蘇珮琪 (1996)。薏仁對高血脂症和糖尿症病患血漿脂質和血糖的影響。出版之碩士論文,台北縣,天主教輔仁大學食品營養學系。黃博偉 (2003)。不同糙薏仁成分對糖尿病大白鼠醣代謝及脂質代謝的影響。未出版之博士論文,台北市,國立臺灣大學食品科技研究所。吳宛穎 (2006)。糙薏仁對第2型糖尿病人血糖及血脂肪的影響。未出版之博士論文,基隆市,國立臺灣海洋大學大學食品科學系。陳雨音 (2008),薏仁對改善中老年人血糖、血脂及老人斑之影響。未出版之博士論文,基隆市,國立臺灣海洋大學大學食品科學系。葉昱德 (2013)。中國橄欖之抗增生活性因子的純化及鑑定暨其生理活性之研究。未出版之博士論文,台北市,國立臺灣大學食品科技研究所。張瀞文 (2015)。以體外及體內模式探討薏仁麩皮萃取物減緩第二型糖尿病的效用及其作用機制。未出版之碩士論文,台北市,國立臺灣大學食品科技研究所。戴君倩 (2018)。優化體外消化方法學並據此開發改善代謝症候群之薏仁產品。未出版之碩士論文,台北市,國立臺灣大學食品科技研究所。鍾頡 (2019)。以擠壓加工開發之糙薏仁即食產品對升糖指數特性分析及評估其對人體血脂之影響。未出版之碩士論文,台北市,國立臺灣大學食品科技研究所。Chaisiricharoenkul, J.; Tongta, S.; Intarapichet, K.-O., Structure and chemical and physicochemical properties of Job’s tear (Coix lacryma-jobi L.) kernels and flours. Suranaree J. Sci. Technol 2011, 18 (2), 109-22.
Chiang, W.; Cheng, C. Y.; Chiang, M. T.; Chung, K. T., Effects of dehulled adlay on the culture count of some microbiota and their metabolism in the gastrointestinal tract of rats. Journal of agricultural and food chemistry 2000, 48 (3), 829-832.
Huang, B. W.; Chiang, M. T.; Yao, H. T.; Chiang, W., The effect of adlay oil on plasma lipids, insulin and leptin in rat. Phytomedicine 2005, 12 (6-7), 433-439.
Yeh; Chiang; Chiang, Effects of dehulled adlay on plasma glucose and lipid concentrations in streptozotocin-induced diabetic rats fed a diet enriched in cholesterol. International journal for vitamin and nutrition research 2006, 76 (5), 299-305.
Shih, C. K.; Chiang, W.; Kuo, M. L., Effects of adlay on azoxymethane-induced colon carcinogenesis in rats. Food and chemical toxicology 2004, 42 (8), 1339-1347.
Tseng, Y. H.; Yang, J. H.; Chang, H. L.; Lee, Y. L.; Mau, J. L., Antioxidant properties of methanolic extracts from monascal adlay. Food chemistry 2006, 97 (3), 375-381.
Wang, L.; Chen, J.; Xie, H.; Ju, X.; Liu, R. H., Phytochemical profiles and antioxidant activity of adlay varieties. Journal of agricultural and food chemistry 2013, 61 (21), 5103-5113.
Zhao, M.; Yang, Q.; Lin, L.; Sun, B.; Wang, Y., Intracellular antioxidant activities of selected cereal phenolic extracts and mechanisms underlying the protective effects of adlay phenolic extracts on H2O2-induced oxidative stress in human erythrocytes. Journal of Functional Foods 2017, 31, 160-171.
Lin, L.; Yang, Q.; Zhao, K.; Zhao, M., Identification of the free phenolic profile of Adlay bran by UPLC-QTOF-MS/MS and inhibitory mechanisms of phenolic acids against xanthine oxidase. Food chemistry 2018, 253, 108-118.
Sarian, M. N.; Ahmed, Q. U.; So’ad, M.; Zaiton, S.; Alhassan, A. M.; Murugesu, S.; Perumal, V.; Syed Mohamad, S. N. A.; Khatib, A.; Latip, J., Antioxidant and antidiabetic effects of flavonoids: A structure-activity relationship based study. BioMed research international 2017, 2017.
Huang, D. W.; Kuo, Y. H.; Lin, F. Y.; Lin, Y. L.; Chiang, W., Effect of Adlay (Coix lachryma-jobi L. var. ma-yuen Stapf) Testa and its phenolic components on Cu2+-treated low-density lipoprotein (LDL) oxidation and lipopolysaccharide (LPS)-induced inflammation in RAW 264.7 macrophages. Journal of agricultural and food chemistry 2009, 57 (6), 2259-2266.
