synthesis of CH3NH3PbBr3 Perovskite Nanoparticles. J. Am. Chem. Soc. 2014, 136, 850-853.
(85) Norris, D. J.; Bawendi, M., Measurement and Assignment of the Size-Dependent Optical Spectrum in CdSe Quantum Dots. Phys. Rev. B 1996, 53, 16338.
(86) Wang, L.; Williams, N. E.; Malachosky, E. W.; Otto, J. P.; Hayes, D.; Wood, R. E.; Guyot-Sionnest, P.; Engel, G. S., Scalable Ligand-Mediated Transport Synthesis of Organic-Inorganic Hybrid Perovskite Nanocrystals with Resolved Electronic Structure and Ultrafast Dynamics. ACS Nano 2017, 11, 2689-2696.
(87) Yakunin, S.; Protesescu, L.; Krieg, F.; Bodnarchuk, M. I.; Nedelcu, G.; Humer, M.; De Luca, G.; Fiebig, M.; Heiss, W.; Kovalenko, M. V., Low-Threshold Amplified Spontaneous Emission and Lasing from Colloidal Nanocrystals of Caesium Lead Halide Perovskites. Nat. Commun. 2015, 6, 8056.
(88) Zhang, D.; Eaton, S. W.; Yu, Y.; Dou, L.; Yang, P., Solution-Phase Synthesis of Cesium Lead Halide Perovskite Nanowires. J. Am. Chem. Soc. 2015, 137, 9230-9233.
(89) Zhang, F.; Zhong, H.; Chen, C.; Wu, X.-g.; Hu, X.; Huang, H.; Han, J.; Zou, B.; Dong, Y., Brightly Luminescent and Color-Tunable Colloidal CH3NH3PbX3 (X= Br, I, Cl) Quantum Dots: Potential Alternatives for Display Technology. ACS Nano 2015, 9, 4533-4542.
(90) Lan, X.; Voznyy, O.; García de Arquer, F. P.; Liu, M.; Xu, J.; Proppe, A. H.; Walters, G.; Fan, F.; Tan, H.; Liu, M., 10.6% Certified Colloidal Quantum Dot Solar Cells via Solvent-Polarity-Engineered Halide Passivation. Nano Lett. 2016, 16, 4630-4634.

CHAPTER 2

(1) Rao, G.; Freitag, M.; Chiu, H.-Y.; Sundaram, R. S.; Avouris, P., Raman and Photocurrent Imaging of Electrical Stress-Induced p-n Junctions in Graphene. ACS Nano 2011, 5, 5848-5854.
(2) Peters, E. C.; Lee, E. J.; Burghard, M.; Kern, K., Gate Dependent Photocurrents at a Graphene p-n Junction. Appl. Phys. Lett. 2010, 97, 193102.
(3) Konstantatos, G.; Badioli, M.; Gaudreau, L.; Osmond, J.; Bernechea, M.; Garcia de Arquer, F. P.; Gatti, F.; Koppens, F. H., Hybrid Graphene-Quantum Dot Phototransistors with Ultrahigh Gain. Nat. Nanotechnol. 2012, 7, 363-368.
(4) Richards, P., Bolometers for Infrared and Millimeter Waves. J. Appl. Phys. 1994, 76, 1-24.
(5) Freitag, M.; Low, T.; Xia, F.; Avouris, P., Photoconductivity of Biased Graphene. Nat. Photonics 2013, 7, 53.
(6) Lemme, M. C.; Koppens, F. H.; Falk, A. L.; Rudner, M. S.; Park, H.; Levitov, L. S.; Marcus, C. M., Gate-Activated Photoresponse in a Graphene p-n Junction. Nano Lett. 2011, 11, 4134-4137.
(7) Huang, H.; Wang, J.; Hu, W.; Liao, L.; Wang, P.; Wang, X.; Gong, F.; Chen, Y.; Wu, G.; Luo, W., Highly Sensitive Visible to Infrared MoTe2 Photodetectors Enhanced by the Photogating Effect. Nanotechnology 2016, 27, 445201.
(8) Koppens, F. H. L.; Mueller, T.; Avouris, P.; Ferrari, A. C.; Vitiello, M. S.; Polini, M., Photodetectors Based on Graphene, Other Two-Dimensional Materials and Hybrid Systems. Nat. Nanotechnol. 2014, 9, 780.
(9) Xu, X.; Gabor, N. M.; Alden, J. S.; van der Zande, A. M.; McEuen, P. L., Photo-Thermoelectric Effect at a Graphene Interface Junction. Nano Lett. 2009, 10, 562-566.
(10) Mattevi, C.; Kim, H.; Chhowalla, M., A Review of Chemical Vapour Deposition of Graphene on Copper. J. Mater. Chem. 2011, 21, 3324-3334.
(11) Haider, G.; Roy, P.; Chiang, C. W.; Tan, W. C.; Liou, Y. R.; Chang, H. T.; Liang, C. T.; Shih, W. H.; Chen, Y. F., Electrical‐Polarization‐Induced Ultrahigh Responsivity Photodetectors Based on Graphene and Graphene Quantum Dots. Adv. Funct. Mater. 2016, 26, 620-628.
(12) Bera, K. P.; Haider, G.; Usman, M.; Roy, P. K.; Lin, H.-I.; Liao, Y.-M.; Inbaraj, C. R. P.; Liou, Y.-R.; Kataria, M.; Lu, K.-L.; Chen, Y.-F., Trapped Photons Induced Ultrahigh External Quantum Efficiency and Photoresponsivity in Hybrid Graphene/Metal-Organic Framework Broadband Wearable Photodetectors. Adv. Funct. Mater. 2018, 28, 1804802.
(13) Bera, K. P.; Haider, G.; Huang, Y.-T.; Roy, P. K.; Paul Inbaraj, C. R.; Liao, Y.-M.; Lin, H.-I.; Lu, C.-H.; Shen, C.; Shih, W. Y.; Shih, W.-H.; Chen, Y.-F., Graphene Sandwich Stable Perovskite Quantum-Dot Light-Emissive Ultrasensitive and Ultrafast Broadband Vertical Phototransistors. ACS Nano 2019.
(14) Haider, G.; Usman, M.; Chen, T.-P.; Perumal, P.; Lu, K.-L.; Chen, Y.-F., Electrically Driven White Light Emission from Intrinsic Metal-Organic Framework. ACS Nano 2016, 10, 8366-8375.
(15) Yu, W. J.; Li, Z.; Zhou, H.; Chen, Y.; Wang, Y.; Huang, Y.; Duan, X., Vertically Stacked Multi-Heterostructures of Layered Materials for Logic Transistors and Complementary Inverters. Nat. Mater. 2012, 12, 246.
(16) Massicotte, M.; Schmidt, P.; Vialla, F.; Schadler, K. G.; Reserbat-Plantey, A.; Watanabe, K.; Taniguchi, T.; Tielrooij, K. J.; Koppens, F. H., Picosecond Photoresponse in van der Waals Heterostructures. Nat. Nanotechnol. 2016, 11, 42-6.
(17) Fu, X.-W.; Liao, Z.-M.; Zhou, Y.-B.; Wu, H.-C.; Bie, Y.-Q.; Xu, J.; Yu, D.-P., Graphene/ZnO Nanowire/Graphene Vertical Structure Based Fast-Response Ultraviolet Photodetector. Appl. Phys. Lett. 2012, 100, 223114.
(18) Gao, A.; Rizo, P.; Scaccabarozzi, L.; Lee, C.; Banine, V.; Bijkerk, F., Photoluminescence-Based Detection of Particle Contamination on Extreme Ultraviolet Reticles. Rev. Sci. Instrum. 2015, 86, 063109.
(19) Romani, A.; Clementi, C.; Miliani, C.; Brunetti, B.; Sgamellotti, A.; Favaro, G., Portable Equipment for Luminescence Lifetime Measurements on Surfaces. Appl Spectrosc 2008, 62, 1395-1399.
(20) Nevin, A.; Cesaratto, A.; Bellei, S.; D'Andrea, C.; Toniolo, L.; Valentini, G.; Comelli, D., Time-Resolved Photoluminescence Spectroscopy and Imaging: New Approaches to the Analysis of Cultural Heritage and Its Degradation. Sensors 2014, 14, 6338-6355.
(21) Nevin, A.; Spoto, G.; Anglos, D., Laser Spectroscopies for Elemental and Molecular Analysis in Art and Archaeology. Appl. Phys. A 2012, 106, 339-361.
(22) Graves, P.; Gardiner, D., Practical Raman Spectroscopy. Springer 1989, 1-12
(23) Degenhardt, H., Principles and Applications of Electroluminescence. Naturwissenschaften 1976, 63, 544-549.
(24) Light-Emitting Diodes. Kirk‐Othmer Encyclopedia of Chemical Technology, pp 1-20.
(25) Lee, M.; Callard, S.; Seassal, C.; Jeon, H., Taming of Random Lasers. Nat. Photonics 2019, 13, 445-448.
(26) Redding, B.; Choma, M. A.; Cao, H., Speckle-Free Laser Imaging Using Random Laser Illumination. Nat. Photonics 2012, 6, 355-359.
(27) Wiersma, D. S., The Physics and Applications of Random lasers. Nat. Phys. 2008, 4, 359.
(28) Perumbilavil, S.; Piccardi, A.; Barboza, R.; Buchnev, O.; Kauranen, M.; Strangi, G.; Assanto, G., Beaming Random Lasers with Soliton Control. Nat. Commun. 2018, 9, 3863.
(29) Wiersma, D., The Smallest Random Laser. Nature 2000, 406, 133-135.
(30) Roy, P. K.; Haider, G.; Lin, H.-I.; Liao, Y.-M.; Lu, C.-H.; Chen, K.-H.; Chen, L.-C.; Shih, W.-H.; Liang, C.-T.; Chen, Y.-F., Multicolor Ultralow-Threshold Random Laser Assisted by Vertical-Graphene Network. Adv. Opt. Mater. 2018, 6, 1800382.
