跳到主要內容

臺灣博碩士論文加值系統

(98.80.143.34) 您好!臺灣時間:2024/10/07 19:20
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張書瑋
研究生(外文):Shu-Wei Chang
論文名稱:白光隨機雷射
論文名稱(外文):A White Random laser
指導教授:陳永芳陳永芳引用關係
指導教授(外文):Yang-Fang Chen
口試委員:林泰源許芳琪
口試委員(外文):Tai-Yuan LinFang-Chi Hsu
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:應用物理研究所
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2018
畢業學年度:108
語文別:英文
論文頁數:51
中文關鍵詞:高光譜輻射率廣角照明白光隨機雷射
外文關鍵詞:high spectral radianceangle-free emissionwhite random laser
DOI:10.6342/NTU201802220
相關次數:
  • 被引用被引用:0
  • 點閱點閱:96
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
由於隨機雷射的產生機制和傳統雷射本質上有所不同,使得隨機雷射可以有更良好的特性及更廣泛的應用,例如高光譜輻射率及廣角的特性,在照明系統及鑑識科技上,都比傳統雷射有更良好的發揮。在本篇論文當中,通過低成本全溶液製程和自組裝結構,製造並演示高純度和高穩定性的白光隨機雷射。值得注意的是,白光隨機雷射的波長,線寬和強度幾乎是各向同性的,這在任何傳統雷射系統中是難以實現。通過單晶薄膜上集成三個獨立的單色雷射光薄膜和選擇性泵激能量以及適當的色彩平衡,動態微調廣域可見光範圍內的色彩也是可行的。伴隨這些優良特性,白光隨機雷射在高亮度照明,全場成像,全彩色顯示器,可見光通信和醫療生物傳感等領域都有很高的潛力。
Random laser with intrinsically uncomplicated fabrication processes, high spectral radiance, angle-free emission, and conformal onto freeform surfaces is in principle ideal for a variety of applications, ranging from lighting to identification systems. In this work, a white random laser (White-RL) with high-purity and high-stability is designed, fabricated, and demonstrated via the cost-effective materials (e.g., organic laser dyes) and simple methods (e.g., all-solution process and self-assembled structures). Notably, the wavelength, linewidth, and intensity of White-RL are nearly isotropic, nevertheless hard to be achieved in any conventional laser systems. Dynamically fine-tuning colour over a broad visible range is also feasible by on-chip integration of three free-standing monochromatic laser films with selective pumping scheme and appropriate colour balance. With these schematics, White-RL shows great potential and high application values in high-brightness illumination, full-field imaging, full-colour displays, visible-colour communications, and medical biosensing.
口試委員會審定書 I
誌謝 II
中文摘要 III
Abstract IV
List of Publication V
Contents VI
List of Figures VIII
Chapter 1 Introduction… 1
Reference 5
Chapter 2 Theoretical Background….. 10
2.1 CIE Chromaticity Diagram 10
2.1.1 Color Space 10
2.1.2 CIE Chromaticity Diagram 12
2.1.3 Calculation of Chromaticity 14
2.2 Random Laser(RL) 15
2.2.1 Mechanisms 15
2.2.2 Applications 16
Chapter 3 Experimental Details…. 19
3.1 Material Preparation and Device Fabrication 19
3.2 Random Laser System 23
3.3 Scanning Electron Microscopy 25
3.4 Measurement of Optical and Material Characteristics 27
3.5 High-Resolution Lasing Spectra of RGB Monochromatic Polymer Films (MPFs) 28
Reference 32
Chapter 4 Results and Discussions….. 33
4.1 Scanning Electron Microscopy (SEM) Image 33
4.2 Random Laser Characteristics of MPFs 37
4.3 Colour-Tunable MPFs 40
Reference 50
Chapter 5 Conclusion…. 51
1 Cao, H. et al. Random laser action in semiconductor powder. Phys. Rev. Lett. 82, 2278 (1999).
2Wiersma, D. S. The physics and applications of random lasers. Nature Phys. 4, 359 (2008).
3Wiersma, D. S. & Cavalieri, S. Light emission: A temperature-tunable random laser. Nature 414, 708-709 (2001).
4Luan, F. et al. Lasing in nanocomposite random media. Nano Today 10, 168-192 (2015).
5Tsao, J. Y., Saunders, H. D., Creighton, J. R., Coltrin, M. E. & Simmons, J. A. Solid-state lighting: an energy-economics perspective. J. Phys. D: Appl. Phys. 43, 354001 (2010).
6Haitz, R. & Tsao, J. Y. Solid‐state lighting:‘The case’10 years after and future prospects. Phys. Status Solidi A 208, 17-29 (2011).
7Narukawa, Y., Ichikawa, M., Sanga, D., Sano, M. & Mukai, T. White light emitting diodes with super-high luminous efficacy. J. Phys. D: Appl. Phys. 43, 354002 (2010).
8Crawford, M. H. LEDs for solid-state lighting: performance challenges and recent advances. IEEE J. Sel. Top. Quantum Electron. 15, 1028-1040 (2009).
9Wierer, J. J., Tsao, J. Y. & Sizov, D. S. Comparison between blue lasers and light‐emitting diodes for future solid‐state lighting. Laser Photon. Rev. 7, 963-993 (2013).
10Neumann, A. et al. Four-color laser white illuminant demonstrating high color-rendering quality. Opt. Express 19, A982-A990 (2011).
11Fujii, K., Takahashi, T. & Asami, Y. Hollow-cathode-type CW white light laser. IEEE J. Quantum Electron. 11, 111-114 (1975).
12Hu, X. et al. High-power red-green-blue laser light source based on intermittent oscillating dual-wavelength Nd: YAG laser with a cascaded LiTaO 3 superlattice. Opt. Lett. 33, 408-410 (2008).
