中文部分:
蔡慶輝,1999,沖繩海槽南端的火山及熱液作用之初步調查。國立台灣海洋大學應用地球物理研究所碩士論文。郭富雯,2001,龜山島海底熱液活動初步調查。國立中山大學海洋地質及化學研究所碩士論文。張逸安,2004,沖繩海槽西南端岩心沉積物之礦物組成與地球化學。國立台灣大學海洋研究所碩士論文。李易隆,2005,台灣東北部海域海底火山與熱液噴泉之研究。國立臺灣海洋大學研究所碩士論文。鄭智睿,2008,南沖繩海槽表層沈積物中黏土礦物之研究。國立台灣大學理學院海洋研究所碩士論文。楊秉澔,2014,岩石鋰同位素的分析方法:應用多接收感應耦合電漿質譜術,國立台灣大學理學院海洋研究所碩士論文。蘇志杰,2016,臺灣東北海域礦產資源潛能調查-地球化學與海床觀測調查研究(1/4):總論與地球化學調查研究。經濟部中央地質調查所報告第105-14-A號。
劉家瑄,2017,臺灣東北海域礦產資源潛能調查:臺灣東北海域礦產資源潛能調查:震測及地熱流調查研究(2/4)反射震測與海床聲納回聲剖面調查研究。經濟部中央地質調查所報告,第106-12-A號。
陳信宏,2017,臺灣東北海域礦產資源潛能調查-地球化學與海床觀測調查研究(2/4):海床表面礦物影像調查與採樣。經濟部中央地質調查所報告第106-14-B號。
蘇志杰,2017,臺灣東北海域礦產資源潛能調查-地球化學與海床觀測調查研究(2/4):總論與地球化學調查研究。經濟部中央地質調查所報告第106-14-A號。
劉家瑄,2018,臺灣東北海域礦產資源潛能調查:震測及地熱流調查研究(3/4)地熱流調查與流體移棲模式研究(3/4)。經濟部中央地質調查所報告,第107-13-B號。
江威德,2018,臺灣東北海域礦產資源潛能調查-地球化學與海床觀測調查研究(3/4):熱液礦石與脈石之礦物分析。經濟部中央地質調查所報告,第107-15-C號。
英文部分:
Alt, J.C., 1995. Subseafloor processes in mid-ocean ridge hydrothermal systems. AGU Monogr., 91: 85-114.
Anders, E. and Grevesse, N., 1989. Abundance of elements: Meteoritic and solar. Geochim. Cosmochim. Acta, 53: 197-214.
Anderson, M.A., Bertsch, P.M. and Miller, W.P., 1989. Exchange and apparent fixation of lithium in selected soils and clay minerals. Soil Sci., 148: 46-52.
Anghel, I., Turin, H.J. and Reimus, P.W., 2002. Lithium sorption to Yucca Mountain tuffs. Appl. Geochem., 17:819-824.
Araoka, D., Nishio, Y., Gamo, T., Yamaoka, K. and Kawahata, H., 2016. Lithium isotopic systematics of submarine vent fluids from arc and back-arc hydrothermal systems in the western Pacific. Geochem. Geophys. Geosyst., 17(10): 3835-3853.
Berndt, M.E. and Seyfried, W.E., 1990. Boron, bromine, and other trace elements as clues to the fate of chlorine in midocean ridge vent fluids. Geochim. Cosmochim. Acta, 54: 2235-2245.
Bischoff, J.L. and Rosenbauer, R.J., 1985. An empirical equation of state for hydrothermal seawater (3.2% NaCl). Am. J. Sci., 285: 725-763.
Bischoff, J.L. and Seyfried Jr., W.E., 1978. Hydrothermal chemistry of seawater from 25° to 350°C. Am. J. Sci., 278: 838-860.
Bowers, T.S., Campbell, A.C., Measures, C.I., Spivack, A.J., Khadem, M. and Edmond, J.M., 1988. Chemical controls on the composition of vent fluids at 138–118N and 218N, East Pacific Rise. J. Geophys. Res., 93: 4522-4536.
Brant, C., Coogan, L.A., Gillis, K.M., Seyfried, W.E., Pester, N.J. and Spence, J., 2012. Lithium and Li-isotopes in young altered upper oceanic crust from the East Pacific Rise. Geochim. Cosmochim. Acta, 96: 272-293.