Saeidnia, S.; Manayi, A.; Gohari, A. R.; Abdollahi, M., The story of beta-sitosterol-a review. European Journal of Medicinal Plants 2014, 590-609.
Hwang, S. L.; Kim, H. N.; Jung, H. H.; Kim, J. E.; Choi, D. K.; Hur, J. M.; Lee, J. Y.; Song, H.; Song, K. S.; Huh, T. L., Beneficial effects of beta-sitosterol on glucose and lipid metabolism in L6 myotube cells are mediated by AMP-activated protein kinase. Biochem. Biophys. Res. Commun. 2008, 377 (4), 1253-1258.
Chai, J. W.; Lim, S. L.; Kanthimathi, M.; Kuppusamy, U. R., Gene regulation in β-sitosterol-mediated stimulation of adipogenesis, glucose uptake, and lipid mobilization in rat primary adipocytes. Genes & nutrition 2011, 6 (2), 181.
Tanaka, M.; Misawa, E.; Ito, Y.; Habara, N.; Nomaguchi, K.; Yamada, M.; Toida, T.; Hayasawa, H.; Takase, M.; Inagaki, M.; Higuchi, R., Identification of Five Phytosterols from Aloe Vera Gel as Anti-diabetic Compounds. Biological and Pharmaceutical Bulletin 2006, 29 (7), 1418-1422.
Gupta, R.; Sharma, A. K.; Dobhal, M.; Sharma, M.; Gupta, R., Antidiabetic and antioxidant potential of β‐sitosterol in streptozotocin‐induced experimental hyperglycemia. Journal of diabetes 2011, 3 (1), 29-37.
Ramu, R.; Shirahatti, P. S.; Nayakavadi, S.; Vadivelan, R.; Zameer, F.; Dhananjaya, B. L.; Prasad, N., The effect of a plant extract enriched in stigmasterol and β-sitosterol on glycaemic status and glucose metabolism in alloxan-induced diabetic rats. Food & function 2016, 7 (9), 3999-4011.
Ikeda, I.; Konno, R.; Shimizu, T.; Ide, T.; Takahashi, N.; Kawada, T.; Nagao, K.; Inoue, N.; Yanagita, T.; Hamada, T. J. B. e. B. A.-G. S., Campest-5-en-3-one, an oxidized derivative of campesterol, activates PPARα, promotes energy consumption and reduces visceral fat deposition in rats. 2006, 1760 (5), 800-807.
Tanaka, M.; Misawa, E.; Ito, Y.; Habara, N.; Nomaguchi, K.; Yamada, M.; Toida, T.; Hayasawa, H.; Takase, M.; Inagaki, M., Identification of five phytosterols from Aloe vera gel as anti-diabetic compounds. Biological and Pharmaceutical Bulletin 2006, 29 (7), 1418-1422.
Grundy, S. M.; Brewer Jr, H. B.; Cleeman, J. I.; Smith Jr, S. C.; Lenfant, C., Definition of metabolic syndrome: report of the National Heart, Lung, and Blood Institute/American Heart Association conference on scientific issues related to definition. Circulation 2004, 109 (3), 433-438.
Association, A. D., 2. Classification and diagnosis of diabetes. Diabetes care 2017, 40 (Supplement 1), S11-S24.
Tabák, A. G.; Herder, C.; Rathmann, W.; Brunner, E. J.; Kivimäki, M., Prediabetes: a high-risk state for diabetes development. The Lancet 2012, 379 (9833), 2279-2290.
Lorenzo, C.; Okoloise, M.; Williams, K.; Stern, M. P.; Haffner, S. M., The metabolic syndrome as predictor of type 2 diabetes: the San Antonio heart study. Diabetes care 2003, 26 (11), 3153-3159.
Wilson, P. W.; D’Agostino, R. B.; Parise, H.; Sullivan, L.; Meigs, J. B., Metabolic syndrome as a precursor of cardiovascular disease and type 2 diabetes mellitus. Circulation 2005, 112 (20), 3066-3072.
Lonardo, A.; Nascimbeni, F.; Mantovani, A.; Targher, G., Hypertension, diabetes, atherosclerosis and NASH: cause or consequence? Journal of hepatology 2018, 68 (2), 335-352.
Meigs, J. B.; Wilson, P. W.; Fox, C. S.; Vasan, R. S.; Nathan, D. M.; Sullivan, L. M.; D’Agostino, R. B., Body mass index, metabolic syndrome, and risk of type 2 diabetes or cardiovascular disease. The Journal of Clinical Endocrinology & Metabolism 2006, 91 (8), 2906-2912.
