跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.169) 您好!臺灣時間:2024/12/11 13:46
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張舜延
研究生(外文):Shin Yen Chong
論文名稱:探討組蛋白修飾調節RNA轉錄-DNA複製衝突之機制
論文名稱(外文):The Regulatory Mechanisms of Histone Mark in Transcription-Replication Conflicts
指導教授:羅翊禎高承福
指導教授(外文):Yi-Chen LoCheng-Fu Kao
口試委員:林敬哲呂俊毅冀宏源潘敏雄謝淑貞
口試委員(外文):Jing-Jer LinJun-Yi LeuPeter ChiMin-Hsiung PanShu-Chen Hsieh
口試日期:2020-05-28
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:食品科技研究所
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:英文
論文頁數:157
中文關鍵詞:H3K4甲基化Rad53細胞週期檢查點RNA轉錄與DNA複製衝突基因不穩定性
外文關鍵詞:H3K4 methylationRad53S-phase checkpointtranscription-replication conflictsgenome instability
DOI:10.6342/NTU202001168
相關次數:
  • 被引用被引用:0
  • 點閱點閱:261
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
RNA轉錄與DNA複製衝突(TRCs)好發於活躍的轉錄基因組上。此過程不僅影響DNA複製叉的穩定性,也有可能造成基因突變。因RNA轉錄過程而產生的甲基化H3K4(H3K4me)組蛋白標記所在位置與TRCs熱區有一定關聯性,但是它們之間的相互作用尚且未知。本實驗發現H3K4me標記會加劇DNA複製期細胞週期檢查點缺失細胞內所發生的TRCs所導致的DNA複製機制之失能,並且發現該組蛋白標記具有減緩DNA複製叉的前進速率。細胞在應對DNA複製壓力時,完整的DNA複製期細胞週期檢查點功能與H3K4me是必要的,在TRCs發生頻率最高,且H3K4me被標記最多之高度表現的基因區域更顯得尤其重要。H3K4me透過降低DNA複製叉前進速率以緩解TRCs遭遇之強度,與在路況複雜的公路上設置減速丘迫使行進中的車輛將速度放緩以降低意外發生的機率如出一轍。此研究在活躍基因區域為何會被標記H3K4me的謎題上提出了新觀點,即此標記係細胞用以應對因TRCs所造成DNA複製壓力致基因不穩定之緩衝機制。
Transcription-replication conflicts (TRCs) occur when intensive transcriptional activity compromises replication fork stability, potentially leading to gene mutations. Transcription-deposited H3K4 methylation (H3K4me) is associated with regions that are susceptible to TRCs; however, the interplay between H3K4me and TRCs is unknown. Here we show that H3K4me aggravates TRC-induced replication failure in checkpoint-defective cells, and the presence of methylated H3K4 slows down ongoing replication. Both S-phase checkpoint activity and H3K4me are crucial for faithful DNA synthesis under replication stress, especially in highly transcribed regions where the presence of H3K4me is highest and TRCs most often occur. H3K4me mitigates TRCs by decelerating ongoing replication, analogous to how speed bumps slow down cars. These findings establish the novel concept that H3K4me defines the transcriptional status of a genomic region and defends the genome from TRC-mediated replication stress and instability.
中文摘要 I
Abstract II
Table of Contents III
Index of Figures VII
Index of Tables X

Chapter 1 1
Introduction 1
1.1 Context of this study 1
1.2 Chromatin and histone modifications 3
1.2.1 General Background 3
1.2.2 Histone crosstalk between H2B mono-ubiquitylation and H3K4/K79 methylation 4
1.2.3 Transcription and Set1C-mediated H3K4 methylation 5
1.2.4 The debate on biological function of H3K4 methylation with regard to transcription 6
1.2.5 Roles of H3K4 methylation in DNA replication and DNA repair 7
1.3 Replication fork stalling and genome instability 8
1.3.1 Genome instability and cancers 8
1.3.2 Genomic instability caused by stalled replication forks 9
1.3.3 Rad53 checkpoint kinase protects the integrity of stalled forks 11
1.4 Transcription-replication conflicts 13
1.4.1 Transcription effects on genome integrity 13
1.4.2 R-loops, transcription-replication conflicts and resolution 15
1.4.3 S-phase checkpoint functions regulate transcription-replication conflicts 16
1.5 Major findings in this study 18

Chapter 2 19
Materials and methods 19
2.1 Yeast culture medium and culture conditions 19
2.2 Yeast genomic DNA extraction 19
2.3 Yeast transformation 20
2.4 Yeast strain construction 20
2.5 Yeast spotting assay 21
2.6 Cell viability assay 21
2.7 Western blotting 22
2.8 Flow cytometry analysis 22
2.9 Chromatin immunoprecipitation (ChIP) - sequencing 23
2.10 ChIP-seq and ATAC-seq data analysis 24
2.11 ChIP-qPCR 25
2.12 Gene expression 25
2.13 2D gel electrophoresis 26
2.14 Southern blotting 27
2.15 32P hybridization 28
2.16 CAN1 mutation rate assay 29

Chapter 3 50
Genetic screening for modulators of the interaction between H3K4 methylation and Rad53 50
3.1 Introduction 50
3.2 Results 51
3.2.1 Loss of H2B-monoubiquitylation enhances HU-tolerance of Rad53 checkpoint-defective cells 51
3.2.2 H2B-K123R rescues HU-treated rad53-mutants through Set1-mediated pathway 51
3.2.3 Ablated H3K4 methylation rescues rad53 viability under HU stress 52
3.2.4 H3K4 methylation is necessary for the rad53-HU-sensitivity suppression effect 53
3.2.5 Loss of H3K4 methylation reduces fork stalling in HU-treated cells 54
3.2.6 The H3K4A rescue effect on HU-treated rad53 mutants is independent of Mec1-signaling 55
3.2.7 H3K4A HU-rescue effect is independent of R-loop formation 56
3.2.8 Ablation of the H3K4me HU-rescue effect is independent of known rad53-HU-sensitivity suppressors 56
3.3 Discussion 57

Chapter 4 69
The effect of H3K4 methylation on rad53 mutants during replication stress 69
4.1 Introduction 69
4.2 Results 70
4.2.1 Loss of H3K4 methylation restores DNA Pol2 binding in rad53 mutant under replication stress 70
4.2.2 H3K4 methylation prevents DNA Pol2 engagement with RNA Pol II on highly transcribed genes 71
4.2.3 Summary of the impact of H3K4 methylation on transcription and replication in HU-treated yeast 72
4.2.4 H3K4 methylation causes fork stalling in rad53-K227A cells following replication stress 73
4.2.5 H3K4 methylation alters replication progression independent of chromatin structure or dynamics 75
4.3 Discussion 76