(31) Shi, X.; Liao, Y.-M.; Lin, H.-Y.; Tsao, P.-W.; Wu, M.-J.; Lin, S.-Y.; Hu, H.-H.; Wang, Z.; Lin, T.-Y.; Lai, Y.-C.; Chen, Y.-F., Dissolvable and Recyclable Random Lasers. ACS Nano 2017, 11, 7600-7607.
(32) Cao, H.; Xu, J. Y.; Zhang, D. Z.; Chang, S. H.; Ho, S. T.; Seelig, E. W.; Liu, X.; Chang, R. P. H., Spatial Confinement of Laser Light in Active Random Media. Phys. Rev. Lett. 2000, 84, 5584-5587.
(33) Bischof, M., Introduction to Integrative Biophysics. Integrative Biophysics, Springer: 2003; pp 1-115.
(34) Luan, F.; Gu, B.; Gomes, A. S.; Yong, K.-T.; Wen, S.; Prasad, P. N., Lasing in Nanocomposite Random Media. Nano Today 2015, 10, 168-192.
(35) Wiersma, D. S., The Physics and Applications of Random Lasers. Nat. Phys. 2008, 4, 359.
(36) Cao, H., Review on Latest Developments in Random Lasers with Coherent Feedback. J. Phys. A 2005, 38, 10497.
(37) Redding, B.; Choma, M. A.; Cao, H., Speckle-Free Laser Imaging Using Random Laser Illumination. Nat. Photonics 2012, 6, 355.
(38) Liao, Y. M.; Lai, Y. C.; Perumal, P.; Liao, W. C.; Chang, C. Y.; Liao, C. S.; Lin, S. Y.; Chen, Y. F., Highly Stretchable Label‐Like Random Laser on Universal Substrates. Adv. Mater. Technol.2016, 1, 1600068.
(39) Luan, F.; Gu, B.; Gomes, A. S. L.; Yong, K.-T.; Wen, S.; Prasad, P. N., Lasing in Nanocomposite Random Media. Nano Today 2015, 10, 168-192.
(40) Ohring, M., Materials Science of Thin Films. Elsevier: 2001, 2, 1-794
(41) Li, X.; Cai, W.; An, J.; Kim, S.; Nah, J.; Yang, D.; Piner, R.; Velamakanni, A.; Jung, I.; Tutuc, E.; Banerjee, S. K.; Colombo, L.; Ruoff, R. S., Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils. Science 2009, 324, 1312.

CHAPTER 3

(1) Rauch, T.; Böberl, M.; Tedde, S. F.; Fürst, J.; Kovalenko, M. V.; Hesser, G.; Lemmer, U.; Heiss, W.; Hayden, O., Near-Infrared Imaging with Quantum-Dot-Sensitized Organic Photodiodes. Nat. Photonics 2009, 3, 332.
(2) Kim, J.; Jeerapan, I.; Imani, S.; Cho, T. N.; Bandodkar, A.; Cinti, S.; Mercier, P. P.; Wang, J., Noninvasive Alcohol Monitoring Using a Wearable Tattoo-Based Iontophoretic-Biosensing System. ACS Sens. 2016, 1, 1011-1019.
(3) Konstantatos, G.; Badioli, M.; Gaudreau, L.; Osmond, J.; Bernechea, M.; Garcia de Arquer, F. P.; Gatti, F.; Koppens, F. H., Hybrid Graphene-Quantum Dot Phototransistors with Ultrahigh Gain. Nat. Nanotechnol. 2012, 7, 363-368.
(4) Bao, Z.; Chen, X., Flexible and Stretchable Devices. Adv. Mater. 2016, 28, 4177-4179.
(5) Hu, J.; Li, L.; Lin, H.; Zhang, P.; Zhou, W.; Ma, Z., Flexible Integrated Photonics: Where Materials, Mechanics and Optics Meet. Opt. Mater. Express 2013, 3, 1313-1331.
(6) Lu, N.; Kim, D.-H., Flexible and Stretchable Electronics Paving the Way for Soft Robotics. Soft Robot. 2014, 1, 53-62.
(7) De Fazio, D.; Goykhman, I.; Yoon, D.; Bruna, M.; Eiden, A.; Milana, S.; Sassi, U.; Barbone, M.; Dumcenco, D.; Marinov, K.; Kis, A.; Ferrari, A. C., High Responsivity, Large-Area Graphene/MoS2 Flexible Photodetectors. ACS Nano 2016, 10, 8252-8262.
(8) Shen, G.; Liang, B.; Wang, X.; Huang, H.; Chen, D.; Wang, Z. L., Ultrathin In2O3 Nanowires with Diameters Below 4 nm: Synthesis, Reversible Wettability Switching Behavior, and Transparent Thin-Film Transistor Applications. ACS Nano 2011, 5, 6148-6155.
(9) Park, S. I.; Xiong, Y.; Kim, R. H.; Elvikis, P.; Meitl, M.; Kim, D. H.; Wu, J.; Yoon, J.; Yu, C. J.; Liu, Z.; Huang, Y.; Hwang, K. C.; Ferreira, P.; Li, X.; Choquette, K.; Rogers, J. A., Printed Assemblies of Inorganic Light-Emitting Diodes for Deformable and Semitransparent Displays. Science 2009, 325, 977-81.
(10) Yoo, J.; Jeong, S.; Kim, S.; Je Jung, H., A Stretchable Nanowire UV-Vis-NIR Photodetector with High Performance. Adv. Mater. 2015, 27, 1712-1717.
(11) Jang, H.; Park Yong, J.; Chen, X.; Das, T.; Kim, M. S.; Ahn, J. H., Graphene‐Based Flexible and Stretchable Electronics. Adv. Mater. 2016, 28, 4184-4202.
(12) Nam, J.; Lee, Y.; Choi, W.; Kim Chang, S.; Kim, H.; Kim, J.; Kim, D. H.; Jo, S., Transfer Printed Flexible and Stretchable Thin Film Solar Cells Using a Water‐Soluble Sacrificial Layer. Adv. Energy Mater. 2016, 6, 1601269.
(13) Cheng, Y. B.; Pascoe, A.; Huang, F.; Peng, Y., Print Flexible Solar Cells. Nature 2016, 539, 488-489.
(14) Ji, Y.; Lee, S.; Cho, B.; Song, S.; Lee, T., Flexible Organic Memory Devices with Multilayer Graphene Electrodes. ACS Nano 2011, 5, 5995-6000.
(15) Kim, S.-J.; Lee, J.-S., Flexible Organic Transistor Memory Devices. Nano Lett. 2010, 10, 2884-2890.
(16) Palli, G.; Pirozzi, S., An Optical Torque Sensor for Robotic Applications. Int. J. Optomechatroni 2013, 7, 263-282.
(17) Melchior, H.; Fisher, M. B.; Arams, F. R., Photodetectors for Optical Communication Systems. Proc. IEEE 1970, 58, 1466-1486.
(18) Lochner, C. M.; Khan, Y.; Pierre, A.; Arias, A. C., All-Organic Optoelectronic Sensor for Pulse Oximetry. Nat. Commun. 2014, 5, 5745.
(19) Yokota, T.; Zalar, P.; Kaltenbrunner, M.; Jinno, H.; Matsuhisa, N.; Kitanosako, H.; Tachibana, Y.; Yukita, W.; Koizumi, M.; Someya, T., Ultraflexible Organic Photonic Skin. Sci. Adv. 2016, 2, e1501856.
(20) Lee, C.; Wei, X.; Kysar, J. W.; Hone, J., Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene. Science 2008, 321, 385-8.
(21) Nair, R. R.; Blake, P.; Grigorenko, A. N.; Novoselov, K. S.; Booth, T. J.; Stauber, T.; Peres, N. M.; Geim, A. K., Fine Structure Constant Defines Visual Transparency of Graphene. Science 2008, 320, 1308.
(22) Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A., Electric Field Effect in Atomically Thin Carbon Films. Science 2004, 306, 666-669.
(23) Smith, A. D.; Niklaus, F.; Paussa, A.; Vaziri, S.; Fischer, A. C.; Sterner, M.; Forsberg, F.; Delin, A.; Esseni, D.; Palestri, P.; Östling, M.; Lemme, M. C., Electromechanical Piezoresistive Sensing in Suspended Graphene Membranes. Nano Lett. 2013, 13, 3237-3242.
(24) Mueller, T.; Xia, F.; Avouris, P., Graphene Photodetectors for High-Speed Optical Communications. Nat. Photonics 2010, 4, 297.
(25) Das Sarma, S.; Adam, S.; Hwang, E. H.; Rossi, E., Electronic Transport in Two-Dimensional Graphene. Rev. Mod. Phys. 2011, 83, 407-470.
(26) Yu, Y.-J.; Zhao, Y.; Ryu, S.; Brus, L. E.; Kim, K. S.; Kim, P., Tuning the Graphene Work Function by Electric Field Effect. Nano Lett. 2009, 9, 3430-3434.
(27) Haider, G.; Ravindranath, R.; Chen, T.-P.; Roy, P.; Roy, P. K.; Cai, S.-Y.; Chang, H.-T.; Chen, Y.-F., Dirac Point Induced Ultralow-Threshold Laser and Giant Optoelectronic Quantum Oscillations in Graphene-Based Heterojunctions. Nat. Commun. 2017, 8, 256.
(28) Kim, C. O.; Kim, S.; Shin, D. H.; Kang, S. S.; Kim, J. M.; Jang, C. W.; Joo, S. S.; Lee, J. S.; Kim, J. H.; Choi, S.-H.; Hwang, E., High Photoresponsivity in an All-Graphene p-n Vertical Junction Photodetector. Nat. Commun. 2014, 5, 3249.
(29) Huang, F.; Jia, F.; Cai, C.; Xu, Z.; Wu, C.; Ma, Y.; Fei, G.; Wang, M., High- and Reproducible-Performance Graphene/II-VI Semiconductor Film Hybrid Photodetectors. Sci. Rep. 2016, 6, 28943.
