跳到主要內容

臺灣博碩士論文加值系統

(44.201.94.236) 您好!臺灣時間:2023/03/24 11:11
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蔡伊湞
研究生(外文):Yi-Zhen Cai
論文名稱:探討糙薏仁產品於人體降血糖功效並利用細胞實驗研究其功效成分
論文名稱(外文):Using clinical trial to study the effect of dehulled adlay on blood glucose modulation and to investigate its functional ingredients in the cell model
指導教授:謝淑貞謝淑貞引用關係
指導教授(外文):Shu-Chen Hsieh
口試委員:黃智興姜安娜郭靜娟江文章
口試委員(外文):Tze-Sing HuangAn-Na ChiangChing-Chuan KuoWen-Chang Chiang
口試日期:2020-06-23
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:食品科技研究所
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:74
中文關鍵詞:血糖調節薏苡慢性消化澱粉β-谷固醇豆固醇
外文關鍵詞:Blood glucose regulationDehulled adlaySlow digestive starchβ-SitosterolStigmasterol
DOI:10.6342/NTU202003508
相關次數:
  • 被引用被引用:0
  • 點閱點閱:169
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
2018年台灣國民健康署公告指出,每3位19歲以上國民就有1人為代謝症候群。而美國糖尿病協會亦將代謝症候群視為預測糖尿病與心血管疾病的重要指標。但臨床使用的降血糖藥物仍伴隨各種副作用,因此使用天然食材也成為用藥前的替代療法。
薏苡學名為Coix lacryma-jobi,屬禾本科。本實驗室選用台中4號薏仁,透過擠壓加工製造之即食產品,相較於市售薏仁產品有較高比例的慢性消化澱粉 (Slow digestive starch),具有平穩飯後血糖的潛力。本研究透過人體試驗,將受試者分為實驗組或控制組,以前述糙薏仁產品或安慰劑取代早餐的澱粉類,觀察三個月中受試者空腹血糖與醣化血色素之變化。因薏苡組成中,以其固醇類的β-谷固醇 (β-sitosterol)、豆固醇 (Stigmasterol)為主要成分。本研究擬利用Cho-K1細胞,探討薏仁產品中的固醇類可能調節血糖的分子機制。
人體試驗結果顯示,比較全部的受試者,與控制組相比,薏仁組無顯著調降血糖功效。但對於血糖值較高的受試者在第4週及第8週有較明顯調節的效果,此與過去曾有研究指出糙薏仁對第二型糖尿病患者有顯著調節血糖效果的結果相符。此外,細胞實驗結果顯示,薏仁產品中的固醇類含量可增加pAKT的表現量,可增加胰島素的感性。因此推測薏仁產品可至少可部分透過其中的植物固醇來調節血糖。
According to the report from the Taiwan Health Promotion Administration in 2018, one out of every three people who are 19-year-old or older has metabolic syndrome. The American Diabetes Association also pointed out metabolic syndrome is one of the most important indicators of getting type 2 diabetes. However, clinical anti-diabetic agents combined with several side effects, natural foods are thus used as an interference.
Adlay is a traditional Chinese herbal medicine. Previously, we employed a specific processing condition that remained the highest content of slowly digestive starch in the dehulled adlay product when compared with the commercial adlay products in marketing, which can lower post-meal blood glucose. We then conducted a clinical trial to compare the efficacy of the adlay product to the control product made of rice in modulating the blood glucose of people with high blood glucose levels for three months. Moreover, using the Cho-K1 cell line, we also investigated the glucose modulating effect of phytosterols in equal amount of the adlay product.
We concluded that people who consumed the adlay product do not significantly lower their blood glucose levels than that of the white rice group. However, people with higher blood glucose baseline of the adlay product group approved more blood glucose than the white rice group at 4 and 8 weeks. This result was consistent with a previous study in which the author observed that dehulled adlay can significantly regulate blood glucose on subjects with type 2 diabetes mellitus. In the cell study, we approved that the major phytosterols in the adlay product can increase pAKT expression and insulin sensitivity. In conclusion, our adlay product can regulate blood glucose, at least partially through its phytosterols.