Chapter 5 88
The effect of H3K4 methylation on transcription-replication conflicts in rad53 mutants 88
5.1 Introduction 88
5.2 Results 89
5.2.1 Characteristic signals in the 2D gels 89
5.2.2 Loss of H3K4 methylation prevents aberrant replication intermediates in HU-treated rad53 mutants 89
5.2.3 Construction of a transcription-replication conflict model for DNA 2D gel analysis 90
5.2.4 Loss of H3K4 methylation prevention of transcription mediates TRC-induced aberrant replication events 91
5.2.5 Construction of marker-free and orientated transcription-replication conflict model 92
5.2.6 H3K4 methylation aggravates TRCs in rad53 mutant independent of conflict orientations 93
5.2.7 H3K4 methylation promotes aberrant replication forks in HU-treated rad53 mutants 93
5.3 Discussion 95

Chapter 6 113
Speed bump model: Transcription-deposited H3K4 methylation protects genome integrity 113
6.1 Introduction 113
6.2 Results 114
6.2.1 Speed bump model 114
6.2.2 H3K4 methylation is a molecular decelerator for replication fork progression 114
6.2.3 H3K4me defends from TRC-mediated genome instability under HU-induced replication stress 115
6.3 Discussion 118

Chapter 7 128
General Discussion 128
7.1 Summary of results 128
7.2 H3K4 methylation, genome stability and cancer 130
7.3 Mechanisms for H3K4 methylation in TRCs 132
7.4 Interaction between H3K4 methylation and the S-phase checkpoint 133
7.5 Conclusion 134

Abbreviations 135
References 140
Appendix 157
Publication List (Journal papers) 157
Aguilera, A., and Garcia-Muse, T. (2012). R Loops: From Transcription Byproducts to Threats to Genome Stability. Mol. Cell 46, 115-124.
Alvino, G.M., Collingwood, D., Murphy, J.M., Delrow, J., Brewer, B.J., and Raghuraman, M.K. (2007). Replication in hydroxyurea: It's a matter of time. Mol. Cell. Biol. 27, 6396-6406.
Azvolinsky, A., Giresi, P.G., Lieb, J.D., and Zakian, V.A. (2009). Highly transcribed RNA polymerase II genes are impediments to replication fork progression in Saccharomyces cerevisiae. Mol. Cell 34, 722-734.
Bannister, A.J., and Kouzarides, T. (2011). Regulation of chromatin by histone modifications. Cell Res. 21, 381-395.
Barlow, J.H., Faryabi, R.B., Callen, E., Wong, N., Malhowski, A., Chen, H.T., Gutierrez-Cruz, G., Sun, H.W., McKinnon, P., Wright, G., et al. (2013). Identification of early replicating fragile sites that contribute to genome instability. Cell 152, 620-632.
Barski, A., Cuddapah, S., Cui, K.R., Roh, T.Y., Schones, D.E., Wang, Z.B., Wei, G., Chepelev, I., and Zhao, K.J. (2007). High-resolution profiling of histone methylations in the human genome. Cell 129, 823-837.
Baynton, K., and Fuchs, R.P. (2000). Lesions in DNA: hurdles for polymerases. Trends Biochem. Sci. 25, 74-79.
Bermejo, R., Capra, T., Jossen, R., Colosio, A., Frattini, C., Carotenuto, W., Cocito, A., Doksani, Y., Klein, H., Gomez-Gonzalez, B., et al. (2011). The replication checkpoint protects fork stability by releasing transcribed genes from nuclear pores. Cell 146, 233-246.
Bernstein, K.A., Shor, E., Sunjevaric, I., Fumasoni, M., Burgess, R.C., Foiani, M., Branzei, D., and Rothstein, R. (2009). Sgs1 function in the repair of DNA replication intermediates is separable from its role in homologous recombinational repair. Embo J. 28, 915-925.
Bledau, A.S., Schmidt, K., Neumann, K., Hill, U., Ciotta, G., Gupta, A., Torres, D.C., Fu, J., Kranz, A., Stewart, A.F., et al. (2014). The H3K4 methyltransferase Setd1a is first required at the epiblast stage, whereas Setd1b becomes essential after gastrulation. Development 141, 1022-1035.
Branzei, D., and Foiani, M. (2005). The DNA damage response during DNA replication. Curr. Opin. Cell Biol. 17, 568-575.
Branzei, D., and Foiani, M. (2006). The Rad53 signal transduction pathway: Replication fork stabilization, DNA repair, and adaptation. Exp. Cell Res. 312, 2654-2659.
Brush, G.S., Morrow, D.M., Hieter, P., and Kelly, T.J. (1996). The ATM homologue MEC1 is required for phosphorylation of replication protein A in yeast. Proc. Natl. Acad. Sci. U. S. A. 93, 15075-15080.
Budd, M.E., Reis, C.C., Smith, S., Myung, K., and Campbell, J.L. (2006). Evidence suggesting that Pif1 helicase functions in DNA replication with the Dna2 helicase/nuclease and DNA polymerase delta. Mol. Cell. Biol. 26, 2490-2500.
Buratowski, S., and Kim, T. (2010). The role of cotranscriptional histone methylations. Cold Spring Harbor Symp. Quant. Biol. 75, 95-102.
Bzymek, M., Thayer, N.H., Oh, S.D., Kleckner, N., and Hunter, N. (2010). Double Holliday junctions are intermediates of DNA break repair. Nature 464, 937-U162.
Cancer Genome Atlas, N. (2012). Comprehensive molecular characterization of human colon and rectal cancer. Nature 487, 330-337.
Cejka, P., Plank, J.L., Dombrowski, C.C., and Kowalczykowski, S.C. (2012). Decatenation of DNA by the S. cerevisiae Sgs1-Top3-Rmi1 and RPA Complex: A Mechanism for Disentangling Chromosomes. Mol. Cell. 47, 886-896.
Cerritelli, S.M., and Crouch, R.J. (2009). Ribonuclease H: the enzymes in eukaryotes. FEBS J. 276, 1494-1505.
Cha, R.S., and Kleckner, N. (2002). ATR homolog Mec1 promotes fork progression, thus averting breaks in replication slow zones. Science 297, 602-606.
Champagne, K.S., and Kutateladze, T.G. (2009). Structural insight into histone recognition by the ING PHD fingers. Curr. Drug Targets 10, 432-441.