Bruland, K.W., 1983. Trace elements in seawater. Chemical Oceanography, 8: 147-220.
Burton, K.W. and Vigier, N., 2011. Lithium Isotopes as Tracers in Marine and Terrestrial Environment. Handbook of Environmental Isotope Geochemistry, Advances in Isotope Geochemistry(ed. Baskaean, M.): 41-59.
Butterfield, D.A., Massoth, G.J., McDuff, R.E., Lupton, J.E. and Lilley, M.D., 1990. Geochemistry of hydrothermal fluids from Axial Seamount Hydrothermal Emissions Study vent field, Juan de Fuca Ridge: Subseafloor boiling and subsequent fluid-rock interaction. J. Geophys. Res., 95: 12895-12921.
Butterfield, D.A., McDuff, R.E., Franklin, J. and Wheat, G.C., 1994. Geochemistry of hydrothermal vent fluids from Middle Valley, Juan de Fuca Ridge. Proc. Ocean Drill. Program Sci. Results, 139: 395-410.
Byrne, R.H., Kump, L.R. and Cantrell, K.J., 1988. The influence of temperature and pH on trace metal speciation in seawater. Mar. Chem., 2: 163-181.
Campbell, A.C., Bowers, T.S., Meaures, C.I., Falkner, K.K., Khadem, M. and Edmond, J.M., 1988. A time series of vent fluid compositions from 218N, East Pacific Rise (1979, 1981, 1985), and the Guaymas Basin, Gulf of California (1982, 1985). J. Geophys. Res., 93: 4357-4549.
Chan, L.H., Alt, J.C. and Teagle, D.A.H., 2002. Lithium and lithium isotope profiles through the upper oceanic crust: A study of seawater-basalt exchange at ODP Sites 504B and 896A. Earth Planet. Sci. Lett., 201(1): 187-201.
Chan, L.H. and Edmond, J.M., 1988. Variation of lithium isotope composition in the marine environment: a preliminary report. Geochim. Cosmochim. Acta, 52(6): 1711-1717.
Chan, L.H., Edmond, J.M., Thompson, G. and Gillis, K., 1992. Lithium isotopic composition of submarine basalts—Implications for the lithium cycle in the oceans. Earth Planet. Sci. Lett., 108: 151-160.
Chan, L.H., Edmond, J.M. and Thompson, G., 1993. A lithium isotope study of hot springs and metabasalts from Mid-Ocean Ridge Hydrothermal Systems. J. Geophys. Res., 98: 9653-9659.
Chan, L.H., Gieskes, J.M., You, C.F. and Edmond, J.M., 1994. Lithium isotope geochemistry of sediments and hydrothermal fluids of the Guaymas Basin, Gulf of California. Geochim. Cosmochim. Acta, 58: 4443-4454.
Chan, L.H., Leeman, W.P. and Plank, T., 2006. Lithium isotopic composition of marine sediments. Geochem. Geophys. Geosyst., 7(6): Q06005.
Chen, Z., Zeng, Z., Wang, X., Yin, X., Chen, S., Guo, K., Laid, Z., Zhanga, Y., Ma, Y., Qi, H. and Wu, L., 2018. U-Th/He dating and chemical compositions of apatite in the dacite from the southwestern Okinawa Trough: Implications for petrogenesis. J. Asian Earth Sci., 161: 1-13.
Choi, M.S., Ryu, J.S., Park, H.Y., Lee, K.S., Kil, Y. and Shin, H.S., 2013. Precise determination of the lithium isotope ratio in geological samples using MC-ICP-MS with cool plasma. J. Anal. At. Spectrom., 28: 505-509.
Chukhrov, F.V., 1995. Colloids in earth’s crust. Мoscow: Izdatelstvo AN USSR, 671 pp.
Corliss, J.B., Dymond, J., Gordon, L.I., Edmond, J.M., von Herzen, R.P., Ballard, R.D., Green, K., Williams, D., Bainbridge, A., Crane, K. and van Andel, T.H., 1979. Submarine thermal springs on the Galapagos Rift. Science, 203:1073-1083.
Craig, H., Lupton, J.E. and Horibe, Y., 1978. A mantle helium component in Circum-Pacific volcanic gases: Hakone, the Marianas and Mt. Lassen. Terriestrial Rare Gases: 3-16.