(30) Yang, F.; Cong, H.; Yu, K.; Zhou, L.; Wang, N.; Liu, Z.; Li, C.; Wang, Q.; Cheng, B., Ultrathin Broadband Germanium-Graphene Hybrid Photodetector with High Performance. ACS Appl. Mater. Interfaces 2017, 9, 13422-13429.
(31) Koppens, F. H. L.; Mueller, T.; Avouris, P.; Ferrari, A. C.; Vitiello, M. S.; Polini, M., Photodetectors Based on Graphene, Other Two-Dimensional Materials and Hybrid Systems. Nat. Nanotechnol. 2014, 9, 780.
(32) Nikitskiy, I.; Goossens, S.; Kufer, D.; Lasanta, T.; Navickaite, G.; Koppens, F. H. L.; Konstantatos, G., Integrating an Electrically Active Colloidal Quantum Dot Photodiode with a Graphene Phototransistor. Nat. Commun. 2016, 7, 11954.
(33) Babichev, A. V.; Zhang, H.; Lavenus, P.; Julien, F. H.; Egorov, A. Y.; Lin, Y. T.; Tu, L. W.; Tchernycheva, M., Gan Nanowire Ultraviolet Photodetector with a Graphene Transparent Contact. Appl. Phys. Lett. 2013, 103, 201103.
(34) Lee, Y.; Kwon, J.; Hwang, E.; Ra, C. H.; Yoo, W. J.; Ahn, J. H.; Park, J. H.; Cho, J. H., High‐Performance Perovskite-Graphene Hybrid Photodetector. Adv. Mater. 2015, 27, 41-46.
(35) Chang, P.-H.; Liu, S.-Y.; Lan, Y.-B.; Tsai, Y.-C.; You, X.-Q.; Li, C.-S.; Huang, K.-Y.; Chou, A.-S.; Cheng, T.-C.; Wang, J.-K.; Wu, C.-I., Ultrahigh Responsivity and Detectivity Graphene-Perovskite Hybrid Phototransistors by Sequential Vapor Deposition. Sci. Rep. 2017, 7, 46281.
(36) Shao, Y.; Liu, Y.; Chen, X.; Chen, C.; Sarpkaya, I.; Chen, Z.; Fang, Y.; Kong, J.; Watanabe, K.; Taniguchi, T.; Taylor, A.; Huang, J.; Xia, F., Stable Graphene-Two-Dimensional Multiphase Perovskite Heterostructure Phototransistors with High Gain. Nano Lett. 2017, 17, 7330-7338.
(37) Tseng, W.-S.; Jao, M.-H.; Hsu, C.-C.; Huang, J.-S.; Wu, C.-I.; Yeh, N. C., Stabilization of Hybrid Perovskite CH3NH3PbI3 Thin Films by Graphene Passivation. Nanoscale 2017, 9, 19227-19235.
(38) Zaworotko, M. J., Designer Pores Made Easy. Nature 2008, 451, 410.
(39) Ma, L.; Abney, C.; Lin, W., Enantioselective Catalysis with Homochiral Metal-Organic Frameworks. Chem. Soc. Rev. 2009, 38, 1248-56.
(40) He, Y.; Zhou, W.; Qian, G.; Chen, B., Methane Storage in Metal-Organic Frameworks. Chem. Soc. Rev. 2014, 43, 5657-5678.
(41) Horcajada, P.; Chalati, T.; Serre, C.; Gillet, B.; Sebrie, C.; Baati, T.; Eubank, J. F.; Heurtaux, D.; Clayette, P.; Kreuz, C.; Chang, J. S.; Hwang, Y. K.; Marsaud, V.; Bories, P. N.; Cynober, L.; Gil, S.; Ferey, G.; Couvreur, P.; Gref, R., Porous Metal-Organic-Framework Nanoscale Carriers as a Potential Platform for Drug Delivery and Imaging. Nat. Mater. 2010, 9, 172-8.
(42) Meek, S. T.; Greathouse, J. A.; Allendorf, M. D., Metal-Organic Frameworks: A Rapidly Growing Class of Versatile Nanoporous Materials. Adv. Mater. 2011, 23, 249-67.
(43) Haider, G.; Usman, M.; Chen, T.-P.; Perumal, P.; Lu, K.-L.; Chen, Y.-F., Electrically Driven White Light Emission from Intrinsic Metal-Organic Framework. ACS Nano 2016, 10, 8366-8375.
(44) Usman, M.; Haider, G.; Mendiratta, S.; Luo, T.-T.; Chen, Y.-F.; Lu, K.-L., Continuous Broadband Emission from a Metal-Organic Framework as a Human-Friendly White Light Source. J. Phys. Chem. C 2016, 4, 4728-4732.
(45) Allendorf, M. D.; Bauer, C. A.; Bhakta, R. K.; Houk, R. J., Luminescent Metal-Organic Frameworks. Chem. Soc. Rev. 2009, 38, 1330-52.
(46) Stavila, V.; Talin, A. A.; Allendorf, M. D., MOF-Based Electronic and Opto-Electronic Devices. Chem. Soc. Rev. 2014, 43, 5994-6010.
(47) Zhao, D.; Cui, Y.; Yang, Y.; Qian, G., Sensing-Functional Luminescent Metal-Organic Frameworks. CrystEngComm 2016, 18, 3746-3759.
(48) Zhang, H.; Nai, J.; Yu, L.; Lou, X. W., Metal-Organic-Framework-Based Materials as Platforms for Renewable Energy and Environmental Applications. Joule 2017, 1, 77-107.
(49) Castaldelli, E.; Imalka Jayawardena, K. D. G.; Cox, D. C.; Clarkson, G. J.; Walton, R. I.; Le-Quang, L.; Chauvin, J.; Silva, S. R. P.; Demets, G. J.-F., Electrical Semiconduction Modulated by Light in a Cobalt and Naphthalene Diimide Metal-Organic Framework. Nat. Commun. 2017, 8, 2139.
(50) Reina, A.; Jia, X.; Ho, J.; Nezich, D.; Son, H.; Bulovic, V.; Dresselhaus, M. S.; Kong, J., Large Area, Few-Layer Graphene Films on Arbitrary Substrates by Chemical Vapor Deposition. Nano Lett. 2009, 9, 30-5.
(51) Li, X.; Cai, W.; An, J.; Kim, S.; Nah, J.; Yang, D.; Piner, R.; Velamakanni, A.; Jung, I.; Tutuc, E.; Banerjee, S. K.; Colombo, L.; Ruoff, R. S., Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils. Science 2009, 324, 1312.
(52) Sansonetti, J. E.; Nave, G., Wavelengths, Transition Probabilities, and Energy Levels for the Spectrum of Neutral Strontium (Sr I). J. Phys. Chem. Ref. Data 2010, 39, 033103.
(53) Zou, L.; Feng, D.; Liu, T.-F.; Chen, Y.-P.; Yuan, S.; Wang, K.; Wang, X.; Fordham, S.; Zhou, H.-C., A Versatile Synthetic Route for the Preparation of Titanium Metal-Organic Frameworks. Chem. Sci. 2016, 7, 1063-1069.
(54) Song, F.; Li, W.; Sun, Y., Metal-Organic Frameworks and Their Derivatives for Photocatalytic Water Splitting. Inorganics 2017, 5, 40.
(55) Mattevi, C.; Kim, H.; Chhowalla, M., A Review of Chemical Vapour Deposition of Graphene on Copper. J. Mater. Chem. 2011, 21, 3324-3334.
(56) Zhang, Q.; Zhang, C.; Cao, L.; Wang, Z.; An, B.; Lin, Z.; Huang, R.; Zhang, Z.; Wang, C.; Lin, W., Förster Energy Transport in Metal-Organic Frameworks Is Beyond Step-by-Step Hopping. J. Am. Chem. Soc. 2016, 138, 5308-5315.
(57) Mahato, P.; Monguzzi, A.; Yanai, N.; Yamada, T.; Kimizuka, N., Fast and Long-Range Triplet Exciton Diffusion in Metal-Organic Frameworks for Photon Upconversion at Ultralow Excitation Power. Nat. Mater. 2015, 14, 924-30.
(58) Milichko, V. A.; Makarov, S. V.; Yulin, A. V.; Vinogradov, A. V.; Krasilin, A. A.; Ushakova, E.; Dzyuba, V. P.; Hey-Hawkins, E.; Pidko, E. A.; Belov, P. A., Van Der Waals Metal-Organic Framework as an Excitonic Material for Advanced Photonics. Adv. Mater. 2017, 29.
(59) Gélinas, S.; Paré-Labrosse, O.; Brosseau, C.-N.; Albert-Seifried, S.; McNeill, C. R.; Kirov, K. R.; Howard, I. A.; Leonelli, R.; Friend, R. H.; Silva, C., The Binding Energy of Charge-Transfer Excitons Localized at Polymeric Semiconductor Heterojunctions. J. Phys. Chem. C 2011, 115, 7114-7119.
(60) Ramaswamy, P.; Wong, N. E.; Shimizu, G. K. H., MOFs as Proton Conductors-Challenges and Opportunities. Chem. Soc. Rev. 2014, 43, 5913-5932.
(61) Haider, G.; Roy, P.; Chiang, C. W.; Tan, W. C.; Liou, Y. R.; Chang, H. T.; Liang, C. T.; Shih, W. H.; Chen, Y. F., Electrical‐Polarization‐Induced Ultrahigh Responsivity Photodetectors Based on Graphene and Graphene Quantum Dots. Adv. Funct. Mater. 2016, 26, 620-628.
(62) Long, M.; Gao, A.; Wang, P.; Xia, H.; Ott, C.; Pan, C.; Fu, Y.; Liu, E.; Chen, X.; Lu, W.; Nilges, T.; Xu, J.; Wang, X.; Hu, W.; Miao, F., Room Temperature High-Detectivity Mid-Infrared Photodetectors Based on Black Arsenic Phosphorus. Sci. Adv. 2017, 3, e1700589.