Gwinn, D. M.; Shackelford, D. B.; Egan, D. F.; Mihaylova, M. M.; Mery, A.; Vasquez, D. S.; Turk, B. E.; Shaw, R. J., AMPK phosphorylation of raptor mediates a metabolic checkpoint. Molecular cell 2008, 30 (2), 214-226.
Zhang, B. B.; Zhou, G.; Li, C., AMPK: an emerging drug target for diabetes and the metabolic syndrome. Cell metabolism 2009, 9 (5), 407-416.
Kalender, A.; Selvaraj, A.; Kim, S. Y.; Gulati, P.; Brûlé, S.; Viollet, B.; Kemp, B. E.; Bardeesy, N.; Dennis, P.; Schlager, J. J., Metformin, independent of AMPK, inhibits mTORC1 in a rag GTPase-dependent manner. Cell metabolism 2010, 11 (5), 390-401.
McCreight, L. J.; Bailey, C. J.; Pearson, E. R., Metformin and the gastrointestinal tract. Diabetologia 2016, 59 (3), 426-435.
Shorr, R. I.; Ray, W. A.; Daugherty, J. R.; Griffin, M. R., Incidence and risk factors for serious hypoglycemia in older persons using insulin or sulfonylureas. Archives of internal medicine 1997, 157 (15), 1681-1686.
Middleton, T. L.; Wong, J.; Molyneaux, L.; Brooks, B. A.; Yue, D. K.; Twigg, S. M.; Wu, T., Cardiac effects of sulfonylurea-related hypoglycemia. Diabetes Care 2017, 40 (5), 663-670.
Powell, W. R.; Christiansen, C. L.; Miller, D. R., Meta-analysis of sulfonylurea therapy on long-term risk of mortality and cardiovascular events compared to other oral glucose-lowering treatments. Diabetes Therapy 2018, 9 (4), 1431-1440.
Gallwitz, B., Clinical use of DPP-4 inhibitors. Frontiers in endocrinology 2019, 10.
Rehman, M.; Tudrej, B.; Soustre, J.; Buisson, M.; Archambault, P.; Pouchain, D.; Vaillant-Roussel, H.; Gueyffier, F.; Faillie, J. L.; Perault-Pochat, M. C., Efficacy and safety of DPP-4 inhibitors in patients with type 2 diabetes: meta-analysis of placebo-controlled randomized clinical trials. Diabetes & metabolism 2017, 43 (1), 48-58.
Sears, D.; Hsiao, G.; Hsiao, A.; Yu, J.; Courtney, C.; Ofrecio, J.; Chapman, J.; Subramaniam, S., Mechanisms of human insulin resistance and thiazolidinedione-mediated insulin sensitization. Proceedings of the National Academy of Sciences 2009, 106 (44), 18745-18750.
Phatak, H. M.; Yin, D. D., Factors associated with the effect-size of thiazolidinedione (TZD) therapy on HbA1c: a meta-analysis of published randomized clinical trials. Current medical research and opinion 2006, 22 (11), 2267-2278.
Bischoff, H., The mechanism of alpha-glucosidase inhibition in the management of diabetes. Clinical and investigative medicine. Medecine clinique et experimentale 1995, 18 (4), 303-311.
Clissold, S. P.; Edwards, C., Acarbose. Drugs 1988, 35 (3), 214-243.
Shyangdan, D. S.; Uthman, O. A.; Waugh, N., SGLT-2 receptor inhibitors for treating patients with type 2 diabetes mellitus: a systematic review and network meta-analysis. BMJ open 2016, 6 (2), e009417.
Monami, M.; Nreu, B.; Zannoni, S.; Lualdi, C.; Mannucci, E., Effects of SGLT-2 inhibitors on diabetic ketoacidosis: a meta-analysis of randomised controlled trials. Diabetes research and clinical practice 2017, 130, 53-60.
Giugliano, D.; Esposito, K., Class effect for SGLT-2 inhibitors: a tale of 9 drugs. Cardiovascular diabetology 2019, 18 (1), 94.
Lehmann, U.; Robin, F., Slowly digestible starch–its structure and health implications: a review. Trends in Food Science & Technology 2007, 18 (7), 346-355.
Martin, M. J.; Manzano, M.; Bueno-Vargas, P.; Rueda, R.; Salto, R.; Giron, M.-D.; Vilchez, J. D.; Cabrera, E.; Cano, A.; Castro, A., Feeding a slowly digestible carbohydrate diet during pregnancy of insulin-resistant rats prevents the excess of adipogenesis in their offspring. The Journal of nutritional biochemistry 2018, 61, 183-196.
Hasek, L. Y.; Phillips, R. J.; Zhang, G.; Kinzig, K. P.; Kim, C. Y.; Powley, T. L.; Hamaker, B. R., Dietary slowly digestible starch triggers the gut–brain axis in obese rats with accompanied reduced food Intake. Molecular nutrition & food research 2018, 62 (5), 1700117.