De Beer, D., Haeckel, M., Neumann, J., Wegener, G., Inagaki, F. and Boetius, A., 2013. Saturated CO2 inhibits microbial processes in CO2-vented deep-sea sediments. Biogeosciences, 10: 5639-5649.
Delaney, J.R., Robigou, V., McDuff, R.E. and Tivey, M.K., 1992. Geology of a vigorous hydrothermal system on the Endeavour segment, Juan de Fuca Ridge. J. Geophys. Res., 97:19663-19682.
Ding, K. and Seyfried, W.E. Jr., 2007. In-situ measurement of pH and dissolved H2 in mid-ocean hydrothermal fluids at elevated temperatures and pressures. Chem. Rev., 107: 601-623.
Ding, K., Seyfried, W.E. Jr., Zhang, Z., Tivey, M.K., Von Damm, K.L. and Bradley, A.M., 2005. The in situ pH of hydrothermal fluids at mid-ocean ridges. Earth Planet. Sci. Lett., 237: 167-174.
Douville, E., Charlou, J.L., Oelkers, E.H., Bienvenu, P., Colon, C.F.J., Donval, J.P., Fouquet, Y., Prieur, D. and Appriou, P., 2002. The rainbow vent fluids (36 degrees 14’ N, MAR): the influence of ultramafic rocks and phase separation on trace metal content in Mid-Atlantic Ridge hydrothermal fluids. Chem. Geol., 184: 37-48.
Driesner, T., 2007. The system H2O-NaCl. Part II: Correlations for molar volume, enthalpy, and isobaric heat capacity from 0 to 1000℃, 1 to 5000 bar, and 0 to 1 XNaCl. Geochim. Cosmochim. Acta, 71: 4902-4919.
Edmond, J.M., Campbell, A.C., Palmer, M.R., Kinkhammer, G.P., German, C.R., Edmonds, H.N., Elderfield, H., Thompson, G. and Rona, P., 1995. Time series of vent fluids from the TAG and MARK sites (1986, 1990) Mid-Atlantic Ridge: A new solution chemistry model and a mechanism for Cu/Zn zonation in massive sulphide orebodies. Hydrothermal Vents and Processes(eds. Parson, L.M., Walker, C.L. and Dixon, D.R.):77-86.
Edmond, J.M., Measures, C.I., McDuff, R.E., Chan, L.H., Collier, R., Grant, B., Gordon, L.I. and Corliss, J.B., 1979. Ridge crest hydrothermal activity and the balances of the major and minor elements in the ocean: the Galapagos data. Earth Planet. Sci. Lett., 46: 1-18.
Edmond, J.M., Von Damm, K.L., McDuff, R.E. and Measures, C.I., 1982. The chemistry of the hot springs on the East Pacific Rise and their effluent dispersal. Nature, 297: 187-191.
Fouquet, Y., Von Stackelberg, U., Charlou, J.L., Donval, J.P., Erzinger, J., Foucher, J.P., Herzig, P., Muhe, R., Soakai, S., Wiedicke, M. and Whitechurch, H., 1991. Hydrothermal activity and metallogenesis in the Lau back-arc basin. Nature, 349: 778-781.
Foustoukos, D.I., James, R.H., Berndt, M.E. and Seyfried, W.E., 2004. Lithium isotopic systematics of hydrothermal vent fluids at the Main Endeavour Field, Northern Juan de Fuca Ridge. Chem. Geol., 212: 17-26.
Foustoukos, D.I. and Seyfried Jr., W.E., 2007. Trace element partitioning between vapor, brine and halite under extreme phase separation conditions. Geochim. Cosmochim. Acta, 71(8): 2056-2071.
Gamo, T., 1995. Wide variation of chemical characteristics of submarine hydrothermal fluids due to secondary modification processes after high temperature water-rock interaction: a review. Biogeochemical Processes and Ocean Flux in the Western Pacific: 425-451.
Gamo, T., et al., 1990. Geochemical studies on the hydrothermal activity of the mid-Okinawa Trough: A report on dive 416 of the ‘‘SHINKAI 2000’’ and characterization of hydrothermal fluids from concentration of major chemical components (in Japanese with English abstract), Proc. JAMSTEC Symp. Deep Sea Res., 6: 51-62.