(63) Hou, C.; Yang, L.; Li, B.; Zhang, Q.; Li, Y.; Yue, Q.; Wang, Y.; Yang, Z.; Dong, L., Multilayer Black Phosphorus Near-Infrared Photodetectors. Sensors 2018, 18, 1668.
(64) Sun, Z.; Aigouy, L.; Chen, Z., Plasmonic-Enhanced Perovskite-Graphene Hybrid Photodetectors. Nanoscale 2016, 8, 7377-7383.
(65) Dincă, M.; Léonard, F., Metal-Organic Frameworks for Electronics and Photonics. MRS Bull. 2016, 41, 854-857.
(66) Lidzey, D. G.; Bradley, D. D. C.; Skolnick, M. S.; Virgili, T.; Walker, S.; Whittaker, D. M., Strong Exciton-Photon Coupling in an Organic Semiconductor Microcavity. Nature 1998, 395, 53.
(67) Lei, S.; G., C. M.; Mircea, D., Electrically Conductive Porous Metal-Organic Frameworks. Angew. Chem. Int. Ed. 2016, 55, 3566-3579.
(68) Feldblyum, J. I.; Keenan, E. A.; Matzger, A. J.; Maldonado, S., Photoresponse Characteristics of Archetypal Metal-Organic Frameworks. J. Phys. Chem. C 2012, 116, 3112-3121.
(69) Mihi, A.; Míguez, H., Origin of Light-Harvesting Enhancement in Colloidal-Photonic-Crystal-Based Dye-Sensitized Solar Cells. J. Phys. Chem. B 2005, 109, 15968-15976.
(70) Han-Wen, H.; Golam, H.; Yu-Ming, L.; Kumar, R. P.; Rini, R.; Huan-Tsung, C.; Cheng-Hsin, L.; Chang-Yang, T.; Tai-Yung, L.; Wei-Heng, S.; Yang-Fang, C., Wrinkled 2D Materials: A Versatile Platform for Low-Threshold Stretchable Random Lasers. Adv. Mater. 2017, 29, 1703549.
(71) Roy Pradip, K.; Haider, G.; Lin Hung, I.; Liao, Y.-M.; Lu, C.-H.; Chen, K.-H.; Chen, L.-C.; Shih, W.-H.; Liang, C.-T.; Chen, Y.-F., Multicolor Ultralow-Threshold Random Laser Assisted by Vertical-Graphene Network. Adv. Opt. Mater. 2018, 0, 1800382.
(72) Cui, Y.; Li, B.; He, H.; Zhou, W.; Chen, B.; Qian, G., Metal-Organic Frameworks as Platforms for Functional Materials. Acc. Chem. Res. 2016, 49, 483-93.
(73) Jiang, C. M.; Segev, G.; Hess, L. H.; Liu, G.; Zaborski, G.; Toma, F. M.; Cooper, J. K.; Sharp, I. D., Composition-Dependent Functionality of Copper Vanadate Photoanodes. ACS Appl. Mater. Interfaces 2018, 10, 10627-10633.
(74) So, M. C.; Wiederrecht, G. P.; Mondloch, J. E.; Hupp, J. T.; Farha, O. K., Metal-Organic Framework Materials for Light-Harvesting and Energy Transfer. ChemComm 2015, 51, 3501-3510.
(75) Lee, C. Y.; Farha, O. K.; Hong, B. J.; Sarjeant, A. A.; Nguyen, S. T.; Hupp, J. T., Light-Harvesting Metal-Organic Frameworks (MOFs): Efficient Strut-to-Strut Energy Transfer in Bodipy and Porphyrin-Based MOFs. J. Am. Chem. Soc. 2011, 133, 15858-61.
(76) Chiang, C.-W.; Haider, G.; Tan, W.-C.; Liou, Y.-R.; Lai, Y.-C.; Ravindranath, R.; Chang, H.-T.; Chen, Y.-F., Highly Stretchable and Sensitive Photodetectors Based on Hybrid Graphene and Graphene Quantum Dots. ACS Appl. Mater. Interfaces 2016, 8, 466-471.
(77) Roy, K.; Padmanabhan, M.; Goswami, S.; Sai, T. P.; Ramalingam, G.; Raghavan, S.; Ghosh, A., Graphene-MOS2 Hybrid Structures for Multifunctional Photoresponsive Memory Devices. Nat. Nanotechnol. 2013, 8, 826-30.
(78) Sun, Z.; Liu, Z.; Li, J.; Tai, G. A.; Lau, S. P.; Yan, F., Infrared Photodetectors Based on CVD-Grown Graphene and PbS Quantum Dots with Ultrahigh Responsivity. Adv. Mater. 2012, 24, 5878-83.
(79) Wenhao, G.; Shuigang, X.; Zefei, W.; Ning, W.; T., L. M. M.; Shengwang, D., Oxygen-Assisted Charge Transfer between ZnO Quantum Dots and Graphene. Small 2013, 9, 3031-3036.
(80) Guo, F.; Yang, B.; Yuan, Y.; Xiao, Z.; Dong, Q.; Bi, Y.; Huang, J., A Nanocomposite Ultraviolet Photodetector Based on Interfacial Trap-Controlled Charge Injection. Nat. Nanotechnol. 2012, 7, 798.
(81) Li, L.; Zhang, F.; Wang, J.; An, Q.; Sun, Q.; Wang, W.; Zhang, J.; Teng, F., Achieving EQE of 16,700% in P3HT:PC71BM Based Photodetectors by Trap-Assisted Photomultiplication. Sci. Rep. 2015, 5, 9181.
(82) Hu, P.; Wen, Z.; Wang, L.; Tan, P.; Xiao, K., Synthesis of Few-Layer Gase Nanosheets for High Performance Photodetectors. ACS Nano 2012, 6, 5988-5994.

CHAPTER 4

(1)Pattison, P. M.; Tsao, J. Y.; Brainard, G. C.; Bugbee, B. LEDs for Photons, Physiology and Food. Nature 2018, 563, 493-500.
(2)Oh, N.; Kim, B. H.; Cho, S.-Y.; Nam, S.; Rogers, S. P.; Jiang, Y.; Flanagan, J. C.; Zhai, Y.; Kim, J.-H.; Lee, J.; Yu, Y.; Cho, Y. K.; Hur, G.; Zhang, J.; Trefonas, P.; Rogers, J. A.; Shim, M. Double-Heterojunction Nanorod Light-Responsive LEDs for Display Applications. Science 2017, 355, 616.
(3)Murawski, C.; Leo, K.; Gather, M. C. Efficiency Roll-Off in Organic Light-Emitting Diodes. Adv. Mater. 2013, 25, 6801-6827.
(4)Pust, P.; Schmidt, P. J.; Schnick, W. A Revolution in Lighting. Nat. Mater. 2015, 14, 454.
(5)Nanishi, Y. The Birth of the Blue LED. Nat. Photonics 2014, 8, 884.
(6)Xia, Z.; Liu, Q. Progress in Discovery and Structural Design of Color Conversion Phosphors for LEDs. Prog. Mater. Sci. 2016, 84, 59–117.
(7)Xia, Z.; Meijerink, A. Ce3+-Doped Garnet Phosphors: Composition Modification, Luminescence Properties and Applications. Chem. Soc. Rev. 2017, 46, 275-299.
(8)Wang, L.; Xie, R.-J.; Suehiro, T.; Takeda, T.; Hirosaki, N. Down-Conversion Nitride Materials for Solid State Lighting: Recent Advances and Perspectives. Chem. Rev. 2018, 118, 1951-2009.
(9)Reineke, S.; Lindner, F.; Schwartz, G.; Seidler, N.; Walzer, K.; Lüssem, B.; Leo, K. White Organic Light-Emitting Diodes with Fluorescent Tube Efficiency. Nature 2009, 459, 234.
(10)Ye, S.; Xiao, F.; Pan, Y. X.; Ma, Y. Y.; Zhang, Q. Y. Phosphors in Phosphor-Converted White Light-Emitting Diodes: Recent Advances in Materials, Techniques and Properties. Mater. Sci. Eng. R 2010, 71, 1-34
(11)Haider, G.; Usman, M.; Chen, T.-P.; Perumal, P.; Lu, K.-L.; Chen, Y.-F. Electrically Driven White Light Emission from Intrinsic Metal-Organic Framework. ACS Nano 2016, 10, 8366-8375.
(12)Usman, M.; Haider, G.; Mendiratta, S.; Luo, T.-T.; Chen, Y.-F.; Lu, K.-L. Continuous Broadband Emission from a Metal-Organic Framework as a Human-Friendly White Light Source. J. Mater. Chem. C 2016, 4, 4728-4732.
(13)Cornelio, J.; Zhou, T.-Y.; Alkaş, A.; Telfer, S. G. Systematic Tuning of the Luminescence Output of Multicomponent Metal-Organic Frameworks. J. Am. Chem. Soc. 2018, 140, 15470-15476.
(14)Packwood, D. M.; Hitosugi, T. Materials Informatics for Self-Assembly of Functionalized Organic Precursors on Metal Surfaces. Nat. Commun. 2018, 9, 2469.
(15)Lescop, C., Coordination-Driven Syntheses of Compact Supramolecular Metallacycles toward Extended Metallo-organic Stacked Supramolecular Assemblies. Acc. Chem. Res. 2017, 50, 885-894.
(16)Holliday, B. J. & Mirkin, C. A. Strategies for the Construction of Supramolecular Compounds through Coordination Chemistry. Angew. Chem. Int. Ed. 2001, 40, 2022-2043.
(17)Fan, C.; Wu, W.; Chruma, J. J.; Zhao, J.; Yang, C. Enhanced Triplet-Triplet Energy Transfer and Upconversion Fluorescence through Host-Guest Complexation. J. Am. Chem. Soc. 2016, 138, 15405-15412.
(18)Hou, X.; Ke, C.; Bruns, C. J.; McGonigal, P. R.; Pettman, R. B.; Stoddart, J. F. Tunable Solid-State Fluorescent Materials for Supramolecular Encryption. Nat. Commun. 2015, 6, 6884.