13Shin, Y., Park, S., Kim, Y. & Lee, J. Development of a PC interface board for true color control using an Ar–Kr white-light laser. Opt. Laser. Technol. 38, 266-271 (2006).
14Yamashita, K., Takeuchi, N., Oe, K. & Yanagi, H. Simultaneous RGB lasing from a single-chip polymer device. Opt. Lett. 35, 2451-2453 (2010).
15Zhai, T. et al. Red–green–blue laser emission from cascaded polymer membranes. Nanoscale 7, 19935-19939 (2015).
16Fan, F., Turkdogan, S., Liu, Z., Shelhammer, D. & Ning, C. A monolithic white laser. Nat. Nanotechnol. 10, 796-803 (2015).
17Wiersma, D. Laser physics: The smallest random laser. Nature 406, 132-135 (2000).
18Redding, B., Choma, M. A. & Cao, H. Speckle-free laser imaging using random laser illumination. Nat. Photon. 6, 355-359 (2012).
19Liao, Y. M. et al. Highly stretchable label‐like random laser on universal substrates. Advanced Materials Technologies 1, 1600068 (2016).
20Shi, X. et al. Dissolvable and Recyclable Random Lasers. ACS Nano 11, 7600-7607 (2017).
21Lawandy, N. M., Balachandran, R., Gomes, A. & Sauvain, E. Laser action in strongly scattering media. Nature 368, 436-438 (1994).
22Polson, R. C. & Vardeny, Z. V. Random lasing in human tissues. Appl. Phys. Lett. 85, 1289-1291 (2004).
23Chen, R. et al. Excitonic Properties and Near‐Infrared Coherent Random Lasing in Vertically Aligned CdSe Nanowires. Adv. Mater. 23, 1404-1408 (2011).
24Das, R. N., Lin, H. T., Lauffer, J. M. & Markovich, V. R. Printable electronics: Towards materials development and device fabrication. Circuit World 37, 38-45 (2011).
25Lau, S. P. et al. Flexible ultraviolet random lasers based on nanoparticles. Small 1, 956-959 (2005).
26Hu, H. W. et al. Wrinkled 2D Materials: A Versatile Platform for Low‐Threshold Stretchable Random Lasers. Adv. Mater. 29, 1703549 (2017).
27Chen, S., Zhao, X., Wang, Y., Shi, J. & Liu, D. White light emission with red-green-blue lasing action in a disordered system of nanoparticles. Appl. Phys. Lett. 101, 123508 (2012).
28Wang, Y. et al. Cascade-pumped random lasers with coherent emission formed by Ag–Au porous nanowires. Opt. Lett. 39, 5-8 (2014).
29Shi, X. et al. Random lasing with a high quality factor over the whole visible range based on cascade energy transfer. Adv. Opt. Mater. 2, 88-93 (2014).
30Di Stasio, F., Polovitsyn, A., Angeloni, I., Moreels, I. & Krahne, R. Broadband amplified spontaneous emission and random lasing from wurtzite CdSe/CdS “giant-shell” nanocrystals. ACS Photonics 3, 2083-2088 (2016).
31Zhai, T. et al. A RGB random laser on an optical fiber facet. RSC Adv. 7, 45852-45855 (2017).
32Shi, X., Tong, J., Liu, D. & Wang, Z. Resonance energy transfer process in nanogap-based dual-color random lasing. Appl. Phys. Lett. 110, 171110 (2017).
33Chang, Q. et al. Broadband plasmonic silver nanoflowers for high-performance random lasing covering visible region. Nanophotonics 6, 1151-1160 (2017).
34Zhai, T., Xu, Z., Li, S. & Zhang, X. Red-green-blue plasmonic random laser. Opt. Express 25, 2100-2106 (2017).
35Rogers, J. A., Someya, T. & Huang, Y. Materials and mechanics for stretchable electronics. Science 327, 1603-1607 (2010).
36Berggren, M., Nilsson, D. & Robinson, N. D. Organic materials for printed electronics. Nat. Mater. 6, 3 (2007).
37Porel, S., Singh, S., Harsha, S. S., Rao, D. N. & Radhakrishnan, T. Nanoparticle-embedded polymer: in situ synthesis, free-standing films with highly monodisperse silver nanoparticles and optical limiting. Chem. Mater. 17, 9-12 (2005).
38Abulikemu, M. et al. In Situ Synthesis of Self‐Assembled Gold Nanoparticles on Glass or Silicon Substrates through Reactive Inkjet Printing. Angew. Chem. 126, 430-433 (2014).
39Reineke, S. et al. White organic light-emitting diodes with fluorescent tube efficiency. Mater. Res. Soc. Symp. Proc. 1212 (2009).
40Cheng, Y.-J., Yang, S.-H. & Hsu, C.-S. Synthesis of conjugated polymers for organic solar cell applications. Chem. Rev. 109, 5868-5923 (2009).

1Johnson, P. B. & Christy R.-W. Optical constants of the noble metals. Phys. Rev. B 6, 4370 (1972).

1Wiersma, D. S. & Lagendijk, A. Light diffusion with gain and random lasers. Phys. Rev. E 54, 4256 (1996).
2Wiersma, D. S. The physics and applications of random lasers. Nature Phys. 4, 359 (2008).
3Cao, H., Zhao, Y., Ong, H. & Chang, R. Far-field characteristics of random lasers. Phys. Rev. B 59, 15107 (1999).
4Shin, J.-W. et al. Random nanostructure scattering layer for suppression of microcavity effect and light extraction in OLEDs. Opt. Lett. 39, 3527-3530 (2014).
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top