謝誌………………………………………………………………………………………i
摘要…………………………………………………………………………………...…ii
Abstract………………………………………………………………………………...iii
目錄………………………………………………………………………………..........v
圖目錄……………………………………………………………………………........viii
表目錄……………………………………………………………………………..........ix
詞彙縮寫表………………………………………………………………………...........x
第一章 文獻探討………………………………………………………………..……...1
第一節、薏苡簡介……………………………………………………..……..….1
一、薏苡成分分析……………………………………………..……….1
二、薏苡成分之功效…………………………………..……………………….1
第二節、代謝症候群………………………………………………………..…..….6
一、代謝症候群與高血糖……………………………………………..…….....6
二、臨床上調節血糖之藥物及方法…………………………..……………….6
三、慢性消化澱粉與血糖調節探討…………………………………………...8
四、 誘導高血糖之生理機轉………………………………………………….9
第二章 研究目的與實驗架構…………………………………………………..…….11
第一節、研究目的………………………………..………………………..…….11
第二節、實驗架構………………………………..………………………..…….12
一、人體試驗流程設計……………………….………………….……..…….12
二、細胞實驗設計……………………….………………….…………..…….14
第三章 材料與方法……………………….………………….…………..………..….16
第一節、實驗材料………………….………………….…………..………....….16
一、材料………………………….………………….…………..………....….16
二、化學藥品及試劑套組……….………………….…………..………....….16
三、耗材與儀器設備……….………………….…………..……….........….18
第二節、實驗方法……….………………….…………..……...…….............….20
一、細胞培養……….………………….…………..……...…….................….20
二、2-NBDG葡萄糖攝取試驗……….…………..……...……..................….21
三、細胞存活率試驗……….…………..……...……................................…..21
四、蛋白質濃度定量……….…………..……...……................................…..22
五、十二烷基硫酸鈉聚丙烯醯胺凝膠電泳…...……................................…..22
六、西方墨點法……….………………...……...……................................…..24
七、細胞膜分層分離….………………...……...……................................…..26
八、人體試驗……………………...……...…….........................................…..28
第四章 結果與討論……………………...……...…….........................................…33
第一節、人體試驗結果分析………...……...……...........................................…33
一、受試者基本資料……………...……...……...........................................…33
二、薏仁產品對禁食血糖之影響..……...……...........................................….36
三、薏仁產品對糖化血色素的影響…...……...........................................…...47
四、人體試驗結果小結……………...……...……...........................................57
第二節、細胞實驗結果分析…………...……...……...........................................58
一、細胞存活率試驗…………...……...……...................................................58
二、葡萄糖攝取實驗…………...……...……...................................................60
三、薏苡中植物固醇對血糖調節路徑之調控.................................................62
四、葡萄糖轉運蛋白移轉試驗...……...……...................................................64
五、細胞實驗結果小結...……...……...............................................................66
第五章 結論...……...…….........................................................................................67
第六章 參考文獻...……............................................................................................68
第七章 附錄...……...…….........................................................................................74
蘇珮琪 (1996)。薏仁對高血脂症和糖尿症病患血漿脂質和血糖的影響。出版之碩士論文,台北縣,天主教輔仁大學食品營養學系。
黃博偉 (2003)。不同糙薏仁成分對糖尿病大白鼠醣代謝及脂質代謝的影響。未出版之博士論文,台北市,國立臺灣大學食品科技研究所。
吳宛穎 (2006)。糙薏仁對第2型糖尿病人血糖及血脂肪的影響。未出版之博士論文,基隆市,國立臺灣海洋大學大學食品科學系。
陳雨音 (2008),薏仁對改善中老年人血糖、血脂及老人斑之影響。未出版之博士論文,基隆市,國立臺灣海洋大學大學食品科學系。
葉昱德 (2013)。中國橄欖之抗增生活性因子的純化及鑑定暨其生理活性之研究。未出版之博士論文,台北市,國立臺灣大學食品科技研究所。
張瀞文 (2015)。以體外及體內模式探討薏仁麩皮萃取物減緩第二型糖尿病的效用及其作用機制。未出版之碩士論文,台北市,國立臺灣大學食品科技研究所。
戴君倩 (2018)。優化體外消化方法學並據此開發改善代謝症候群之薏仁產品。未出版之碩士論文,台北市,國立臺灣大學食品科技研究所。
鍾頡 (2019)。以擠壓加工開發之糙薏仁即食產品對升糖指數特性分析及評估其對人體血脂之影響。未出版之碩士論文,台北市,國立臺灣大學食品科技研究所。
Chaisiricharoenkul, J.; Tongta, S.; Intarapichet, K.-O., Structure and chemical and physicochemical properties of Job’s tear (Coix lacryma-jobi L.) kernels and flours. Suranaree J. Sci. Technol 2011, 18 (2), 109-22.