Chandrasekharan, M.B., Huang, F., and Sun, Z.W. (2009). Ubiquitination of histone H2B regulates chromatin dynamics by enhancing nucleosome stability. Proc. Natl. Acad. Sci. U. S. A. 106, 16686-16691.
Chen, C., and Kolodner, R.D. (1999). Gross chromosomal rearrangements in Saccharomyces cerevisiae replication and recombination defective mutants. Nature Genet. 23, 81-85.
Chomczynski, P., and Sacchi, N. (1987). Single-Step Method of Rna Isolation by Acid Guanidinium Thiocyanate Phenol Chloroform Extraction. Anal. Biochem. 162, 156-159.
Choudhury, R., Singh, S., Arumugam, S., Roguev, A., and Stewart, A.F. (2019). The Set1 complex is dimeric and acts with Jhd2 demethylation to convey symmetrical H3K4 trimethylation. Genes Dev. 33, 550-564.
Churchman, L.S., and Weissman, J.S. (2011). Nascent transcript sequencing visualizes transcription at nucleotide resolution. Nature 469, 368-373.
Cleaver, J.E. (1969). Repair Replication of Mammalian Cell DNA - Effects of Compounds That Inhibit DNA Synthesis or Dark Repair. Radiat. Res. 37, 334-348.
Cloutier, S.C., Wang, S., Ma, W.K., Al Husini, N., Dhoondia, Z., Ansari, A., Pascuzzi, P.E., and Tran, E.J. (2016). Regulated Formation of lncRNA-DNA Hybrids Enables Faster Transcriptional Induction and Environmental Adaptation. Mol. Cell 61, 393-404.
Cobb, J.A., Schleker, T., Rojas, V., Bjergbaek, L., Tercero, J.A., and Gasser, S.M. (2005). Replisome instability, fork collapse, and gross chromosomal rearrangements arise synergistically from Mec1 kinase and RecQ helicase mutations. Genes Dev. 19, 3055-3069.
Conti, C., Sacca, B., Herrick, J., Lalou, C., Pommier, Y., and Bensimon, A. (2007). Replication fork velocities at adjacent replication origins are coordinately modified during DNA replication in human cells. Mol. Biol. Cell 18, 3059-3067.
Cox, M.M., Goodman, M.F., Kreuzer, K.N., Sherratt, D.J., Sandler, S.J., and Marians, K.J. (2000). The importance of repairing stalled replication forks. Nature 404, 37-41.
Datta, A., and Jinksrobertson, S. (1995). Association of Increased Spontaneous Mutation-Rates with High-Levels of Transcription in Yeast. Science 268, 1616-1619.
Desany, B.A., Alcasabas, A.A., Bachant, J.B., and Elledge, S.J. (1998). Recovery from DNA replicational stress is the essential function of the S-phase checkpoint pathway. Genes Dev. 12, 2956-2970.
Ding, L., Getz, G., Wheeler, D.A., Mardis, E.R., McLellan, M.D., Cibulskis, K., Sougnez, C., Greulich, H., Muzny, D.M., Morgan, M.B., et al. (2008). Somatic mutations affect key pathways in lung adenocarcinoma. Nature 455, 1069-1075.
Donaldson, A.D. (2005). Shaping time: chromatin structure and the DNA replication programme. Trends Genet. 21, 444-449.
Dover, J., Schneider, J., Tawiah-Boateng, M.A., Wood, A., Dean, K., Johnston, M., and Shilatifard, A. (2002). Methylation of histone H3 by COMPASS requires ubiquitination of histone H2B by Rad6. J. Biol. Chem. 277, 28368-28371.
Duch, A., Felipe-Abrio, I., Barroso, S., Yaakov, G., Garcia-Rubio, M., Aguilera, A., de Nadal, E., and Posas, F. (2013). Coordinated control of replication and transcription by a SAPK protects genomic integrity. Nature 493, 116-119.
Farrelly, L.A., Thompson, R.E., Zhao, S., Lepack, A.E., Lyu, Y., Bhanu, N.V., Zhang, B.C., Loh, Y.H.E., Ramakrishnan, A., Vadodaria, K.C., et al. (2019). Histone serotonylation is a permissive modification that enhances TFIID binding to H3K4me3. Nature 567, 535-539.
Faucher, D., and Wellinger, R.J. (2010). Methylated H3K4, a Transcription-Associated Histone Modification, Is Involved in the DNA Damage Response Pathway. PLoS Genet. 6:e1001082.
Fay, D.S., Sun, Z.X., and Stern, D.F. (1997). Mutations in SPK1/RAD53 that specifically abolish checkpoint but not growth-related functions. Curr. Genet. 31, 97-105.
Feng, W.Y., Collingwood, D., Boeck, M.E., Fox, L.A., Alvino, G.M., Fangman, W.L., Raghuraman, M.K., and Brewer, B.J. (2006). Genomic mapping of single-stranded DNA in hydroxyurea-challenged yeasts identifies origins of replication. Nat. Cell Biol. 8, 148-155.
Fernandez, X., Diaz-Ingelmo, O., Martinez-Garcia, B., and Roca, J. (2014). Chromatin regulates DNA torsional energy via topoisomerase II-mediated relaxation of positive supercoils. Embo J. 33, 1492-1501.
Fleming, A.B., Kao, C.F., Hillyer, C., Pikaart, M., and Osley, M.A. (2008). H2B ubiquitylation plays a role in nucleosome dynamics during transcription elongation. Mol. Cell 31, 57-66.
Friedberg, E.C., Walker, G.C., Siede, W., and Wood, R.D. (2005). DNA repair and mutagenesis (American Society for Microbiology Press).
Friedman, K.L., and Brewer, B.J. (1995). Analysis of replication intermediates by two-dimensional agarose gel electrophoresis. Methods in enzymology 262, 613-627.
Gaillard, H., and Aguilera, A. (2016). Transcription as a Threat to Genome Integrity. Annu. Rev. Biochem 85, 291-317.
Gan, W.J., Guan, Z.S., Liu, J., Gui, T., Shen, K., Manley, J.L., and Li, X.L. (2011). R-loop-mediated genomic instability is caused by impairment of replication fork progression. Genes Dev. 25, 2041-2056.
Gangloff, S., Mcdonald, J.P., Bendixen, C., Arthur, L., and Rothstein, R. (1994). The Yeast Type-I Topoisomerase Top3 Interacts with Sgs1, a DNA Helicase Homolog - a Potential Eukaryotic Reverse Gyrase. Mol. Cell. Biol. 14, 8391-8398.