Gamo, T., Okamura, K., Charlou, J.L., Urabe, T., Auzende, J.M., Ishibashi, J., Shitashima, K. and Chiba, H., 1997. Acidic and sulfate-rich hydrothermal fluids from the Manus back-arc basin, Papua New Guinea. Geology, 25: 139-142.
Gao, Y., Vils, F., Cooper, K.M., Banerjee, N., Harris, M., Hoefs, J., Teagle, D.A.H., Casey, J.F., Elliott, T., Laverne, C., Alt, J.C. and Muehlenbachs, K., 2012. Downhole variation of lithium and oxygen isotopic compositions of oceanic crust at East Pacific Rise, ODP Site 1256. Geochem. Geophys. Geosyst., 13(10): Q10001.
German, C. R., and Seyfried, W. E., Jr., 2014. Hydrothermal processes. Treatise on Geochemistry, 2nd edn. Oxford, Elsevier, 8: 191-233.
Gieskes, J. M., 1983.The chemistry of interstitial waters of deep sea sediments: implication of Deep Sea Drilling data. Chemical oceanography, 8: 221-269.
Goldfarb, M.S., Converse, D.R., Holland, H.D. and Edmond, J.M., 1983. The genesis of hot spring deposits on the East Pacific Rise, 21°N. Econ. Geol. Monogr., 5:184-197.
Grimaud, D., Ishibashi, J., Lagabrielle, Y., Auzende, J.M. and Urabe, T., 1991. Chemistry of hydrothermal fluids from the 178S active site on the North Fiji Basin Ridge (SW Pacific). Chem. Geol., 93: 209-218.
Hannington, M.D., Jamieson, J.J., Monecke, T., Petersen, S. and Beaulieu, S., 2011. The abundance of seafloor massive sulfide deposits. Geology, 39(12): 1155-1158.
Hannington, M.D., Jonasson, I.R., Herzig, P.M. and Petersen, S., 1995. Physical and chemical processes of seafloor mineralization at mid-ocean ridges. Geophys. Monogr., 91: 115-157.
Haymon, R., 1983. Growth history of hydrothermal black smoker chimneys. Nature, 301:695-698.
Henley, R.W. and Ellis, A.J., 1983. Geothermal systems ancient and modern: A geochemical review. Earth Sci. Rev., 19: 1-50.
Hongo, Y., Obata, H., Gamo, T., Nakaseama, M., Ishibashi, J., Konno, U., Saegusa, S., Ohkubo, S. and Tsunogai, U., 2007. Rare Earth Elements in the hydrothermal system at Okinawa Trough back-arc basin. Geochem. J., 41: 1-15.
Horita, J. and Berndt, M.E., 1999. Abiogenic methane formation and isotopic fractionation under hydrothermal conditions. Science, 285(5430): 1055-1057.
Hosono, T., Nakano, T., and Murakami, H., 2003. Sr–Nd–Pb isotopic compositions of volcanic rocks around the Hishikari gold deposit, southwest Japan: implications for the contribution of a felsic lower crust. Chem. Geol., 201(1), 19-36.
Huang, K.F., You, C.F., Liu, Y.H., Wang, R.M., Lin, P.Y. and Chung, C.H., 2010. Low-memory, small sample size, accurate and high-precision determinations of lithium isotopic ratios in natural materials by MC-ICP-MS. J J. Anal. At. Spectrom., 25: 1019-1024.
Humphris, S.E. and Thompson, G., 1978. Trace element mobility during hydrothermal alteration of oceanic basalts. Geochim. Cosmochim. Acta, 42: 127-136.
Ishibashi, J., Grimaud, D., Nojiri, Y., Auzende, J.M. and Urabe, T., 1994a. Fluctuation of chemical compositions of the phase-separated hydrothermal fluid from the North Fiji Basin Ridge. Mar. Geol., 116: 215-226.
Ishibashi, J., Tsunogai, U., Wakita, H., Watanabe, K., Kajimura, T., Shibata, A., Fujiwara, Y. and Hashimoto, J., 1994b. Chemical composition of hydrothermal fluids from the Suiyo and the Mokuyo Seamounts, Izu-Bonin Arc (in Japanese with English abstract). JAMSTEC J. Deep Sea Res., 10: 89-97.