Chiang, W.; Cheng, C. Y.; Chiang, M. T.; Chung, K. T., Effects of dehulled adlay on the culture count of some microbiota and their metabolism in the gastrointestinal tract of rats. Journal of agricultural and food chemistry 2000, 48 (3), 829-832.
Huang, B. W.; Chiang, M. T.; Yao, H. T.; Chiang, W., The effect of adlay oil on plasma lipids, insulin and leptin in rat. Phytomedicine 2005, 12 (6-7), 433-439.
Yeh; Chiang; Chiang, Effects of dehulled adlay on plasma glucose and lipid concentrations in streptozotocin-induced diabetic rats fed a diet enriched in cholesterol. International journal for vitamin and nutrition research 2006, 76 (5), 299-305.
Shih, C. K.; Chiang, W.; Kuo, M. L., Effects of adlay on azoxymethane-induced colon carcinogenesis in rats. Food and chemical toxicology 2004, 42 (8), 1339-1347.
Tseng, Y. H.; Yang, J. H.; Chang, H. L.; Lee, Y. L.; Mau, J. L., Antioxidant properties of methanolic extracts from monascal adlay. Food chemistry 2006, 97 (3), 375-381.
Wang, L.; Chen, J.; Xie, H.; Ju, X.; Liu, R. H., Phytochemical profiles and antioxidant activity of adlay varieties. Journal of agricultural and food chemistry 2013, 61 (21), 5103-5113.
Zhao, M.; Yang, Q.; Lin, L.; Sun, B.; Wang, Y., Intracellular antioxidant activities of selected cereal phenolic extracts and mechanisms underlying the protective effects of adlay phenolic extracts on H2O2-induced oxidative stress in human erythrocytes. Journal of Functional Foods 2017, 31, 160-171.
Lin, L.; Yang, Q.; Zhao, K.; Zhao, M., Identification of the free phenolic profile of Adlay bran by UPLC-QTOF-MS/MS and inhibitory mechanisms of phenolic acids against xanthine oxidase. Food chemistry 2018, 253, 108-118.
Sarian, M. N.; Ahmed, Q. U.; So’ad, M.; Zaiton, S.; Alhassan, A. M.; Murugesu, S.; Perumal, V.; Syed Mohamad, S. N. A.; Khatib, A.; Latip, J., Antioxidant and antidiabetic effects of flavonoids: A structure-activity relationship based study. BioMed research international 2017, 2017.
Huang, D. W.; Kuo, Y. H.; Lin, F. Y.; Lin, Y. L.; Chiang, W., Effect of Adlay (Coix lachryma-jobi L. var. ma-yuen Stapf) Testa and its phenolic components on Cu2+-treated low-density lipoprotein (LDL) oxidation and lipopolysaccharide (LPS)-induced inflammation in RAW 264.7 macrophages. Journal of agricultural and food chemistry 2009, 57 (6), 2259-2266.
Saeidnia, S.; Manayi, A.; Gohari, A. R.; Abdollahi, M., The story of beta-sitosterol-a review. European Journal of Medicinal Plants 2014, 590-609.
Hwang, S. L.; Kim, H. N.; Jung, H. H.; Kim, J. E.; Choi, D. K.; Hur, J. M.; Lee, J. Y.; Song, H.; Song, K. S.; Huh, T. L., Beneficial effects of beta-sitosterol on glucose and lipid metabolism in L6 myotube cells are mediated by AMP-activated protein kinase. Biochem. Biophys. Res. Commun. 2008, 377 (4), 1253-1258.
Chai, J. W.; Lim, S. L.; Kanthimathi, M.; Kuppusamy, U. R., Gene regulation in β-sitosterol-mediated stimulation of adipogenesis, glucose uptake, and lipid mobilization in rat primary adipocytes. Genes & nutrition 2011, 6 (2), 181.