Gerik, K.J., Li, X., Pautz, A., and Burgers, P.M. (1998). Characterization of the two small subunits of Saccharomyces cerevisiae DNA polymerase delta. J. Biol. Chem. 273, 19747-19755.
Giannattasio, M., and Branzei, D. (2017). S-phase checkpoint regulations that preserve replication and chromosome integrity upon dNTP depletion. Cell Mol. Life Sci. 74, 2361-2380.
Glover, T.W. (2006). Common fragile sites. Cancer Lett. 232, 4-12.
Grenson, M., Mousset, M., Wiame, J.M., and Bechet, J. (1966). Multiplicity of Amino Acid Permeases in Saccharomyces Cerevisiae .I. Evidence for a Specific Arginine-Transporting System. Biochim. Biophys. Acta. 127, 325-338.
Gueldener, U., Heinisch, J., Koehler, G.J., Voss, D., and Hegemann, J.H. (2002). A second set of loxP marker cassettes for Cre-mediated multiple gene knockouts in budding yeast. Nucleic Acids Res. 30, e23.
Gui, Y., Guo, G., Huang, Y., Hu, X., Tang, A., Gao, S., Wu, R., Chen, C., Li, X., Zhou, L., et al. (2011). Frequent mutations of chromatin remodeling genes in transitional cell carcinoma of the bladder. Nature Genet. 43, 875-878.
Halazonetis, T.D., Gorgoulis, V.G., and Bartek, J. (2008). An oncogene-induced DNA damage model for cancer development. Science 319, 1352-1355.
Hall, B.M., Ma, C.X., Liang, P., and Singh, K.K. (2009). Fluctuation analysis CalculatOR: a web tool for the determination of mutation rate using Luria-Delbruck fluctuation analysis. Bioinformatics 25, 1564-1565.
Hamperl, S., Bocek, M.J., Saldivar, J.C., Swigut, T., and Cimprich, K.A. (2017). Transcription-Replication Conflict Orientation Modulates R-Loop Levels and Activates Distinct DNA Damage Responses. Cell 170, 774-786.
Hamperl, S., and Cimprich, K.A. (2016). Conflict Resolution in the Genome: How Transcription and Replication Make It Work. Cell 167, 1455-1467.
Hanahan, D., and Weinberg, R.A. (2011). Hallmarks of Cancer: The Next Generation. Cell 144, 646-674.
Heintzman, N.D., Stuart, R.K., Hon, G., Fu, Y.T., Ching, C.W., Hawkins, R.D., Barrera, L.O., Van Calcar, S., Qu, C.X., Ching, K.A., et al. (2007). Distinct and predictive chromatin signatures of transcriptional promoters and enhancers in the human genome. Nature Genet. 39, 311-318.
Helmrich, A., Ballarino, M., Nudler, E., and Tora, L. (2013). Transcription-replication encounters, consequences and genomic instability. Nat. Struct. Mol. Biol. 20, 412-418.
Helmrich, A., Ballarino, M., and Tora, L. (2011). Collisions between Replication and Transcription Complexes Cause Common Fragile Site Instability at the Longest Human Genes. Mol. Cell 44, 966-977.
Henry, K.W., Wyce, A., Lo, W.S., Duggan, L.J., Emre, N.C., Kao, C.F., Pillus, L., Shilatifard, A., Osley, M.A., and Berger, S.L. (2003). Transcriptional activation via sequential histone H2B ubiquitylation and deubiquitylation, mediated by SAGA-associated Ubp8. Genes Dev. 17, 2648-2663.
Herbette, M., Mercier, M.G., Michal, F., Cluet, D., Burny, C., Yvert, G., Robert, V.J., and Palladino, F. (2017). The C. elegans SET-2/SET1 histone H3 Lys4 (H3K4) methyltransferase preserves genome stability in the germline. DNA Repair 57, 139-150.
Higgs, M.R., Sato, K., Reynolds, J.J., Begum, S., Bayley, R., Goula, A., Vernet, A., Paquin, K.L., Skalnik, D.G., Kobayashi, W., et al. (2018). Histone Methylation by SETD1A Protects Nascent DNA through the Nucleosome Chaperone Activity of FANCD2. Mol. Cell 71, 25-41
Hoch, N.C., Chen, E.S.W., Buckland, R., Wang, S.C., Fazio, A., Hammet, A., Pellicioli, A., Chabes, A., Tsai, M.D., and Heierhorst, J. (2013). Molecular Basis of the Essential S Phase Function of the Rad53 Checkpoint Kinase. Mol. Cell. Biol. 33, 3202-3213.
Hodl, M., and Basler, K. (2012). Transcription in the Absence of Histone H3.2 and H3K4 Methylation. Curr. Biol. 22, 2253-2257.
Hoffman, E.A., McCulley, A., Haarer, B., Arnak, R., and Feng, W. (2015). Break-seq reveals hydroxyurea-induced chromosome fragility as a result of unscheduled conflict between DNA replication and transcription. Genome Res. 25, 402-412.
Hoshii, T., Cifani, P., Feng, Z., Huang, C.H., Koche, R., Chen, C.W., Delaney, C.D., Lowe, S.W., Kentsis, A., and Armstrong, S.A. (2018). A Non-catalytic Function of SETD1A Regulates Cyclin K and the DNA Damage Response. Cell 172, 1007-1021.
Howe, F.S., Fischl, H., Murray, S.C., and Mellor, J. (2017). Is H3K4me3 instructive for transcription activation. Bioessays 39, 1600095.
Hsu, P.L., Shi, H., Leonen, C., Kang, J.M., Chatterjee, C., and Zheng, N. (2019). Structural Basis of H2B Ubiquitination-Dependent H3K4 Methylation by COMPASS. Mol. Cell 76, 712-723.
Huang, M.E., Rio, A.G., Nicolas, A., and Kolodner, R.D. (2003). A genomewide screen in Saccharomyces cerevisiae for genes that suppress the accumulation of mutations. Proc. Natl. Acad. Sci. U. S. A. 100, 11529-11534.
Huang, Y., Fang, J., Bedford, M.T., Zhang, Y., and Xu, R.M. (2006). Recognition of histone H3 lysine-4 methylation by the double tudor domain of JMJD2A. Science 312, 748-751.
Hung, S.H., Wong, R.P., Ulrich, H.D., and Kao, C.F. (2017). Monoubiquitylation of histone H2B contributes to the bypass of DNA damage during and after DNA replication. Proc. Natl. Acad. Sci. U. S. A. 114, E2205-E2214.