(19)Zhu, X.-H.; Peng, J.; Cao, Y.; Roncali, J. Solution-processable Single-Material Molecular Emitters for Organic Light-Emitting Devices. Chem. Soc. Rev. 2011, 40, 3509-3524.
(20)Welte, L., Calzolari, A., Felice, R. D., Zamora, F. & Gómez-Herrero, J. Highly Conductive Self-Assembled Nanoribbons of Coordination Polymers. Nat. Nanotechnol. 2009, 5, 110.
(21)Khalily, M. A.; Bakan, G.; Kucukoz, B.; Topal, A. E.; Karatay, A.; Yaglioglu, H. G.; Dana, A.; Guler, M. O. Fabrication of Supramolecular n/p-Nanowires via Coassembly of Oppositely Charged Peptide-Chromophore Systems in Aqueous Media. ACS Nano 2017, 11 , 6881-6892.
(22)Lafferentz, L.; Ample, F.; Yu, H.; Hecht, S.; Joachim, C.; Grill, L. Conductance of a Single Conjugated Polymer as a Continuous Function of its Length. Science 2009, 323, 1193.
(23)Faramarzi, V. et al. Light-Triggered Self-Construction of Supramolecular Organic Nanowires as Metallic Interconnects. Nat. Chem. 2012, 4, 485.
(24)Goswami, N. et al. Luminescent Metal Nanoclusters with Aggregation-Induced Emission. J. Phys. Chem. Lett. 2016, 7, 962-975.
(25)Klein, J. E. M. N.; Mandal, D.; Ching, W.-M.; Mallick, D.; Que, L.; Shaik, S., Privileged Role of Thiolate as the Axial Ligand in Hydrogen Atom Transfer Reactions by Oxoiron(IV) Complexes in Shaping the Potential Energy Surface and Inducing Significant H-Atom Tunneling. J. Am. Chem. Soc. 2017, 139, 18705-18713.
(26)Basu Baul, T. S., Kundu, S., Ng, S. W., Guchhait, N. & Tiekink, E. R. T. Synthesis, Characterization, Photoluminescent Properties and Supramolecular Aggregations in Diimine Chelated Cadmium Dihalides. J. Coord. Chem. 2014, 67, 96-119.
(27)Usman, M., Mendiratta, S. & Lu, K. L. Semiconductor Metal-Organic Frameworks: Future Low‐Bandgap Materials. Adv. Mater. 2017, 29, 1605071.
(28)Allendorf, M. D., Bauer, C. A., Bhakta, R. K. & Houk, R. J. T. Luminescent Metal-Organic Frameworks. Chem. Soc. Rev. 2009, 38, 1330-1352.
(29)Rao, X.; Huang, Q.; Yang, X.; Cui, Y.; Yang, Y.; Wu, C.; Chen, B.; Qian, G. Color Tunable and White Light Emitting Tb3+ and Eu3+ Doped Lanthanide Metal-Organic Framework Materials. J. Mater. Chem. 2012, 22, 3210-3214.
(30)Carlos, L. D., Ferreira, R. A. S., de Zea Bermudez, V., Julian-Lopez, B. & Escribano, P. Progress on Lanthanide-Based Organic-Inorganic Hybrid Phosphors. Chem. Soc. Rev. 2011, 40, 536-549.
(31)Kan, D. et al. Blue-light Emission at Room Temperature From Ar+ Irradiated SrTiO3. Nat. Mater. 2005, 4, 816.
(32)Dale, S. H., Elsegood, M. R. J. & Coombs, A. E. L. Hydrogen Bond Directed Supramolecular Arrays Utilising Hemimellitic Acid: Solvent Inclusion Clathrates. Cryst. Eng. Commun. 2004, 6, 328-335.
(33)Usman, M.; Mendiratta, S.; Batjargal, S.; Haider, G.; Hayashi, M.; Rao Gade, N.; Chen, J.-W.; Chen, Y.-F.; Lu, K.-L. Semiconductor Behavior of a Three-Dimensional Strontium-Based Metal-Organic Framework. ACS Appl. Mater. Interfaces 2015, 7, 22767-22774.
(34)Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865-3868.
(35)Morales-García, Á.; Valero, R.; Illas, F. An Empirical, yet Practical Way To Predict the Band Gap in Solids by Using Density Functional Band Structure Calculations. J. Phys. Chem. C 2017, 121, 18862-18866.
(36)Becke, A. D. Perspective: Fifty Years of Density-Functional Theory in Chemical Physics. J. Chem. Phys. 2014, 140, 18A301.
(37)Shen, C.; Chu, J.; Qian, F.; Zou, X.; Zhong, C.; Li, K.; Jin, S. High Color Rendering Index White LED Based on Nano-YAG:Ce3+ Phosphor Hybrid With CdSe/CdS/ZnS Core/Shell/Shell Quantum Dots. J. Mod. Opt. 2012, 59, 1199-1203.
(38)Chen, L., Lin, C. C., Yeh, C. W. & Liu, R. S. Light Converting Inorganic Phosphors for White Light-Emitting Diodes. Materials 2010, 3, 2172.
(39)Goswami, S.; Ray, D.; Otake, K.-i.; Kung, C.-W.; Garibay, S. J.; Islamoglu, T.; Atilgan, A.; Cui, Y.; Cramer, C. J.; Farha, O. K.; Hupp, J. T. A Porous, Electrically Conductive Hexa-Zirconium(IV) Metal-Organic Framework. Chem. Sci. 2018, 9, 4477-4482.
(40)Sun, L.; Campbell, M. G.; Dincă, M. Electrically Conductive Porous Metal-Organic Frameworks. Angew. Chem. Int. Ed. 2016, 55, 3566-3579.
(41)Deng, H.; Grunder, S.; Cordova, K. E.; Valente, C.; Furukawa, H.; Hmadeh, M.; Gándara, F.; Whalley, A. C.; Liu, Z.; Asahina, S.; Kazumori, H.; O’Keeffe, M.; Terasaki, O.; Stoddart, J. F.; Yaghi, O. M. Large-Pore Apertures in a Series of Metal-Organic Frameworks. Science 2012, 336, 1018.
(42)Ye, S.; Liu, Y.; Chen, J.; Lu, K.; Wu, W.; Du, C.; Liu, Y.; Wu, T.; Shuai, Z.; Yu, G. Solution-Processed Solid Solution of a Novel Carbazole Derivative for High-Performance Blue Phosphorescent Organic Light-Emitting Diodes. Adv. Mater. 2010, 22, 4167-4171.
(43)Chang, Z., Yang, D. H., Xu, J., Hu, T. L. & Bu, X. H. Flexible Metal-Organic Frameworks: Recent Advances and Potential Applications. Adv. Mater. 2015, 27, 5432-5441.
(44)Sheldrick, G., A short history of SHELX. Acta Crystallogr. A 2008, 64, 112-122.

CHAPTER 5

(1) Oh, N.; Kim, B. H.; Cho, S.-Y.; Nam, S.; Rogers, S. P.; Jiang, Y.; Flanagan, J. C.; Zhai, Y.; Kim, J.-H.; Lee, J.; Yu, Y.; Cho, Y. K.; Hur, G.; Zhang, J.; Trefonas, P.; Rogers, J. A.; Shim, M., Double-Heterojunction Nanorod Light-Responsive LEDs for Display Applications. Science 2017, 355, 616.
(2) Tsonev, D.; Chun, H.; Rajbhandari, S.; McKendry, J. J. D.; Videv, S.; Gu, E.; Haji, M.; Watson, S.; Kelly, A. E.; Faulkner, G.; Dawson, M. D.; Haas, H.; Brien, D. O., A 3-Gb/s Single-LED OFDM-Based Wireless VLC Link Using a Gallium Nitride µLED. IEEE Photon. Technol. Lett. 2014, 26, 637-640.
(3) Perumal, P.; Karuppiah, C.; Liao, W.-C.; Liou, Y.-R.; Liao, Y.-M.; Chen, Y.-F., Diverse Functionalities of Vertically Stacked Graphene/Single Layer n-MoS2/SiO2/p-GaN Heterostructures. Sci. Rep. 2017, 7, 10002.
(4) Ban, D.; Han, S.; Lu, Z. H.; Oogarah, T.; SpringThorpe, A. J.; Liu, H. C., Near-Infrared to Visible Light Optical Upconversion by Direct Tandem Integration of Organic Light-Emitting Diode and Inorganic Photodetector. Appl. Phys. Lett. 2007, 90, 093108.
(5) McCarthy, M. A.; Liu, B.; Donoghue, E. P.; Kravchenko, I.; Kim, D. Y.; So, F.; Rinzler, A. G., Low-Voltage, Low-Power, Organic Light-Emitting Transistors for Active Matrix Displays. Science 2011, 332, 570.
(6) Yu, H.; Kim, D.; Lee, J.; Baek, S.; Lee, J.; Singh, R.; So, F., High-Gain Infrared-to-Visible Upconversion Light-Emitting Phototransistors. Nat. Photonics 2016, 10, 129.
(7) Vogel, U.; Wartenberg, P.; Richter, B.; Brenner, S.; Thomschke, M.; Fehse, K.; Baumgarten, J., Paper No S16.1: Svga Bidirectional OLED Microdisplay for Near-to-Eye Projection. Dig. Tech. Pap. 2015, 46, 66.
(8) Bera, K. P.; Haider, G.; Usman, M.; Roy, P. K.; Lin, H.-I.; Liao, Y.-M.; Inbaraj, C. R. P.; Liou, Y.-R.; Kataria, M.; Lu, K.-L.; Chen, Y.-F., Trapped Photons Induced Ultrahigh External Quantum Efficiency and Photoresponsivity in Hybrid Graphene/Metal-Organic Framework Broadband Wearable Photodetectors. Adv. Funct. Mater. 2018, 28, 1804802.
(9) Nair, R. R.; Blake, P.; Grigorenko, A. N.; Novoselov, K. S.; Booth, T. J.; Stauber, T.; Peres, N. M.; Geim, A. K., Fine Structure Constant Defines Visual Transparency of Graphene. Science 2008, 320, 1308.