Tanaka, M.; Misawa, E.; Ito, Y.; Habara, N.; Nomaguchi, K.; Yamada, M.; Toida, T.; Hayasawa, H.; Takase, M.; Inagaki, M.; Higuchi, R., Identification of Five Phytosterols from Aloe Vera Gel as Anti-diabetic Compounds. Biological and Pharmaceutical Bulletin 2006, 29 (7), 1418-1422.
Gupta, R.; Sharma, A. K.; Dobhal, M.; Sharma, M.; Gupta, R., Antidiabetic and antioxidant potential of β‐sitosterol in streptozotocin‐induced experimental hyperglycemia. Journal of diabetes 2011, 3 (1), 29-37.
Ramu, R.; Shirahatti, P. S.; Nayakavadi, S.; Vadivelan, R.; Zameer, F.; Dhananjaya, B. L.; Prasad, N., The effect of a plant extract enriched in stigmasterol and β-sitosterol on glycaemic status and glucose metabolism in alloxan-induced diabetic rats. Food & function 2016, 7 (9), 3999-4011.
Ikeda, I.; Konno, R.; Shimizu, T.; Ide, T.; Takahashi, N.; Kawada, T.; Nagao, K.; Inoue, N.; Yanagita, T.; Hamada, T. J. B. e. B. A.-G. S., Campest-5-en-3-one, an oxidized derivative of campesterol, activates PPARα, promotes energy consumption and reduces visceral fat deposition in rats. 2006, 1760 (5), 800-807.
Tanaka, M.; Misawa, E.; Ito, Y.; Habara, N.; Nomaguchi, K.; Yamada, M.; Toida, T.; Hayasawa, H.; Takase, M.; Inagaki, M., Identification of five phytosterols from Aloe vera gel as anti-diabetic compounds. Biological and Pharmaceutical Bulletin 2006, 29 (7), 1418-1422.
Grundy, S. M.; Brewer Jr, H. B.; Cleeman, J. I.; Smith Jr, S. C.; Lenfant, C., Definition of metabolic syndrome: report of the National Heart, Lung, and Blood Institute/American Heart Association conference on scientific issues related to definition. Circulation 2004, 109 (3), 433-438.
Association, A. D., 2. Classification and diagnosis of diabetes. Diabetes care 2017, 40 (Supplement 1), S11-S24.
Tabák, A. G.; Herder, C.; Rathmann, W.; Brunner, E. J.; Kivimäki, M., Prediabetes: a high-risk state for diabetes development. The Lancet 2012, 379 (9833), 2279-2290.
Lorenzo, C.; Okoloise, M.; Williams, K.; Stern, M. P.; Haffner, S. M., The metabolic syndrome as predictor of type 2 diabetes: the San Antonio heart study. Diabetes care 2003, 26 (11), 3153-3159.
Wilson, P. W.; D’Agostino, R. B.; Parise, H.; Sullivan, L.; Meigs, J. B., Metabolic syndrome as a precursor of cardiovascular disease and type 2 diabetes mellitus. Circulation 2005, 112 (20), 3066-3072.
Lonardo, A.; Nascimbeni, F.; Mantovani, A.; Targher, G., Hypertension, diabetes, atherosclerosis and NASH: cause or consequence? Journal of hepatology 2018, 68 (2), 335-352.
Meigs, J. B.; Wilson, P. W.; Fox, C. S.; Vasan, R. S.; Nathan, D. M.; Sullivan, L. M.; D’Agostino, R. B., Body mass index, metabolic syndrome, and risk of type 2 diabetes or cardiovascular disease. The Journal of Clinical Endocrinology & Metabolism 2006, 91 (8), 2906-2912.
Gwinn, D. M.; Shackelford, D. B.; Egan, D. F.; Mihaylova, M. M.; Mery, A.; Vasquez, D. S.; Turk, B. E.; Shaw, R. J., AMPK phosphorylation of raptor mediates a metabolic checkpoint. Molecular cell 2008, 30 (2), 214-226.
Zhang, B. B.; Zhou, G.; Li, C., AMPK: an emerging drug target for diabetes and the metabolic syndrome. Cell metabolism 2009, 9 (5), 407-416.
Kalender, A.; Selvaraj, A.; Kim, S. Y.; Gulati, P.; Brûlé, S.; Viollet, B.; Kemp, B. E.; Bardeesy, N.; Dennis, P.; Schlager, J. J., Metformin, independent of AMPK, inhibits mTORC1 in a rag GTPase-dependent manner. Cell metabolism 2010, 11 (5), 390-401.