Ishibashi, J.I. and Urabe, T., 1995. Hydrothermal activity related to arc-backarc magmatism in the western Pacific. Backarc Basins: Tectonics and Magmatism (ed. Taylor, B.). Plenum, NY: 451-495.
Ishikawa, T. and Nakamura, E., 1993, Boron isotope systematics of marine sediments, Earth Planet. Sci. Lett., 117: 567-580.
James, R.H., Allen, D.E. and Seyfried Jr., W.E., 2003. An experimental study of alteration of oceanic crust and terrigenous sediments at moderate temperatures (51 to 350°C): Insights as to chemical processes in near-shore ridge-flank hydrothermal systems. Geochim. Cosmochim. Acta, 67(4): 681-691.
James, R.H., Rudnicki, M.D. and Palmer, M.R., 1999. The alkali element and boron geochemistry of the Escanaba Trough sediment-hosted hydrothermal system. Earth Planet. Sci. Lett., 171: 157-169.
Jean-Baptiste, P., Charlou, J.L., Stievenard, M., Donval, J.P., Bougault, H. and Mevel, C., 1991. Helium and methane measurements in hydrothermal fluids from the mid-Atlantic ridge: The Snake Pit site at 238N. Earth Planet. Sci. Lett., 106: 17-28.
Jochum, K.P., Weis, U., Schwager, B., Stoll, B., Wilson, S.A., Haug, G.H., Andreae M.O. and Enzweiler, J., 2016. Reference values following ISO guidelines for frequently requested rock reference materials. Geostand. Geoanal. Res., 40(3): 333-350.
Jupp, T. and Schultz, A., 2000. A thermodynamic explanation for black smoker temperatures. Nature, 403: 880-883.
Kawagucci, S., 2015. Fluid Geochemistry of High-Temperature Hydrothermal Fields in the Okinawa Trough. Subseafloor Biosphere Linked to Hydrothermal Systems: TAIGA Concept (eds. Ishibashi et al.): 387-403.
Kawagucci, S., Ueno, Y., Takai, K., Toki, T., Ito, M., Inoue, K., Makabe, A., Yoshida, N., Muramatsu, Y., Takahata, N., Sano, Y., Narita, T., Teramoshi, G., Obata, H., Nakagawa, S., Nunoura, T. and Gamo, T., 2013. Geochemical origin of hydrothermal fluid methane in sediment-associated fields and its relevance to the geographical distribution of whole hydrothermal circulation. Chem. Geol. 339: 213-225.
Kawahata, H., 1989. Chemical properties and evolution of mid-ocean ridge hydrothermal systems-flow system approach. Geochem. J., 23: 255-268.
Kelley, D.S., Karson, J.A., Fruh-Green, G.L., Yoerger, D.R., Shank, T.M., Butterfield, D.A., Hayes, J.M., Schrenk, M.O., Olson, E.J., Proskurowski, G., Jakuba, M., Bradley, A., Larson, B., Ludwig, K., Glackson, D., Buckman, K., Bradley, A.S., Brazelton, W.J., Roe, K., Elend, M.J., Delacour, A., Bernasconi, S.M., Lilley, M.D., Baross, J.A., Summons, R.E. and Sylva, S.P., 2005. A serpentinite-hosted ecosystem: The Lost City Hydrothermal Field. Science, 307:1428-1434.
Lalou, C., Reyss, J.L., Brichet, E., Rona, P.A. and Thompson, G., 1995. Hydrothermal activity on a 105-year scale at a slow-spreading ridge, TAG hydrothermal field, Mid-Atlantic Ridge 26°N. J. Geophys. Res., 100:17855-17862.
Landing, W.M. and Bruland, K.W., 1987. The contrasting biogeochemistry of iron and manganese in the Pacific Ocean. Geochim. Cosmochim. Acta, 51: 29-43.
Lin, J., Liu, Y., Hu, Z., Yang, L., Chen, K., Chen, H., Zong, K. and Gao, S., 2016. Accurate determination of lithium isotope ratios by MC-ICP-MS without strict matrix-matching by using a novel washing method. J. Anal. At. Spectrom., 31: 390-397.
Lin, J.-Y., 2019. Unpublished master’s thesis.
Magna, T., Wiechert, U., Grove, T.L. and Halliday, A.N., 2006. Lithium isotope fractionation in the southern Cascadia subduction zone. Earth Planet. Sci. Lett., 250: 428-443.