(10) Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A., Electric Field Effect in Atomically Thin Carbon Films. Science 2004, 306, 666-669.
(11) Smith, A. D.; Niklaus, F.; Paussa, A.; Vaziri, S.; Fischer, A. C.; Sterner, M.; Forsberg, F.; Delin, A.; Esseni, D.; Palestri, P.; Östling, M.; Lemme, M. C., Electromechanical Piezoresistive Sensing in Suspended Graphene Membranes. Nano Lett. 2013, 13, 3237-3242.
(12) Haider, G.; Ravindranath, R.; Chen, T. P.; Roy, P.; Roy, P. K.; Cai, S. Y.; Chang, H. T.; Chen, Y. F., Dirac Point Induced Ultralow-Threshold Laser and Giant Optoelectronic Quantum Oscillations in Graphene-Based Heterojunctions. Nat. Commun. 2017, 8, 256.
(13) Yu, Y. J.; Zhao, Y.; Ryu, S.; Brus, L. E.; Kim, K. S.; Kim, P., Tuning the Graphene Work Function by Electric Field Effect. Nano Lett. 2009, 9, 3430-3434.
(14) Das Sarma, S.; Adam, S.; Hwang, E. H.; Rossi, E., Electronic Transport in Two-Dimensional Graphene. Rev. Mod. Phys. 2011, 83, 407-470.
(15) Liu, Y.; Cheng, R.; Liao, L.; Zhou, H.; Bai, J.; Liu, G.; Liu, L.; Huang, Y.; Duan, X., Plasmon Resonance Enhanced Multicolour Photodetection by Graphene. Nat. Commun. 2011, 2, 579.
(16) Echtermeyer, T. J.; Britnell, L.; Jasnos, P. K.; Lombardo, A.; Gorbachev, R. V.; Grigorenko, A. N.; Geim, A. K.; Ferrari, A. C.; Novoselov, K. S., Strong Plasmonic Enhancement of Photovoltage in Graphene. Nat. Commun. 2011, 2, 458.
(17) Mueller, T.; Xia, F.; Avouris, P., Graphene Photodetectors for High-Speed Optical Communications. Nat. Photonics 2010, 4, 297.
(18) Koppens, F. H. L.; Mueller, T.; Avouris, P.; Ferrari, A. C.; Vitiello, M. S.; Polini, M., Photodetectors Based on Graphene, Other Two-Dimensional Materials and Hybrid Systems. Nat. Nanotechnol. 2014, 9, 780.
(19) Kim, C. O.; Kim, S.; Shin, D. H.; Kang, S. S.; Kim, J. M.; Jang, C. W.; Joo, S. S.; Lee, J. S.; Kim, J. H.; Choi, S. H.; Hwang, E., High Photoresponsivity in an All-Graphene p-n Vertical Junction Photodetector. Nat. Commun. 2014, 5, 3249.
(20) Babichev, A. V.; Zhang, H.; Lavenus, P.; Julien, F. H.; Egorov, A. Y.; Lin, Y. T.; Tu, L. W.; Tchernycheva, M., Gan Nanowire Ultraviolet Photodetector with a Graphene Transparent Contact. Appl. Phys. Lett. 2013, 103, 201103.
(21) Nikitskiy, I.; Goossens, S.; Kufer, D.; Lasanta, T.; Navickaite, G.; Koppens, F. H.; Konstantatos, G., Integrating an Electrically Active Colloidal Quantum Dot Photodiode with a Graphene Phototransistor. Nat. Commun. 2016, 7, 11954.
(22) Bessonov, A. A.; Allen, M.; Liu, Y.; Malik, S.; Bottomley, J.; Rushton, A.; Medina-Salazar, I.; Voutilainen, M.; Kallioinen, S.; Colli, A.; Bower, C.; Andrew, P.; Ryhänen, T., Compound Quantum Dot-Perovskite Optical Absorbers on Graphene Enhancing Short-Wave Infrared Photodetection. ACS Nano 2017, 11, 5547-5557.
(23) Xia, F.; Mueller, T.; Lin, Y. M.; Valdes-Garcia, A.; Avouris, P., Ultrafast Graphene Photodetector. Nat. Nanotechnol. 2009, 4, 839-843.
(24) Sun, D.; Aivazian, G.; Jones, A. M.; Ross, J. S.; Yao, W.; Cobden, D.; Xu, X., Ultrafast Hot-Carrier-Dominated Photocurrent in Graphene. Nat. Nanotechnol. 2012, 7, 114.
(25) Yu, W. J.; Liu, Y.; Zhou, H.; Yin, A.; Li, Z.; Huang, Y.; Duan, X., Highly Efficient Gate-Tunable Photocurrent Generation in Vertical Heterostructures of Layered Materials. Nat. Nanotechnol. 2013, 8, 952.
(26) Massicotte, M.; Schmidt, P.; Vialla, F.; Schädler, K. G.; Reserbat-Plantey, A.; Watanabe, K.; Taniguchi, T.; Tielrooij, K. J.; Koppens, F. H. L., Picosecond Photoresponse in van der Waals Heterostructures. Nat. Nanotechnol. 2015, 11, 42.
(27) Fu, X.-W.; Liao, Z.-M.; Zhou, Y.-B.; Wu, H.-C.; Bie, Y.-Q.; Xu, J.; Yu, D.-P., Graphene/ZnO Nanowire/Graphene Vertical Structure Based Fast-Response Ultraviolet Photodetector. Appl. Phys. Lett. 2012, 100, 223114.
(28) Lee, M. M.; Teuscher, J.; Miyasaka, T.; Murakami, T. N.; Snaith, H. J., Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites. Science 2012, 338, 643-647.
(29) Dou, L.; Yang, Y.; You, J.; Hong, Z.; Chang, W.-H.; Li, G.; Yang, Y., Solution-Processed Hybrid Perovskite Photodetectors with High Detectivity. Nat. Commun. 2014, 5, 5404.
(30) Tan, Z. K.; Moghaddam, R. S.; Lai, M. L.; Docampo, P.; Higler, R.; Deschler, F.; Price, M.; Sadhanala, A.; Pazos, L. M.; Credgington, D.; Hanusch, F.; Bein, T.; Snaith, H. J.; Friend, R. H., Bright Light-Emitting Diodes Based on Organometal Halide Perovskite. Nat. Nanotechnol. 2014, 9, 687-692.
(31) Wei, T.-C.; Wang, H.-P.; Li, T.-Y.; Lin, C.-H.; Hsieh, Y.-H.; Chu, Y.-H.; He, J.-H., Photostriction of CH3NH3PbBr3 Perovskite Crystals. Adv. Mater. 2017, 29, 1701789.
(32) Yang, K.; Li, F.; Veeramalai, C. P.; Guo, T., A Facile Synthesis of CH3NH3PbBr3 Perovskite Quantum Dots and Their Application in Flexible Nonvolatile Memory. Appl. Phys. Lett. 2017, 110, 083102.
(33) Walters, G.; Sutherland, B. R.; Hoogland, S.; Shi, D.; Comin, R.; Sellan, D. P.; Bakr, O. M.; Sargent, E. H., Two-Photon Absorption in Organometallic Bromide Perovskites. ACS Nano 2015, 9, 9340-9346.
(34) Zheng, X.; Chen, B.; Yang, M.; Wu, C.; Orler, B.; Moore, R. B.; Zhu, K.; Priya, S., The Controlling Mechanism for Potential Loss in CH3NH3PbBr3 Hybrid Solar Cells. ACS Energy Lett. 2016, 1, 424-430.
(35) Schmidt, L. C.; Pertegás, A.; González-Carrero, S.; Malinkiewicz, O.; Agouram, S.; Mínguez Espallargas, G.; Bolink, H. J.; Galian, R. E.; Pérez-Prieto, J., Nontemplate Synthesis of CH3NH3PbBr3 Perovskite Nanoparticles. J. Am. Chem. Soc. 2014, 136, 850-853.
(36) Reina, A.; Jia, X.; Ho, J.; Nezich, D.; Son, H.; Bulovic, V.; Dresselhaus, M. S.; Kong, J., Large Area, Few-Layer Graphene Films on Arbitrary Substrates by Chemical Vapor Deposition. Nano Lett. 2009, 9, 30-35.
(37) Lee, Y.; Kwon, J.; Hwang, E.; Ra, C. H.; Yoo, W. J.; Ahn, J. H.; Park, J. H.; Cho, J. H., High-Performance Perovskite-Graphene Hybrid Photodetector. Adv. Mater. 2015, 27, 41-46.
(38) Wang, Y.; Zhang, Y.; Lu, Y.; Xu, W.; Mu, H.; Chen, C.; Qiao, H.; Song, J.; Li, S.; Sun, B.; Cheng, Y.-B.; Bao, Q., Hybrid Graphene-Perovskite Phototransistors with Ultrahigh Responsivity and Gain. Adv. Opt. Mater. 2015, 3, 1389-1396.
(39) Sun, Z.; Aigouy, L.; Chen, Z., Plasmonic-Enhanced Perovskite-Graphene Hybrid Photodetectors. Nanoscale 2016, 8, 7377-7383.
(40) Huang, H.; Susha, A. S.; Kershaw, S. V.; Hung, T. F.; Rogach, A. L., Control of Emission Color of High Quantum Yield CH3NH3PbBr3 Perovskite Quantum Dots by Precipitation Temperature. Adv. Sci. 2015, 2, 1500194.
(41) Kojima, A.; Ikegami, M.; Teshima, K.; Miyasaka, T., Highly Luminescent Lead Bromide Perovskite Nanoparticles Synthesized with Porous Alumina Media. Chem. Lett. 2012, 41, 397-399.
(42) Zhang, F.; Zhong, H.; Chen, C.; Wu, X.-g.; Hu, X.; Huang, H.; Han, J.; Zou, B.; Dong, Y., Brightly Luminescent and Color-Tunable Colloidal CH3NH3PbX3 (X = Br, I, Cl) Quantum Dots: Potential Alternatives for Display Technology. ACS Nano 2015, 9, 4533-4542.