Janke, C., Magiera, M.M., Rathfelder, N., Taxis, C., Reber, S., Maekawa, H., Moreno-Borchart, A., Doenges, G., Schwob, E., Schiebel, E., et al. (2004). A versatile toolbox for PCR-based tagging of yeast genes: new fluorescent proteins, more markers and promoter substitution cassettes. Yeast 21, 947-962.
Johnson, R.E., Prakash, S., and Prakash, L. (1999). Requirement of DNA polymerase activity of yeast Rad30 protein for its biological function. J. Biol. Chem. 274, 15975-15977.
Kaikkonen, M.U., Spann, N.J., Heinz, S., Romanoski, C.E., Allison, K.A., Stender, J.D., Chun, H.B., Tough, D.F., Prinjha, R.K., Benner, C., et al. (2013). Remodeling of the Enhancer Landscape during Macrophage Activation Is Coupled to Enhancer Transcription. Mol. Cell 51, 310-325.
Kandoth, C., McLellan, M.D., Vandin, F., Ye, K., Niu, B., Lu, C., Xie, M., Zhang, Q., McMichael, J.F., Wyczalkowski, M.A., et al. (2013). Mutational landscape and significance across 12 major cancer types. Nature 502, 333-339.
Kim, J., and Roeder, R.G. (2009). Direct Bre1-Paf1 Complex Interactions and RING Finger-independent Bre1-Rad6 Interactions Mediate Histone H2B Ubiquitylation in Yeast. J. Biol. Chem. 284, 20582-20592.
Kim, N., and Jinks-Robertson, S. (2010). Abasic Sites in the Transcribed Strand of Yeast DNA Are Removed by Transcription-Coupled Nucleotide Excision Repair. Mol. Cell. Biol. 30, 3206-3215.
Kim, T., and Buratowski, S. (2009). Dimethylation of H3K4 by Set1 Recruits the Set3 Histone Deacetylase Complex to 5 ' Transcribed Regions. Cell 137, 259-272.
King, M.C., Marks, J.H., Mandell, J.B., and Grp, N.Y.B.C.S. (2003). Breast and ovarian cancer risks due to inherited mutations in BRCA1 and BRCA2. Science 302, 643-646.
Kirmizis, A., Santos-Rosa, H., Penkett, C.J., Singer, M.A., Vermeulen, M., Mann, M., Bahler, J., Green, R.D., and Kouzarides, T. (2007). Arginine methylation at histone H3R2 controls deposition of H3K4 trimethylation. Nature 449, 928-932.
Kohler, A., and Hurt, E. (2007). Exporting RNA from the nucleus to the cytoplasm. Nat. Rev. Mol. Cell Biol. 8, 761-773.
Kohler, A., Schneider, M., Cabal, G.G., Nehrbass, U., and Hurt, E. (2008). Yeast Ataxin-7 links histone deubiquitination with gene gating and mRNA export. Nat. Cell Biol. 10, 707-715.
Krakoff, I.H., Brown, N.C., and Reichard, P. (1968). Inhibition of Ribonucleoside Diphosphate Reductase by Hydroxyurea. Cancer Res. 28, 1559-1565.
Kumar, A., Mazzanti, M., Mistrik, M., Kosar, M., Beznoussenko, G.V., Mironov, A.A., Garre, M., Parazzoli, D., Shivashankar, G.V., Scita, G., et al. (2014). ATR Mediates a Checkpoint at the Nuclear Envelope in Response to Mechanical Stress. Cell 158, 633-646.
Kunst, F., Ogasawara, N., Moszer, I., Albertini, A.M., Alloni, G., Azevedo, V., Bertero, M.G., Bessieres, P., Bolotin, A., Borchert, S., et al. (1997). The complete genome sequence of the Gram-positive bacterium Bacillus subtilis. Nature 390, 249-256.
Kuzminov, A. (1995). Collapse and Repair of Replication Forks in Escherichia-Coli. Mol. Microbiol. 16, 373-384.
Lang, K.S., Hall, A.N., Merrikh, C.N., Ragheb, M., Tabakh, H., Pollock, A.J., Woodward, J.J., Dreifus, J.E., and Merrikh, H. (2017). Replication-Transcription Conflicts Generate R-Loops that Orchestrate Bacterial Stress Survival and Pathogenesis. Cell 170, 787-799.
Langmead, B., and Salzberg, S.L. (2012). Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357-359.
Lee, J.E., Wang, C.C., Xu, S.L.Y., Cho, Y.W., Wang, L.F., Feng, X.S., Baldridge, A., Sartorelli, V., Zhuang, L.N., Peng, W.Q., et al. (2013). H3K4 mono- and di-methyltransferase MLL4 is required for enhancer activation during cell differentiation. eLife 2:e01503.
Lengauer, C., Kinzler, K.W., and Vogelstein, B. (1998). Genetic instabilities in human cancers. Nature 396, 643-649.
Lenstra, T.L., Benschop, J.J., Kim, T., Schulze, J.M., Brabers, N.A.C.H., Margaritis, T., van de Pasch, L.A.L., van Heesch, S.A.A.C., Brok, M.O., Koerkamp, M.J.A.G., et al. (2011). The Specificity and Topology of Chromatin Interaction Pathways in Yeast. Mol. Cell 42, 536-549.
Li, S.S., Swanson, S.K., Gogol, M., Florens, L., Washburn, M.P., Workman, J.L., and Suganuma, T. (2015). Serine and SAM Responsive Complex SESAME Regulates Histone Modification Crosstalk by Sensing Cellular Metabolism. Mol. Cell 60, 408-421.
Li, X.L., and Manley, J.L. (2006). Cotranscriptional processes and their influence on genome stability. Genes Dev. 20, 1838-1847.
Lin, C.Y., Wu, M.Y., Gay, S., Marjavaara, L., Lai, M.S., Hsiao, W.C., Hung, S.H., Tseng, H.Y., Wright, D.E., Wang, C.Y., et al. (2014). H2B Mono-ubiquitylation Facilitates Fork Stalling and Recovery during Replication Stress by Coordinating Rad53 Activation and Chromatin Assembly. PLoS Genet. 10:e1004667.
Liu, C.L., Kaplan, T., Kim, M., Buratowski, S., Schreiber, S.L., Friedman, N., and Rando, O.J. (2005). Single-nucleosome mapping of histone modifications in S-cerevisiae. Plos Biol 3, 1753-1769.