Magna, T., Wiechert, U. and Halliday, A.N., 2004. Low-blank isotope ratio measurement of small samples of lithium using multiple-collector ICPMS. Int. J. Mass Spectrom., 239: 67-76.
McCollom, T.M., Lollar, B.S., Lacrampe-Couloume, G. and Seewald, J.S., 2010. The influence of carbon source on abiotic organic synthesis and carbon isotope fractionation under hydrothermal conditions. Geochim. Cosmochim. Acta, 74(9): 2717-2740.
McCollom, T.M. and Seewald, J.S., 2006. Carbon isotope composition of organic compounds produced by abiotic synthesis under hydrothermal conditions. Earth Planet. Sci. Lett., 243(1-2): 74-84.
Mester, Z., 2013. PACS-3 Marine Sediment Certified Reference Material for Trace Metals and other Constituents. 2013 National Research Council of Canada.
Millot, R., Guerrot, C. and Vigier, N., 2004. Accurate and high-precision measurement of lithium isotopes in two reference materials by MC-ICP-MS. Geostand. Geoanal. Res., 28: 153-159.
Millot, R., Scaillet, B. and Sanjuan, B., 2010. Lithium isotopes in island arc geothermal systems: Guadeloupe, Martinique (French West Indies) and experimental approach. Geochim. Cosmochim. Acta, 74: 1852-1871.
Miyazaki, J., Kawagucci, S.,Makabe, A., Takahashi, A., Kitada, K., Torimoto, J., Matsui, Y., Tasumi, E., Shibuya, T., Nakamura, K., Horai, S., Sato, S., Ishibashi, J.I., Kanzaki, H., Nakagawa, S., Hirai, M., Takaki, Y., Okino, K., Watanabe, H.K., Kumagai, H. and Chen, C., 2017. Deepest and hottest hydrothermal activity in the Okinawa Trough: the Yokosuka site at Yaeyama Knoll. Roy. Soc. Open Science, 4(12): 171570.
Miyoshi, Y., Ishibashi, J., Shimada, S., Inoue, H., Uehara, S. and Tsukimura, K., 2015. Clay minerals in an active hydrothermal field at Iheya-North-Knoll, Okinawa Trough. Resour. Geol., 65: 346-360.
Morrison, P. and Pine, J., 1955. Radiogenic origin of the helium isotopes in rock. Annual New York Academic Science, 62: 69-92.
Mottl, M.J., Seewald, J.S., Wheat, C.G., Tivey, M.K., Michael, P.J., Proskurowski, G., McCollom, T.M., Reeves, E., Sharkey, J., You, C.F., Chan, L.H. and Pichler, T., 2011. Chemistry of hot springs along the Eastern Lau Spreading Center. Geochim. Cosmochim. Acta, 75: 1013-1038.
Nozaki, Y., Alibo, D.S., Amakawa, H., Gamo, T. and Hasumoto, H., 1999. Dissolved rare earth elements and hydrography in the Sulu Sea. Geochim. Cosmochim. Acta, 63: 2171-2181.
Ozima, H. and Podosek, F.A., 2002. Noble gas geochemistry. 2nd ed., Cambridge University Press, 286 pp.
Pistiner, J.S. and Henderson, G.M., 2003. Lithium-isotope fractionation during continental weathering processes. Earth Planet. Sci. Lett., 214: 327-339.
Potapov, V.V., Povarov, K.O. and Podverbny, V.M., 2003. Methods of increasing of effectiveness of binary blocks’ at geothermal electric power station. Teploenergetica, 10: 41-48.
Reeves, E.P., Seewald, J.S., Saccocia, P., Bach, W., Craddock, P.R., Shanks, W.C., Sylva, S.P., Walsh, E., Pichler, T. and Rosner, M., 2011. Geochemistry of hydrothermal fluids from the PACMANUS, Northeast Pual and Vienna Woods hydrothermal fields, Manus Basin, Papua New Guinea. Geochim. Cosmochim. Acta, 75: 1088-1123.
Sano, Y., Kosugi, T., Takahata, N. and Yokochi, R., 2004. Helium isotopes in Pacific waters from adjacent region of Honshu, Japan. J. Oceanogr., 60: 625-630.