(43) Tyagi, P.; Arveson, S. M.; Tisdale, W. A., Colloidal Organohalide Perovskite Nanoplatelets Exhibiting Quantum Confinement. J. Phys. Chem. Lett. 2015, 6, 1911-1916.
(44) Bouduban, M. E. F.; Burgos-Caminal, A.; Ossola, R.; Teuscher, J.; Moser, J.-E., Energy and Charge Transfer Cascade in Methylammonium Lead Bromide Perovskite Nanoparticle Aggregates. Chem. Sci. 2017, 8, 4371-4380.
(45) Jana, A.; Mittal, M.; Singla, A.; Sapra, S., Solvent-Free, Mechanochemical Syntheses of Bulk Trihalide Perovskites and Their Nanoparticles. ChemComm 2017, 53, 3046-3049.
(46) Lu, C.-H.; Hu, J.; Shih, W. Y.; Shih, W.-H., Control of Morphology, Photoluminescence, and Stability of Colloidal Methylammonium Lead Bromide Nanocrystals by Oleylamine Capping Molecules. J. Colloid Interface Sci. 2016, 484, 17-23.
(47) Mittal, M.; Jana, A.; Sarkar, S.; Mahadevan, P.; Sapra, S., Size of the Organic Cation Tunes the Band Gap of Colloidal Organolead Bromide Perovskite Nanocrystals. J. Phys. Chem. Lett. 2016, 7, 3270-3277.
(48) Bhaumik, S.; Veldhuis, S. A.; Ng, Y. F.; Li, M.; Muduli, S. K.; Sum, T. C.; Damodaran, B.; Mhaisalkar, S.; Mathews, N., Highly Stable, Luminescent Core-Shell Type Methylammonium-Octylammonium Lead Bromide Layered Perovskite Nanoparticles. ChemComm 2016, 52, 7118-7121.
(49) Bouduban, M. E. F.; Burgos-Caminal, A.; Teuscher, J.; Moser, J.-E., Unveiling the Nature of Charge Carrier Interactions by Electroabsorption Spectroscopy: An Illustration with Lead-Halide Perovskites. Chimia 2017, 71, 231-235.
(50) Teunis, M. B.; Johnson, M. A.; Muhoberac, B. B.; Seifert, S.; Sardar, R., Programmable Colloidal Approach to Hierarchical Structures of Methylammonium Lead Bromide Perovskite Nanocrystals with Bright Photoluminescent Properties. Chem. Mater. 2017, 29, 3526-3537.
(51) Ryu, S.; Liu, L.; Berciaud, S.; Yu, Y. J.; Liu, H.; Kim, P.; Flynn, G. W.; Brus, L. E., Atmospheric Oxygen Binding and Hole Doping in Deformed Graphene on a SiO2 Substrate. Nano Lett. 2010, 10, 4944-4951.
(52) Mattevi, C.; Kim, H.; Chhowalla, M., A Review of Chemical Vapour Deposition of Graphene on Copper. J. Mater. Chem. 2011, 21, 3324-3334.
(53) Yu, W. J.; Vu, Q. A.; Oh, H.; Nam, H. G.; Zhou, H.; Cha, S.; Kim, J.-Y.; Carvalho, A.; Jeong, M.; Choi, H.; Castro Neto, A. H.; Lee, Y. H.; Duan, X., Unusually Efficient Photocurrent Extraction in Monolayer van der Waals Heterostructure by Tunnelling through Discretized Barriers. Nat. Commun. 2016, 7, 13278.
(54) Lan, X.; Voznyy, O.; García de Arquer, F. P.; Liu, M.; Xu, J.; Proppe, A. H.; Walters, G.; Fan, F.; Tan, H.; Liu, M.; Yang, Z.; Hoogland, S.; Sargent, E. H., 10.6% Certified Colloidal Quantum Dot Solar Cells via Solvent-Polarity-Engineered Halide Passivation. Nano Lett. 2016, 16, 4630-4634.
(55) Konstantatos, G.; Badioli, M.; Gaudreau, L.; Osmond, J.; Bernechea, M.; Garcia de Arquer, F. P.; Gatti, F.; Koppens, F. H., Hybrid Graphene-Quantum Dot Phototransistors with Ultrahigh Gain. Nat. Nanotechnol. 2012, 7, 363-368.
(56) Hu, P.; Wen, Z.; Wang, L.; Tan, P.; Xiao, K., Synthesis of Few-Layer Gase Nanosheets for High Performance Photodetectors. ACS Nano 2012, 6, 5988-5994.
(57) Li, L.; Zhang, F.; Wang, J.; An, Q.; Sun, Q.; Wang, W.; Zhang, J.; Teng, F., Achieving EQE of 16,700% in P3HT:PC71BM Based Photodetectors by Trap-Assisted Photomultiplication. Sci. Rep. 2015, 5, 9181.
(58) Konstantatos, G.; Badioli, M.; Gaudreau, L.; Osmond, J.; Bernechea, M.; de Arquer, F. P. G.; Gatti, F.; Koppens, F. H. L., Hybrid Graphene-Quantum Dot Phototransistors with Ultrahigh Gain. Nat. Nanotechnol. 2012, 7, 363.
(59) Britnell, L.; Gorbachev, R. V.; Jalil, R.; Belle, B. D.; Schedin, F.; Mishchenko, A.; Georgiou, T.; Katsnelson, M. I.; Eaves, L.; Morozov, S. V.; Peres, N. M. R.; Leist, J.; Geim, A. K.; Novoselov, K. S.; Ponomarenko, L. A., Field-Effect Tunneling Transistor Based on Vertical Graphene Heterostructures. Science 2012, 335, 947-950.
(60) Yu, W. J.; Li, Z.; Zhou, H.; Chen, Y.; Wang, Y.; Huang, Y.; Duan, X., Vertically Stacked Multi-Heterostructures of Layered Materials for Logic Transistors and Complementary Inverters. Nat. Mater. 2012, 12, 246.
(61) Yang, H.; Heo, J.; Park, S.; Song, H. J.; Seo, D. H.; Byun, K.-E.; Kim, P.; Yoo, I.; Chung, H.-J.; Kim, K., Graphene Barristor, a Triode Device with a Gate-Controlled Schottky Barrier. Science 2012, 336, 1140-1143.
(62) Georgiou, T.; Jalil, R.; Belle, B. D.; Britnell, L.; Gorbachev, R. V.; Morozov, S. V.; Kim, Y.-J.; Gholinia, A.; Haigh, S. J.; Makarovsky, O.; Eaves, L.; Ponomarenko, L. A.; Geim, A. K.; Novoselov, K. S.; Mishchenko, A., Vertical Field-Effect Transistor Based on Graphene-WS2 Heterostructures for Flexible and Transparent Electronics. Nat. Nanotechnol. 2012, 8, 100.
(63) Yu, J.; Cui, Y.; Xu, H.; Yang, Y.; Wang, Z.; Chen, B.; Qian, G., Confinement of Pyridinium Hemicyanine Dye within an Anionic Metal-Organic Framework for Two-Photon-Pumped Lasing. Nat. Commun. 2013, 4, 2719.
(64) Medishetty, R.; Nalla, V.; Nemec, L.; Henke, S.; Mayer, D.; Sun, H.; Reuter, K.; Fischer, R. A., A New Class of Lasing Materials: Intrinsic Stimulated Emission from Nonlinear Optically Active Metal-Organic Frameworks. Adv. Mater. 2017, 29, 1605637.

CHAPTER 6
(1) Lee, M.; Callard, S.; Seassal, C.; Jeon, H., Taming of Random Lasers. Nat. Photonics 2019, 13, 445-448.
(2) Perumbilavil, S.; Piccardi, A.; Barboza, R.; Buchnev, O.; Kauranen, M.; Strangi, G.; Assanto, G., Beaming Random Lasers with Soliton Control. Nat. Commun. 2018, 9, 3863.
(3) Redding, B.; Choma, M. A.; Cao, H., Speckle-Free Laser Imaging Using Random Laser Illumination. Nat. Photonics 2012, 6, 355-359.
(4) Wiersma, D. S., The Physics and Applications of Random lasers. Nat. Phys. 2008, 4, 359.
(5) Wang, Z.; Tian, B.; Pantouvaki, M.; Guo, W.; Absil, P.; Van Campenhout, J.; Merckling, C.; Van Thourhout, D., Room-Temperature InP Distributed Feedback Laser Array Directly Grown on Silicon. Nat. Photonics 2015, 9, 837.
(6) Liang, D.; Bowers, J. E., Recent Progress in Lasers on Silicon. Nat. Photonics 2010, 4, 511.
(7) Wiersma, D., The Smallest Random Laser. Nature 2000, 406, 133-135.
(8) Cao, H.; Xu, J. Y.; Zhang, D. Z.; Chang, S. H.; Ho, S. T.; Seelig, E. W.; Liu, X.; Chang, R. P. H., Spatial Confinement of Laser Light in Active Random Media. Phys. Rev. Lett. 2000, 84, 5584-5587.
(9) Shi, X.; Liao, Y.-M.; Lin, H.-Y.; Tsao, P.-W.; Wu, M.-J.; Lin, S.-Y.; Hu, H.-H.; Wang, Z.; Lin, T.-Y.; Lai, Y.-C.; Chen, Y.-F., Dissolvable and Recyclable Random Lasers. ACS Nano 2017, 11, 7600-7607.
(10) Roy, P. K.; Haider, G.; Lin, H.-I.; Liao, Y.-M.; Lu, C.-H.; Chen, K.-H.; Chen, L.-C.; Shih, W.-H.; Liang, C.-T.; Chen, Y.-F., Multicolor Ultralow-Threshold Random Laser Assisted by Vertical-Graphene Network. Adv. Opt. Mater. 2018, 6, 1800382.