McCreight, L. J.; Bailey, C. J.; Pearson, E. R., Metformin and the gastrointestinal tract. Diabetologia 2016, 59 (3), 426-435.
Shorr, R. I.; Ray, W. A.; Daugherty, J. R.; Griffin, M. R., Incidence and risk factors for serious hypoglycemia in older persons using insulin or sulfonylureas. Archives of internal medicine 1997, 157 (15), 1681-1686.
Middleton, T. L.; Wong, J.; Molyneaux, L.; Brooks, B. A.; Yue, D. K.; Twigg, S. M.; Wu, T., Cardiac effects of sulfonylurea-related hypoglycemia. Diabetes Care 2017, 40 (5), 663-670.
Powell, W. R.; Christiansen, C. L.; Miller, D. R., Meta-analysis of sulfonylurea therapy on long-term risk of mortality and cardiovascular events compared to other oral glucose-lowering treatments. Diabetes Therapy 2018, 9 (4), 1431-1440.
Gallwitz, B., Clinical use of DPP-4 inhibitors. Frontiers in endocrinology 2019, 10.
Rehman, M.; Tudrej, B.; Soustre, J.; Buisson, M.; Archambault, P.; Pouchain, D.; Vaillant-Roussel, H.; Gueyffier, F.; Faillie, J. L.; Perault-Pochat, M. C., Efficacy and safety of DPP-4 inhibitors in patients with type 2 diabetes: meta-analysis of placebo-controlled randomized clinical trials. Diabetes & metabolism 2017, 43 (1), 48-58.
Sears, D.; Hsiao, G.; Hsiao, A.; Yu, J.; Courtney, C.; Ofrecio, J.; Chapman, J.; Subramaniam, S., Mechanisms of human insulin resistance and thiazolidinedione-mediated insulin sensitization. Proceedings of the National Academy of Sciences 2009, 106 (44), 18745-18750.
Phatak, H. M.; Yin, D. D., Factors associated with the effect-size of thiazolidinedione (TZD) therapy on HbA1c: a meta-analysis of published randomized clinical trials. Current medical research and opinion 2006, 22 (11), 2267-2278.
Bischoff, H., The mechanism of alpha-glucosidase inhibition in the management of diabetes. Clinical and investigative medicine. Medecine clinique et experimentale 1995, 18 (4), 303-311.
Clissold, S. P.; Edwards, C., Acarbose. Drugs 1988, 35 (3), 214-243.
Shyangdan, D. S.; Uthman, O. A.; Waugh, N., SGLT-2 receptor inhibitors for treating patients with type 2 diabetes mellitus: a systematic review and network meta-analysis. BMJ open 2016, 6 (2), e009417.
Monami, M.; Nreu, B.; Zannoni, S.; Lualdi, C.; Mannucci, E., Effects of SGLT-2 inhibitors on diabetic ketoacidosis: a meta-analysis of randomised controlled trials. Diabetes research and clinical practice 2017, 130, 53-60.
Giugliano, D.; Esposito, K., Class effect for SGLT-2 inhibitors: a tale of 9 drugs. Cardiovascular diabetology 2019, 18 (1), 94.
Lehmann, U.; Robin, F., Slowly digestible starch–its structure and health implications: a review. Trends in Food Science & Technology 2007, 18 (7), 346-355.
Martin, M. J.; Manzano, M.; Bueno-Vargas, P.; Rueda, R.; Salto, R.; Giron, M.-D.; Vilchez, J. D.; Cabrera, E.; Cano, A.; Castro, A., Feeding a slowly digestible carbohydrate diet during pregnancy of insulin-resistant rats prevents the excess of adipogenesis in their offspring. The Journal of nutritional biochemistry 2018, 61, 183-196.
Hasek, L. Y.; Phillips, R. J.; Zhang, G.; Kinzig, K. P.; Kim, C. Y.; Powley, T. L.; Hamaker, B. R., Dietary slowly digestible starch triggers the gut–brain axis in obese rats with accompanied reduced food Intake. Molecular nutrition & food research 2018, 62 (5), 1700117.
Sands, A. L.; Leidy, H. J.; Hamaker, B. R.; Maguire, P.; Campbell, W. W., Consumption of the slow-digesting waxy maize starch leads to blunted plasma glucose and insulin response but does not influence energy expenditure or appetite in humans. Nutrition Research 2009, 29 (6), 383-390.