Liu, H., Takeda, S., Kumar, R., Westergard, T.D., Brown, E.J., Pandita, T.K., Cheng, E.H., and Hsieh, J.J. (2010). Phosphorylation of MLL by ATR is required for execution of mammalian S-phase checkpoint. Nature 467, 343-346.
Lopes, M., Cotta-Ramusino, C., Pellicioli, A., Liberi, G., Plevani, P., Muzi-Falconi, M., Newlon, C.S., and Foiani, M. (2001). The DNA replication checkpoint response stabilizes stalled replication forks. Nature 412, 557-561.
Maisnier-Patin, S., Nordstrom, K., and Dasgupta, S. (2001). Replication arrests during a single round of replication of the Escherichia coli chromosome in the absence of DnaC activity. Mol Microbiol 42, 1371-1382.
Manfrini, N., Gobbini, E., Baldo, V., Trovesi, C., Lucchini, G., and Longhese, M.P. (2012). G(1)/S and G(2)/M cyclin-dependent kinase activities commit cells to death in the absence of the S-phase checkpoint. Molecular and cellular biology 32, 4971-4985.
Marechal, A., and Zou, L. (2015). RPA-coated single-stranded DNA as a platform for post-translational modifications in the DNA damage response. Cell research 25, 9-23.
Matsuoka, S., Huang, M.X., and Elledge, S.J. (1998). Linkage of ATM to cell cycle regulation by the Chk2 protein kinase. Science 282, 1893-1897.
Maya-Mendoza, A., Moudry, P., Merchut-Maya, J.M., Lee, M., Strauss, R., and Bartek, J. (2018). High speed of fork progression induces DNA replication stress and genomic instability. Nature 559, 279-+.
Meijers-Heijboer, H., van den Ouweland, A., Klijn, J., Wasielewski, M., de Snoo, A., Oldenburg, R., Hollestelle, A., Houben, M., Crepin, E., van Veghel-Plandsoen, M., et al. (2002). Low-penetrance susceptibility to breast cancer due to CHEK2*1100delC in noncarriers of BRCA1 or BRCA2 mutations. Nat Genet 31, 55-59.
Mejia-Ramirez, E., Limbo, O., Langerak, P., and Russell, P. (2015). Critical Function of gammaH2A in S-Phase. Plos Genet 11:e1005517.
Mellor, J. (2005). The dynamics of chromatin remodeling at promoters. Mol. Cell. 19, 147-157.
Meluh, P.B., and Koshland, D. (1995). Evidence That the Mif2 Gene of Saccharomyces-Cerevisiae Encodes a Centromere Protein with Homology to the Mammalian Centromere Protein Cenp-C. Mol. Biol. Cell 6, 793-807.
Merrikh, H., Zhang, Y., Grossman, A.D., and Wang, J.D. (2012). Replication-transcription conflicts in bacteria. Nat. Rev. Microbiol. 10, 449-458.
Miller, T., Krogan, N.J., Dover, J., Erdjument-Bromage, H., Tempst, P., Johnston, M., Greenblatt, J.F., and Shilatifard, A. (2001). COMPASS: A complex of proteins associated with a trithorax-related SET domain protein. Proc. Natl. Acad. Sci. U. S. A. 98, 12902-12907.
Million-Weaver, S., Samadpour, A.N., Moreno-Habel, D.A., Nugent, P., Brittnacher, M.J., Weiss, E., Hayden, H.S., Miller, S.I., Liachko, I., and Merrikh, H. (2015). An underlying mechanism for the increased mutagenesis of lagging-strand genes in Bacillus subtilis. Proc. Natl. Acad. Sci. U. S. A. 112, E1096-E1105.
Mirkin, E.V., and Mirkin, S.M. (2005). Mechanisms of transcription-replication collisions in bacteria. Mol. Cell. Biol. 25, 888-895.
Mirkin, E.V., and Mirkin, S.M. (2007). Replication fork stalling at natural impediments. Microbiol. Mol. Biol. Rev. 71, 13-35.
Mischo, H.E., Gomez-Gonzalez, B., Grzechnik, P., Rondon, A.G., Wei, W., Steinmetz, L., Aguilera, A., and Proudfoot, N.J. (2011). Yeast Sen1 Helicase Protects the Genome from Transcription-Associated Instability. Mol. Cell 41, 21-32.
Moehle, E.A., Ryan, C.J., Krogan, N.J., Kress, T.L., and Guthrie, C. (2012). The Yeast SR-Like Protein Npl3 Links Chromatin Modification to mRNA Processing. PLoS Genet. 8:e1003101.
Morafraile, E.C., Diffley, J.F.X., Tercero, J.A., and Segurado, M. (2015). Checkpoint-dependent RNR induction promotes fork restart after replicative stress. Sci. Rep. 5:7886.
Morin, R.D., Mendez-Lago, M., Mungall, A.J., Goya, R., Mungall, K.L., Corbett, R.D., Johnson, N.A., Severson, T.M., Chiu, R., Field, M., et al. (2011). Frequent mutation of histone-modifying genes in non-Hodgkin lymphoma. Nature 476, 298-303.
Nam, G.M., and Arya, G. (2014). Torsional behavior of chromatin is modulated by rotational phasing of nucleosomes. Nucleic Acids Res. 42, 9691-9699.
Nelson, J.R., Lawrence, C.W., and Hinkle, D.C. (1996). Thymine-thymine dimer bypass by yeast DNA polymerase zeta. Science 272, 1646-1649.
Ng, H.H., Dole, S., and Struhl, K. (2003). The Rtf1 component of the Paf1 transcriptional elongation complex is required for ubiquitination of histone H2B. J. Biol. Chem. 278, 33625-33628.
Ng, H.H., Xu, R.M., Zhang, Y., and Struhl, K. (2002). Ubiquitination of histone H2B by Rad6 is required for efficient Dot1-mediated methylation of histone H3 lysine 79. J. Biol. Chem. 277, 34655-34657.
Pellicioli, A., Lucca, C., Liberi, G., Marini, F., Lopes, M., Plevani, P., Romano, A., Di Fiore, P.P., and Foiani, M. (1999). Activation of Rad53 kinase in response to DNA damage and its effect in modulating phosphorylation of the lagging strand DNA polymerase. Embo J. 18, 6561-6572.
Peterson, C.L., and Cote, J. (2004). Cellular machineries for chromosomal DNA repair. Genes Dev. 18, 602-616.
Pike, J.E., Burgers, P.M.J., Campbell, J.L., and Bambara, R.A. (2009). Pif1 Helicase Lengthens Some Okazaki Fragment Flaps Necessitating Dna2 Nuclease/Helicase Action in the Two-nuclease Processing Pathway. J. Biol. Chem. 284, 25170-25180.