(11) He, H.; Ma, E.; Cui, Y.; Yu, J.; Yang, Y.; Song, T.; Wu, C.-D.; Chen, X.; Chen, B.; Qian, G., Polarized Three-Photon-Pumped Laser in a Single MOF Microcrystal. Nat. Commun. 2016, 7, 11087.
(12) Huang, M. H.; Mao, S.; Feick, H.; Yan, H.; Wu, Y.; Kind, H.; Weber, E.; Russo, R.; Yang, P., Room-Temperature Ultraviolet Nanowire Nanolasers. Science 2001, 292, 1897.
(13) Tong, L.; Gattass, R. R.; Ashcom, J. B.; He, S.; Lou, J.; Shen, M.; Maxwell, I.; Mazur, E., Subwavelength-Diameter Silica Wires for Low-Loss Optical Wave Guiding. Nature 2003, 426, 816-819.
(14) Zhang, Q.; Su, R.; Du, W.; Liu, X.; Zhao, L.; Ha, S. T.; Xiong, Q., Advances in Small Perovskite-Based Lasers. Small Methods 2017, 1, 1700163.
(15) Deschler, F.; Price, M.; Pathak, S.; Klintberg, L. E.; Jarausch, D.-D.; Higler, R.; Hüttner, S.; Leijtens, T.; Stranks, S. D.; Snaith, H. J.; Atatüre, M.; Phillips, R. T.; Friend, R. H., High Photoluminescence Efficiency and Optically Pumped Lasing in Solution-Processed Mixed Halide Perovskite Semiconductors. J. Phys. Chem. Lett. 2014, 5, 1421-1426.
(16) Yuan, Z.; Zhou, C.; Tian, Y.; Shu, Y.; Messier, J.; Wang, J. C.; van de Burgt, L. J.; Kountouriotis, K.; Xin, Y.; Holt, E.; Schanze, K.; Clark, R.; Siegrist, T.; Ma, B., One-Dimensional Organic Lead Halide Perovskites with Efficient Bluish White-Light Emission. Nat. Commun. 2017, 8, 14051.
(17) Kim, G. Y.; Senocrate, A.; Yang, T.-Y.; Gregori, G.; Grätzel, M.; Maier, J., Large Tunable Photoeffect on Ion Conduction in Halide Perovskites and Implications for Photodecomposition. Nat. Mater. 2018, 17, 445-449.
(18) Zaworotko, M. J., Designer Pores Made Easy. Nature 2008, 451, 410.
(19) Usman, M.; Bera, K. P.; Haider, G.; Sainbileg, B.; Hayashi, M.; Lee, G.-H.; Peng, S.-M.; Chen, Y.-F.; Lu, K.-L., Single-Molecule-Based Electroluminescent Device as Future White Light Source. ACS Appl. Mater. Interfaces 2019, 11, 4084-4092.
(20) Haider, G.; Usman, M.; Chen, T.-P.; Perumal, P.; Lu, K.-L.; Chen, Y.-F., Electrically Driven White Light Emission from Intrinsic Metal-Organic Framework. ACS Nano 2016, 10, 8366-8375.
(21) Bera, K. P.; Haider, G.; Usman, M.; Roy, P. K.; Lin, H.-I.; Liao, Y.-M.; Inbaraj, C. R. P.; Liou, Y.-R.; Kataria, M.; Lu, K.-L.; Chen, Y.-F., Trapped Photons Induced Ultrahigh External Quantum Efficiency and Photoresponsivity in Hybrid Graphene/Metal-Organic Framework Broadband Wearable Photodetectors. Adv. Funct. Mater. 2018, 28, 1804802.
(22) Yu, J.; Cui, Y.; Xu, H.; Yang, Y.; Wang, Z.; Chen, B.; Qian, G., Confinement of Pyridinium Hemicyanine Dye within an Anionic Metal-Organic Framework for Two-Photon-Pumped Lasing. Nat. Commun. 2013, 4, 2719.
(23) Wei, Y.; Dong, H.; Wei, C.; Zhang, W.; Yan, Y.; Zhao, Y. S., Wavelength-Tunable Microlasers Based on the Encapsulation of Organic Dye in Metal-Organic Frameworks. Adv. Mater. 2016, 28, 7424-7429.
(24) Medishetty, R.; Nalla, V.; Nemec, L.; Henke, S.; Mayer, D.; Sun, H.; Reuter, K.; Fischer, R. A., A New Class of Lasing Materials: Intrinsic Stimulated Emission from Nonlinear Optically Active Metal-Organic Frameworks. Adv. Mater. 2017, 29, 1605637.
(25) Wu, Z.-F.; Tan, B.; Deng, Z.-H.; Xie, Z.-L.; Fu, J.-J.; Shen, N.-N.; Huang, X.-Y., Dual-Emission Luminescence of Magnesium Coordination Polymers Based on Mixed Organic Ligands. Chem.Eur.J 2016, 22, 1334-1339.
(26) Wu, Z.-F.; Tan, B.; Wang, J.-Y.; Du, C.-F.; Deng, Z.-H.; Huang, X.-Y., Tunable Photoluminescence and Direct White-Light Emission in Mg-Based Coordination Networks. ChemComm 2015, 51, 157-160.
(27) Kresse, G.; Furthmüller, J., Efficient Iterative Schemes for Ab-initio Total-Energy Calculations Using a Plane-Wave Basis Set. Phys. Rev. B 1996, 54, 11169-11186.
(28) Yuan, F.; Wu, Z.; Dong, H.; Xi, J.; Xi, K.; Divitini, G.; Jiao, B.; Hou, X.; Wang, S.; Gong, Q., High Stability and Ultralow Threshold Amplified Spontaneous Emission from Formamidinium Lead Halide Perovskite Films. J. Phys. Chem. C 2017, 121, 15318-15325.
(29) Wang, Y.; Duan, Z.; Qiu, Z.; Zhang, P.; Wu, J.; Zhang, D.; Xiang, T., Random Lasing in Human Tissues Embedded with Organic Dyes for Cancer Diagnosis. Sci. Rep. 2017, 7, 8385.
(30) Hu, H. W.; Haider, G.; Liao, Y. M.; Roy, P. K.; Ravindranath, R.; Chang, H. T.; Lu, C. H.; Tseng, C. Y.; Lin, T. Y.; Shih, W. H.; Chen, Y. F., Wrinkled 2D Materials: A Versatile Platform for Low-Threshold Stretchable Random Lasers. Adv. Mater. 2017, 29, 1703549.
(31) Lin, H.-I.; Shen, K.-C.; Liao, Y.-M.; Li, Y.-H.; Perumal, P.; Haider, G.; Cheng, B. H.; Liao, W.-C.; Lin, S.-Y.; Lin, W.-J.; Lin, T.-Y.; Chen, Y.-F., Integration of Nanoscale Light Emitters and Hyperbolic Metamaterials: An Efficient Platform for the Enhancement of Random Laser Action. ACS Photonics 2018, 5, 718-727.
(32) Haider, G.; Lin, H.-I.; Yadav, K.; Shen, K.-C.; Liao, Y.-M.; Hu, H.-W.; Roy, P. K.; Bera, K. P.; Lin, K.-H.; Lee, H.-M.; Chen, Y.-T.; Chen, F.-R.; Chen, Y.-F., A Highly-Efficient Single Segment White Random Laser. ACS Nano 2018, 12, 11847-11859.
(33) Yoshioka, H.; Ota, T.; Chen, C.; Ryu, S.; Yasui, K.; Oki, Y., Extreme Ultra-Low Lasing Threshold of Full-Polymeric Fundamental Microdisk Printed with Room-Temperature Atmospheric Ink-Jet Technique. Sci. Rep. 2015, 5, 10623.
(34) Zhang, Y.; Dong, H.; Liu, Y.; Zhang, C.; Hu, F.; Zhao, Y. S., Dual-Wavelength Lasing from Organic Dye Encapsulated Metal-Organic Framework Microcrystals. ChemComm 2019, 55, 3445-3448.
(35) Yuan, F.; Xi, Z.; Shi, X.; Li, Y.; Li, X.; Wang, Z.; Fan, L.; Yang, S., Ultrastable and Low-Threshold Random Lasing from Narrow-Bandwidth-Emission Triangular Carbon Quantum Dots. Adv. Opt. Mater. 2019, 7, 1801202.
(36) Yakunin, S.; Protesescu, L.; Krieg, F.; Bodnarchuk, M. I.; Nedelcu, G.; Humer, M.; De Luca, G.; Fiebig, M.; Heiss, W.; Kovalenko, M. V., Low-Threshold Amplified Spontaneous Emission and Lasing from Colloidal Nanocrystals of Caesium Lead Halide Perovskites. Nat. Commun. 2015, 6, 8056.
(37) Chen, R.; Van Duong, T.; Sun, H. D., Single Mode Lasing from Hybrid Hemispherical Microresonators. Sci. Rep. 2012, 2, 244.
(38) Cui, Y.; Li, B.; He, H.; Zhou, W.; Chen, B.; Qian, G., Metal-Organic Frameworks as Platforms for Functional Materials. Acc. Chem. Res. 2016, 49, 483-493.
(39) Zhai, T.; Zhang, X.; Pang, Z.; Su, X.; Liu, H.; Feng, S.; Wang, L., Random Laser Based on Waveguided Plasmonic Gain Channels. Nano Lett. 2011, 11, 4295-4298.
(40) Xu, Z.; Liao, Q.; Shi, Q.; Zhang, H.; Yao, J.; Fu, H., Low-Threshold Nanolasers Based on Slab-Nanocrystals of H-Aggregated Organic Semiconductors. Adv. Mater. 2012, 24, OP216-220.
(41) Dai, J.; Zhou, P.; Lu, J.; Zheng, H.; Guo, J.; Wang, F.; Gu, N.; Xu, C., The Excitonic Photoluminescence Mechanism and Lasing Action in Band-Gap-Tunable CdS1-XSeX Nanostructures. Nanoscale 2016, 8, 804-811.
(42) Perdew, J. P.; Burke, K.; Ernzerhof, M., Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1997, 78, 1396-1396.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