Gourineni, V.; Stewart, M. L.; Skorge, R.; Wolever, T., Glycemic Index of Slowly Digestible Carbohydrate Alone and in Powdered Drink-Mix. Nutrients 2019, 11 (6), 1228.
Cisse, F.; Pletsch, E. A.; Erickson, D. P.; Chegeni, M.; Hayes, A. M.; Hamaker, B. R., Preload of slowly digestible carbohydrate microspheres decreases gastric emptying rate of subsequent meal in humans. Nutrition research 2017, 45, 46-51.
Choi, K.; Kim, Y. B., Molecular mechanism of insulin resistance in obesity and type 2 diabetes. The Korean journal of internal medicine 2010, 25 (2), 119.
Huang, D.; Refaat, M.; Mohammedi, K.; Jayyousi, A.; Al Suwaidi, J.; Abi Khalil, C., Macrovascular complications in patients with diabetes and prediabetes. BioMed research international 2017, 2017.
Fakhruddin, S.; Alanazi, W.; Jackson, K. E., Diabetes-induced reactive oxygen species: mechanism of their generation and role in renal injury. Journal of diabetes research 2017, 2017.
Donath, M.; Halban, P. A., Decreased beta-cell mass in diabetes: significance, mechanisms and therapeutic implications. Diabetologia 2004, 47 (3), 581-589.
Lee, Y.-S.; Jun, H.-S., Anti-diabetic actions of glucagon-like peptide-1 on pancreatic beta-cells. Metabolism 2014, 63 (1), 9-19.
Drucker, D. J., Mechanisms of action and therapeutic application of glucagon-like peptide-1. Cell metabolism 2018, 27 (4), 740-756.
Meloni, A.; DeYoung, M.; Lowe, C.; Parkes, D., GLP‐1 receptor activated insulin secretion from pancreatic β‐cells: mechanism and glucose dependence. Diabetes, Obesity and Metabolism 2013, 15 (1), 15-27.
Laybutt, D.; Preston, A.; Åkerfeldt, M.; Kench, J.; Busch, A.; Biankin, A.; Biden, T., Endoplasmic reticulum stress contributes to beta cell apoptosis in type 2 diabetes. Diabetologia 2007, 50 (4), 752-763.
Tsuchiya, Y.; Saito, M.; Kohno, K., Pathogenic Mechanism of Diabetes Development Due to Dysfunction of Unfolded Protein Response. Yakugaku zasshi: Journal of the Pharmaceutical Society of Japan 2016, 136 (6), 817-825.
Hwang, S. L.; Kim, H. N.; Jung, H. H.; Kim, J. E.; Choi, D. K.; Hur, J. M.; Lee, J. Y.; Song, H.; Song, K.-S.; Huh, T.-L., Beneficial effects of β-sitosterol on glucose and lipid metabolism in L6 myotube cells are mediated by AMP-activated protein kinase. Biochem. Biophys. Res. Commun. 2008, 377 (4), 1253-1258.
Li, J.; Zhong, L.; Wang, F.; Zhu, H., Dissecting the role of AMP-activated protein kinase in human diseases. Acta pharmaceutica sinica B 2017, 7 (3), 249-259.
Yamamoto, N.; Yamashita, Y.; Yoshioka, Y.; Nishiumi, S.; Ashida, H., Rapid preparation of a plasma membrane fraction: Western blot detection of translocated glucose transporter 4 from plasma membrane of muscle and adipose cells and tissues. Current protocols in protein science 2016, 85 (1), 29.18. 1-29.18. 12.
Selvi, R.; Angayarkanni, N.; Asma, B.; Seethalakshmi, T.; Vidhya, S., Amino acids influence the glucose uptake through GLUT4 in CHO-K1 cells under high glucose conditions. Molecular and cellular biochemistry 2010, 344 (1-2), 43-53.
Vinoy, S.; Meynier, A.; Goux, A.; Jourdan-Salloum, N.; Normand, S.; Rabasa-Lhoret, R.; Brack, O.; Nazare, J.-A.; Péronnet, F.; Laville, M., The effect of a breakfast rich in slowly digestible starch on glucose metabolism: A statistical meta-analysis of randomized controlled trials. Nutrients 2017, 9 (4), 318.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