Pinskaya, M., and Morillon, A. (2009). Histone H3 lysine 4 di-methylation A novel mark for transcriptional fidelity? Epigenetics 4, 302-306.
Poli, J., Tsaponina, O., Crabbe, L., Keszthelyi, A., Pantesco, V., Chabes, A., Lengronne, A., and Pasero, P. (2012). dNTP pools determine fork progression and origin usage under replication stress. Embo J. 31, 883-894.
Pomerantz, R.T., and O'Donnell, M. (2010). Direct Restart of a Replication Fork Stalled by a Head-On RNA Polymerase. Science 327, 590-592.
Pope, B.D., Aparicio, O.M., and Gilbert, D.M. (2013). SnapShot: Replication Timing. Cell 152, 1390-1390.
Posas, F., Duch, A., Gonzalez-Novo, A., Vigano, M., and de Nadal, E. (2013). Control of cell cycle progression by the Hog1 SAPK in response to stress. Yeast 30, 29-29.
Prado, F., and Aguilera, A. (2005). Impairment of replication fork progression mediates RNA polII transcription-associated recombination. Embo J. 24, 1267-1276.
Pruss, D., Hayes, J.J., and Wolffe, A.P. (1995). Nucleosomal Anatomy - Where Are the Histones. Bioessays 17, 161-170.
Qiu, J.Z., Qian, Y., Frank, P., Wintersberger, U., and Shen, B.H. (1999). Saccharomyces cerevisiae RNase H(35) functions in RNA primer removal during lagging-strand DNA synthesis, most efficiently in cooperation with Rad27 nuclease. Mol. Cell. Biol. 19, 8361-8371.
Radman-Livaja, M., Liu, C.L., Friedman, N., Schreiber, S.L., and Rando, O.J. (2010). Replication and Active Demethylation Represent Partially Overlapping Mechanisms for Erasure of H3K4me3 in Budding Yeast. PLoS Genet. 6:e1000837.
Radman-Livaja, M., and Rando, O.J. (2010). Nucleosome positioning: How is it established, and why does it matter? Dev. Biol. 339, 258-266.
Recht, J., Tsubota, T., Tanny, J.C., Diaz, R.L., Berger, J.M., Zhang, X., Garcia, B.A., Shabanowitz, J., Burlingame, A.L., Hunt, D.F., et al. (2006). Histone chaperone Asf1 is required for histone H3 lysine 56 acetylation, a modification associated with S phase in mitosis and meiosis. Proc. Natl. Acad. Sci. U. S. A. 103, 6988-6993.
Rizzardi, L.F., Dorn, E.S., Strahl, B.D., and Cook, J.G. (2012). DNA Replication Origin Function Is Promoted by H3K4 Di-methylation in Saccharomyces cerevisiae. Genetics 192, 371-384.
Robzyk, K., Recht, J., and Osley, M.A. (2000). Rad6-dependent ubiquitination of histone H2B in yeast. Science 287, 501-504.
Rocha, E.P.C. (2008). The Organization of the Bacterial Genome. Annu. Rev. Genet. 42, 211-233.
Rocha, E.P.C., and Danchin, A. (2003a). Essentiality, not expressiveness, drives gene-strand bias in bacteria. Nature Genet. 34, 377-378.
Rocha, E.P.C., and Danchin, A. (2003b). Gene essentiality determines chromosome organisation in bacteria. Nucleic Acids Res. 31, 6570-6577.
Rondon, A.G., Jimeno, S., and Aguilera, A. (2010). The interface between transcription and mRNP export: From THO to THSC/TREX-2. Bba-Gene Regul Mech 1799, 533-538.
Rossi, S.E., Ajazi, A., Carotenuto, W., Foiani, M., and Giannattasio, M. (2015). Rad53-Mediated Regulation of Rrm3 and Pif1 DNA Helicases Contributes to Prevention of Aberrant Fork Transitions under Replication Stress. Cell Rep. 13, 80-92.
Rossi, S.E., Foiani, M., and Giannattasio, M. (2018). Dna2 processes behind the fork long ssDNA flaps generated by Pif1 and replication-dependent strand displacement. Nat. Commun. 9:4830.
Ruthenburg, A.J., Allis, C.D., and Wysocka, J. (2007). Methylation of lysine 4 on histone H3: intricacy of writing and reading a single epigenetic mark. Mol. Cell 25, 15-30.
Sanchez, Y., Desany, B.A., Jones, W.J., Liu, Q.H., Wang, B., and Elledge, S.J. (1996). Regulation of RAD53 by the ATM-like kinases MEC1 and TEL1 in yeast cell cycle checkpoint pathways. Science 271, 357-360.
Santocanale, C., and Diffley, J.F. (1998). A Mec1- and Rad53-dependent checkpoint controls late-firing origins of DNA replication. Nature 395, 615-618.
Santos-Rosa, H., Schneider, R., Bannister, A.J., Sherriff, J., Bernstein, B.E., Emre, N.C.T., Schreiber, S.L., Mellor, J., and Kouzarides, T. (2002). Active genes are tri-methylated at K4 of histone H3. Nature 419, 407-411.
Schep, A.N., Buenrostro, J.D., Denny, S.K., Schwartz, K., Sherlock, G., and Greenleaf, W.J. (2015). Structured nucleosome fingerprints enable high-resolution mapping of chromatin architecture within regulatory regions. Genome Res. 25, 1757-1770.
Schulze, J.M., Hentrich, T., Nakanishi, S., Gupta, A., Emberly, E., Shilatifard, A., and Kobor, M.S. (2011). Splitting the task: Ubp8 and Ubp10 deubiquitinate different cellular pools of H2BK123. Genes Dev. 25, 2242-2247.
Shahbazian, M.D., Zhang, K.L., and Grunstein, M. (2005). Histone H2B ubiquitylation controls processive methylation but not monomethylation by Dot1 and Set1. Mol. Cell 19, 271-277.
Shi, X., Hong, T., Walter, K.L., Ewalt, M., Michishita, E., Hung, T., Carney, D., Pena, P., Lan, F., Kaadige, M.R., et al. (2006). ING2 PHD domain links histone H3 lysine 4 methylation to active gene repression. Nature 442, 96-99.
Shi, X.B., Kachirskaia, I., Walter, K.L., Kuo, J.H.A., Lake, A., Davrazou, F., Chan, S.M., Martin, D.G.E., Fingerman, I.M., Briggs, S.D., et al. (2007). Proteome-wide analysis in Saccharomyces cerevisiae identifies several PHD fingers as novel direct and selective binding modules of histone H3 methylated at either lysine 4 or lysine 36. J. Biol. Chem. 282, 2450-2455.