Sands, A. L.; Leidy, H. J.; Hamaker, B. R.; Maguire, P.; Campbell, W. W., Consumption of the slow-digesting waxy maize starch leads to blunted plasma glucose and insulin response but does not influence energy expenditure or appetite in humans. Nutrition Research 2009, 29 (6), 383-390.
Gourineni, V.; Stewart, M. L.; Skorge, R.; Wolever, T., Glycemic Index of Slowly Digestible Carbohydrate Alone and in Powdered Drink-Mix. Nutrients 2019, 11 (6), 1228.
Cisse, F.; Pletsch, E. A.; Erickson, D. P.; Chegeni, M.; Hayes, A. M.; Hamaker, B. R., Preload of slowly digestible carbohydrate microspheres decreases gastric emptying rate of subsequent meal in humans. Nutrition research 2017, 45, 46-51.
Choi, K.; Kim, Y. B., Molecular mechanism of insulin resistance in obesity and type 2 diabetes. The Korean journal of internal medicine 2010, 25 (2), 119.
Huang, D.; Refaat, M.; Mohammedi, K.; Jayyousi, A.; Al Suwaidi, J.; Abi Khalil, C., Macrovascular complications in patients with diabetes and prediabetes. BioMed research international 2017, 2017.
Fakhruddin, S.; Alanazi, W.; Jackson, K. E., Diabetes-induced reactive oxygen species: mechanism of their generation and role in renal injury. Journal of diabetes research 2017, 2017.
Donath, M.; Halban, P. A., Decreased beta-cell mass in diabetes: significance, mechanisms and therapeutic implications. Diabetologia 2004, 47 (3), 581-589.
Lee, Y.-S.; Jun, H.-S., Anti-diabetic actions of glucagon-like peptide-1 on pancreatic beta-cells. Metabolism 2014, 63 (1), 9-19.
Drucker, D. J., Mechanisms of action and therapeutic application of glucagon-like peptide-1. Cell metabolism 2018, 27 (4), 740-756.
Meloni, A.; DeYoung, M.; Lowe, C.; Parkes, D., GLP‐1 receptor activated insulin secretion from pancreatic β‐cells: mechanism and glucose dependence. Diabetes, Obesity and Metabolism 2013, 15 (1), 15-27.
Laybutt, D.; Preston, A.; Åkerfeldt, M.; Kench, J.; Busch, A.; Biankin, A.; Biden, T., Endoplasmic reticulum stress contributes to beta cell apoptosis in type 2 diabetes. Diabetologia 2007, 50 (4), 752-763.
Tsuchiya, Y.; Saito, M.; Kohno, K., Pathogenic Mechanism of Diabetes Development Due to Dysfunction of Unfolded Protein Response. Yakugaku zasshi: Journal of the Pharmaceutical Society of Japan 2016, 136 (6), 817-825.
Hwang, S. L.; Kim, H. N.; Jung, H. H.; Kim, J. E.; Choi, D. K.; Hur, J. M.; Lee, J. Y.; Song, H.; Song, K.-S.; Huh, T.-L., Beneficial effects of β-sitosterol on glucose and lipid metabolism in L6 myotube cells are mediated by AMP-activated protein kinase. Biochem. Biophys. Res. Commun. 2008, 377 (4), 1253-1258.
Li, J.; Zhong, L.; Wang, F.; Zhu, H., Dissecting the role of AMP-activated protein kinase in human diseases. Acta pharmaceutica sinica B 2017, 7 (3), 249-259.
Yamamoto, N.; Yamashita, Y.; Yoshioka, Y.; Nishiumi, S.; Ashida, H., Rapid preparation of a plasma membrane fraction: Western blot detection of translocated glucose transporter 4 from plasma membrane of muscle and adipose cells and tissues. Current protocols in protein science 2016, 85 (1), 29.18. 1-29.18. 12.
Selvi, R.; Angayarkanni, N.; Asma, B.; Seethalakshmi, T.; Vidhya, S., Amino acids influence the glucose uptake through GLUT4 in CHO-K1 cells under high glucose conditions. Molecular and cellular biochemistry 2010, 344 (1-2), 43-53.
Vinoy, S.; Meynier, A.; Goux, A.; Jourdan-Salloum, N.; Normand, S.; Rabasa-Lhoret, R.; Brack, O.; Nazare, J.-A.; Péronnet, F.; Laville, M., The effect of a breakfast rich in slowly digestible starch on glucose metabolism: A statistical meta-analysis of randomized controlled trials. Nutrients 2017, 9 (4), 318.