Sclater, J.G., Parsons, B. and Jaupar, C., 1981. Oceans and continents: similarities and differences in the mechanisms of heat loss. Journal of Geophysical Research. 86(B12): 11535-11552.
Schmidt, K., Koschinsky, A., Garbe-Schonberg, D., de Carvalho, L.M. and Seifert, R., 2007. Geochemistry of hydrothermal fluids from the ultramafic-hosted Logatchev hydrothermal field, 15N on the Mid-Atlantic Ridge: Temporal and spatial investigation. Chem. Geol., 242: 1-21.
Scholz, F., Hensen, C., De Lange, G.J., Haeckel, M., Liebetrau, V., Meixner, A., Reitz, A. and Romer, R.L., 2010. Lithium isotope geochemistry of marine pore waters – insights from cold seep fluids. Geochim. Cosmochim. Acta, 74: 3459-3475.
Seyfried Jr., W.E., Chen, X. and Chan, L.-H., 1998. Trace element mobility and lithium isotopic exchange during hydrothermal alteration of seafloor weathered basalt: an experimental study at 350℃, 500 bars. Geochim. Cosmochim. Acta, 62: 949-960.
Shinjo, R., Chung, S.L., Kato, Y. and Kimura, M., 1999. Geochemical and Sr-Nd isotopic characteristics of volcanic rocks from the Okinawa Trough and Ryukyu Arc: implications for the evolution of a young, intracontinental back arc basin. J. Geophys. Res., 104: 10591-10608.
Shinjo, R., Hokakubo, S., Haraguchi, S., Matsumoto, T. and Woodhead, J., 2003a. Geochemical characteristics of volcanic rocks from the southern Okinawa Trough and its implications for tectono-magmatic evolution. Eos Trans. AGU, 84(46): Fall Meet. Suppl., Abstract V31E-0973.
Shinjo, R., Hokakubo, S., Haraguchi, S. and Matsumoto, T., 2003b. Regional variation in geochemistry of volcanic rocks from the southern Okinawa Trough (in Japanese). Earth Mon., 43: 21-26.
Sibuet, J.C., Letouzey, J., Barbier, F., Charvet, J., Foucher, J.P., Hilde, T., Kimura, M., Ling-Yun, C., Marsset, B., Muller, C. and Stephan, J.F., 1987. Back arc extension in the Okinawa Trough. J. Geophys. Res., 92: 14041-14063.
Sibuet, J.C., Deffontaines, B., Hsu, S.K., Thareau, N., Le Formal, J.P. and Liu, C.S., 1998. Okinawa trough backarc basin: early tectonic and magmatic evolution. J. Geophys. Res., 103: 30245-30267.
Sohn, R.A., 2005. A general inversion for end‐member ratios in binary mixing systems. Geochem. Geophys. Geosyst., 6(11): Q11007.
Statham, P.J., Yeats, P.A. and Landing, W.M., 1998. Manganese in the eastern Atlantic Ocean: Processes influencing deep and surface water distributions. Mar. Chem., 61: 55-68.
Stein, C.A. and Stein, S., 1994. Constraints on hydrothermal heat flux through the oceanic lithosphere from global heat flow. J. Geophys. Res., 99: 3081-3095.
Stoffyn-Egli, P. and Mackenzie, F.T., 1984. Mass balance of dissolved lithium in the oceans. Geochim. Cosmochim. Acta, 48: 859-872.
Suzuki, R., Ishibashi, J.I., Nakaseama, M., Konno, U., Tsunogai, U., Gena, K. and Chiba, H., 2008. Diverse Range of Mineralization Induced by Phase Separation of Hydrothermal Fluid: Case Study of the Yonaguni Knoll IV Hydrothermal Field in the Okinawa Trough Back-Arc Basin. Resour. Geol., 58(3): 267-288.
Takahata, N., Watanabe, T., Shirai, K., Nishizawa, M. and Sano, Y., 2004. Helium isotopes of seawater in adjacent sea of Nansei Islands, Southwest Japan. Geochem. J., 38(6): 593-600.
Tang, M., Rudnick, R.L. and Chauvel, C., 2014. Sedimentary input to the source of Lesser Antilles lavas: A Li perspective. Geochim. Cosmochim. Acta, 144: 43-58.