Shilatifard, A. (2012). The COMPASS Family of Histone H3K4 Methylases: Mechanisms of Regulation in Development and Disease Pathogenesis. Annu. Rev. Biochem. 81, 65-95.
Sims, R.J., 3rd, Chen, C.F., Santos-Rosa, H., Kouzarides, T., Patel, S.S., and Reinberg, D. (2005). Human but not yeast CHD1 binds directly and selectively to histone H3 methylated at lysine 4 via its tandem chromodomains. J. Biol. Chem. 280, 41789-41792.
Skourti-Stathaki, K., Proudfoot, N.J., and Gromak, N. (2011). Human Senataxin Resolves RNA/DNA Hybrids Formed at Transcriptional Pause Sites to Promote Xrn2-Dependent Termination. Mol. Cell 42, 794-805.
Soares, L.M., He, P.C., Chun, Y.J., Suh, H., Kim, T., and Buratowski, S. (2017). Determinants of Histone H3K4 Methylation Patterns. Mol. Cell 68, 773-785.
Sogo, J.M., Lopes, M., and Foiani, M. (2002). Fork reversal and ssDNA accumulation at stalled replication forks owing to checkpoint defects. Science 297, 599-602.
Sun, Z.W., and Allis, C.D. (2002). Ubiquitination of histone H2B regulates H3 methylation and gene silencing in yeast. Nature 418, 104-108.
Sun, Z.X., Fay, D.S., Marini, F., Foiani, M., and Stern, D.F. (1996). Spk1/Rad53 is regulated by Mec1-dependent protein phosphorylation in DNA replication and damage checkpoint pathways. Genes Dev. 10, 395-406.
Sweeney, F.D., Yang, F., Chi, A., Shabanowitz, J., Hunt, D.F., and Durocher, D. (2005). Saccharomyces cerevisiae Rad9 acts as a Mec1 adaptor to allow Rad53 activation. Curr. Biol. 15, 1364-1375.
Tarbell, E.D., and Liu, T. (2019). HMMRATAC: a Hidden Markov ModeleR for ATAC-seq. Nucleic Acids Res. 47, e91.
Taverna, S.D., Ilin, S., Rogers, R.S., Tanny, J.C., Lavender, H., Li, H., Baker, L., Boyle, J., Blair, L.P., Chait, B.T., et al. (2006). Yng1 PHD finger binding to H3 trimethylated at K4 promotes NuA3 HAT activity at K14 of H3 and transcription at a subset of targeted ORFs. Mol. Cell 24, 785-796.
Tomasetti, C., and Vogelstein, B. (2015). Variation in cancer risk among tissues can be explained by the number of stem cell divisions. Science 347, 78-81.
Uckelmann, M., and Sixma, T.K. (2017). Histone ubiquitination in the DNA damage response. DNA Repair 56, 92-101.
Valencia-Sanchez, M.I., De Ioannes, P., Wang, M., Vasilyev, N., Chen, R.Y., Nudler, E., Armache, J.P., and Armache, K.J. (2019). Structural Basis of Dot1L Stimulation by Histone H2B Lysine 120 Ubiquitination. Mol. Cell 74, 1010-1019.
Vialard, J.E., Gilbert, C.S., Green, C.M., and Lowndes, N.F. (1998). The budding yeast Rad9 checkpoint protein is subjected to Mec1/Tel1-dependent hyperphosphorylation and interacts with Rad53 after DNA damage. Embo J. 17, 5679-5688.
Wang, S.S., Zhou, B.O., and Zhou, J.Q. (2011). Histone H3 lysine 4 hypermethylation prevents aberrant nucleosome remodeling at the PHO5 promoter. Mol. Cell. Biol. 31, 3171-3181.
Wang, Z.B., Zang, C.Z., Rosenfeld, J.A., Schones, D.E., Barski, A., Cuddapah, S., Cui, K.R., Roh, T.Y., Peng, W.Q., Zhang, M.Q., et al. (2008). Combinatorial patterns of histone acetylations and methylations in the human genome. Nature Genet. 40, 897-903.
Weake, V.M., and Workman, J.L. (2008). Histone ubiquitination: Triggering gene activity. Mol. Cell 29, 653-663.
Whelan, W.L., Gocke, E., and Manney, T.R. (1979). The CAN1 locus of Saccharomyces cerevisiae: fine-structure analysis and forward mutation rates. Genetics 91, 35-51.
Wood, A., Krogan, N.J., Dover, J., Schneider, J., Heidt, J., Boateng, M.A., Dean, K., Golshani, A., Zhang, Y., Greenblatt, J.F., et al. (2003). Bre1, an E3 ubiquitin ligase required for recruitment and substrate selection of Rad6 at a promoter. Mol Cell 11, 267-274.
Worden, E.J., Hoffmann, N.A., Hicks, C.W., and Wolberger, C. (2019). Mechanism of Cross-talk between H2B Ubiquitination and H3 Methylation by Dot1L. Cell 176, 1490-+.
Worden, E.J., Zhang, X.B., and Wolberger, C. (2020). Structural basis for COMPASS recognition of an H2B-ubiquitinated nucleosome. eLife 9:e53199.
Zenklusen, D., Larson, D.R., and Singer, R.H. (2008). Single-RNA counting reveals alternative modes of gene expression in yeast. Nat. Struct. Mol. Biol. 15, 1263-1271.
Zhang, J.R., Willers, H., Feng, Z.H., Ghosh, J.C., Kim, S., Weaver, D.T., Chung, J.H., Powell, S.N., and Xia, F. (2004). Chk2 phosphorylation of BRCA1 regulates DNA double-strand break repair. Mol. Cell. Biol. 24, 708-718.
Zhang, L.W., Eugeni, E.E., Parthun, M.R., and Freitas, M.A. (2003). Identification of novel histone post-translational modifications by peptide mass fingerprinting. Chromosoma 112, 77-86.
Zhao, X.L., Chabes, A., Domkin, V., Thelander, L., and Rothstein, R. (2001). The ribonucleotide reductase inhibitor Sml1 is a new target of the Mec1/Rad53 kinase cascade during growth and in response to DNA damage. Embo J. 20, 3544-3553.
Zhao, X.L., Muller, E.G.D., and Rothstein, R. (1998). A suppressor of two essential checkpoint genes identifies a novel protein that negatively affects dNTP pools. Mol. Cell 2, 329-340.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top