Taylor, T.I. and Urey, H.C., 1938. Fractionation of the lithium and potassium isotopes by chemical exchange with zeolites. J. Chem. Phys., 6: 429-438.
Teng, F.Z., McDonough, W.F., Rudnick, R.L., Dalpe, C., Tomascak, P.B., Chappell, B.W. and Gao, S., 2004. Lithium isotopic composition and concentration of the upper continental crust. Geochim. Cosmochim. Acta, 68: 4167-4178.
Thompson, G., 1983. Basalt-seawater interaction. Hydrothermal processes at seafloor spreading centers(eds. Rona, P.A., Bostrom, K., Laubier, L. and Smith, K.L.): 225-278.
Tivey, M.K., Humphris, S.E., Thompson, G., Hannington, M.D. and Rona, P., 1995. Deducing patterns of fluid flow and mixing within the active TAG hydrothermal mound using mineralogical and geochemical data. J. Geophys. Res., 100:12527-12555.
Tivey, M.K., 2007. Generation of seafloor hydrothermal vent fluids and associated mineral deposits. Oceanography, 20(1): 50-65.
Tomascak, P.B., Langmuir, C.H., Roux, P.J. and Shirey, S.B., 2008. Lithium isotopes in global mid-ocean ridge basalts. Geochim. Cosmochim. Acta, 72: 1626-1637.
Tomascak, P.B., Magna, T. and Dohmen, R., 2016. Advances in Lithium Isotope Geochemistry.
Von Damm, K.L., 1995. Controls on the chemistry and temporal variability of seafloor hydrothermal fluids. Seafloor Hydrothermal Systems: Physical, Chemical, Biological and Geological Interactions(eds. Humphris, S.E., Zierenberg, R.A., Mullineaux, L.S. and Thomson, R.E.). Geophys. Monogr., 91: 222-248.
Von Damm, K.L., 2000. Chemistry of hydrothermal vent fluids from 9–10ºN, East Pacific Rise: time zero the immediate post-eruptive period. J. Geophys. Res., 105: 11203-11222.
Von Damm, K.L., 2004. Evolution of the hydrothermal system at East Pacific Rise 9º50’ N: geochemical evidence for changes in the upper oceanic crust. AGU Monogr., 148: 285-305.
Von Damm, K.L., Edmond, J.M., Grant, B., Measures, C.I., Walden, B. and Weiss, R.F., 1985a. Chemistry of submarine hydrothermal solutions at 21°N, East Pacific Rise. Geochim. Cosmochim. Acta, 49(2): 2197-2220.
Von Damm, K.L., Edmond, J.M., Measures, C.I. and Grant, B., 1985b. Chemistry of submarine hydrothermal solutions at Guaymas Basin, Gulf of California. Geochim. Cosmochim. Acta, 49: 2221-2237.
Verney-Carron, A., Vigier, N., Millot, R. and Hardarson, B.S., 2015. Lithium isotopes in hydrothermally altered basalts from Hengill (SW Iceland). Earth Planet. Sci. Lett., 411: 62-71.
Williams, L.B. and Hervig, R.L., 2005. Lithium and boron isotopes in illite-smectite: The importance of crystal size. Geochim. Cosmochim. Acta, 69(24): 5705-5716.
Yamaoka, K., Hong, E., Ishikawa, T., Gamo, T. and Kawahata, H., 2015. Boron isotope geochemistry of vent fluids from arc/back-arc seafloor hydrothermal systems in the western Pacific. Chem. Geol., 392(21): 9-18.
You, C.F., Butterfield, D.A., Spivack, A.J., Gieskes, J.M., Gamo, T. and Campbell, A.J., 1994. Boron and halide systematics in submarine hydrothermal systems: Effects of phase separation and sedimentary contributions. Earth Planet. Sci. Lett., 123: 227-238.
Zhang, W., Hu, Z., Liu, Y.S., Chen, L., Chen, H.H., Li, M., Zhao, L.S., Hu, S.H., Gao, S., 2012. Reassessment of HF/HNO3 decomposition capability in the high-pressure digestion of felsic rocks for multi-element determination by ICP-MS. Geostand. Geoanal. Res., 36(3): 271-289.
Zindler, A. and Hart, S., 1986. Chemical geodynamics. Ann. Rev. Earth Planet. Sci., 14: 493-571.