跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.81) 您好!臺灣時間:2024/12/05 08:34
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳仲
研究生(外文):Chung Wu
論文名稱:南沖繩海槽石林隆堆場址沉積物間隙水的鋰豐度
論文名稱(外文):Lithium abundances of pore waters at the Geolin Mounds, Okinawa Trough
指導教授:朱美妃
指導教授(外文):Mei-Fei Chu
口試委員:溫良碩蘇志杰林德嫻
口試日期:2019-07-30
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:海洋研究所
學門:自然科學學門
學類:海洋科學學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:89
中文關鍵詞:熱液作用鋰豐度間隙水南沖繩海槽沉積物富集熱液系統
外文關鍵詞:Hydrothermal processLithium abundancespore watersouth Okinawa Troughsediment-hosted hydrothermal system
DOI:10.6342/NTU202000629
相關次數:
  • 被引用被引用:0
  • 點閱點閱:122
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
海底熱液循環是水圈、岩石圈間物質交換和形成各類海底硫化礦床的重要途徑,而海底熱液作為熱液循環的產物,其化學性質隨水岩交互作用而發生顯著變化,所以可以作為研究海底熱液循環演化的工具,特別是海底熱液的鋰豐度(鋰含量與鋰同位素值)已被證實具有示蹤二次改性作用與分辨固體端元的潛力,儘管僅能區分沉積物或火成岩端元,無法分辨岩性。本研究地點為聚焦在位於南沖繩海槽最南端、新發現的石林隆堆熱液場址,藉由測量OR1-1164航次石林隆堆熱液場址重力岩心(128 cm)和複管岩心(31 cm)間隙水樣品的鋰豐度,並結合以往調查所得的其他地球化學數據,為石林隆堆熱液的成因和演化提供制約。
為了建立適用於熱液流體的鋰同位素測定方法,在樣本前處理開始時便加入氫氟酸,移除樣本中的矽,接著以1.6 ml AG 50W-X8氫型陽離子交換樹脂與1 M硝酸 + 80% (v/v)甲醇提洗液進行層析,以提純出樣品中的鋰;根據提洗曲線,收集第6到第17毫升洗出液,即便是熱液中的鋰含量異常高(達20000 ng鋰),鋰亦能被完全收集。藉由本方法分析NASS-6海水國際參考樣品,其鋰同位素組成(d7Li)為+30.5 ± 0.4(1 S.D., n=3),與文獻值一致。
石林隆堆間隙水樣品的鋰濃度在複管與重力岩心分別為23.5 ~ 50.3和24.5 ~ 757 μM,鋰同位素組成則分別是+22.0 ~ +30.6和+13.5 ~ +28.8。兩岩心的深度剖面中,最表層樣本的鋰豐度接近海水值,而隨著深度的增加,鋰濃度逐漸上升,而d7Li則降低,且兩剖面在鋰同位素變化上相似,但在鋰含量上,複管岩心隨深度上升的幅度不如重力岩心。雖然傳統海水混染示蹤劑「鎂」並未在複管岩心有顯著變化,但其鋰含量與其同位素間的線性相關明確指示了海水與熱液的二元混合,間隙水的鋰豐度顯然在追蹤海水混合時更具優勢。重力岩心間隙水的鋰豐度和鎂含量具有線性相關,這意味著重力岩心同樣發生了海水混合,不過其鋰含量與鋰同位素值呈現非線性的證據,進一步表明熱液在上湧過程受到高溫(350℃)的沉積物二次改性作用影響,以鋰豐度推估的反應溫度與過去調查的成礦溫度(370 ~ 450℃)接近。
在剔除了海水混染的影響,並用沖繩海槽熱液場址在前人文獻中報導的最高鋰含量作為上限,本研究估計出石林隆堆熱液端元的鋰含量約為2071 ~ 5600 μM,鋰同位素值為+5.6 ~ +10.0。與中洋脊沉積物匱乏場址及沉積物富集場址相比,石林隆堆的熱液端元有更高的鋰含量,但有相似的鋰同位素組成;相反地,石林隆堆熱液端元與同樣富含沉積物的沖繩海槽熱液場址的鋰濃度變化相近,但鋰同位素值更高。基於溶解-沉澱模型,石林隆堆熱液端元的非典型鋰豐度,來自於有流紋岩參與了石林隆堆熱液的形成,顯然前人研究低估岩性影響熱液循環系統鋰豐度的重要性。
Hydrothermal circulation is a key process associated with mass transport between hydrosphere and lithosphere, and submarine massive sulfide deposits. To better understand a hydrothermal system, the chemistry of hydrothermal fluids, as a product of the circulation, can vary significantly with and thus constrain the water-rock interactions. Specifically, the lithium abundances, concentrations and isotopic ratios (d7Li), have been demonstrated to trace the secondary process and solid end-member, sediments or igneous rocks regardless of lithology. In the southernmost Okinawa Trough, Geolin Mounds (GLM) hydrothermal site was newly discovered. Li abundances of the interstitial water sampled from a gravity core (128 cm) and a multi-core (31 cm) in cruise OR1-1164 at the GLM hydrothermal site, were measured and combined with other geochemical data from past investigations to constrain the origin and evolution of GLM hydrothermal fluids.
For the method of lithium isotopes, pretreatment procedures were modified specifically for hydrothermal fluids in this study by the addition of HF into samples in the first step to remove silicon. Following routine column chromatography (using 1.6 ml AG 50W-X8 cation exchange resin with 1 M HNO3 + 80% (v/v) methanol eluent), the Li fraction, even of high-Li (up to 20000 ng) hydrothermal fluids, was able to be completely collected from the 6th to 17th ml eluates. The d7Li value of international reference material NASS-6 (seawater) analyzed as unknown is +30.5 ± 0.4‰ (1 S.D., n=3) that is consistent with reference values.
Lithium concentrations of pore water in the multi-core and gravity core are 23.5 ~ 50.3 and 24.5 ~ 757 μM, and the isotopic compositions of them are +22.0 ~ +30.6 and +13.5 ~ +28.8‰, respectively. In the depth profile of both cores, the shallowest samples have lithium abundances identical to the seawater, and with depth, lithium concentrations increase gradually accompanied with decreasing lithium isotopic composition. The two profiles are consistent in lithium isotopic variations, but lithium contents in the multi-core rise not as rapidly as the gravity core with depth. Although there is no significant variation in Mg contents, a conventional tracer of the addition of sea water, the linear correlation between Li contents and isotopic ratios in the multi-core indicates simple mixing between hydrothermal fluid and seawater. The lithium abundance in interstitial water thus is more powerful in tracing seawater mixing. Li abundances in gravity core show a linear correlation with Mg concentrations suggesting the mixing with seawater. However, the non-linear relationship between Li concentrations and isotopic ratios further demonstrates secondary modification in sediments occurred under high-temperature (350℃) which is similar to GLM mineralization temperature (370 ~ 450℃) reported.
Based on the Mg contents to remove contamination by seawater and constraints of the highest Li concentration reported in Okinawa Trough vent fluids, the lithium concentrations and isotopic ratios of the GLM hydrothermal end-member fluid are about 2071 ~ 5600 μM, and +5.6 ~ +10.0, respectively. This composition shows similar lithium isotopic values but higher Li concentration as compared with those from both of the sediment-starved and sediment-rich hydrothermal sites in mid-ocean ridges. On the contrary, it has similar Li concentrations to and higher lithium isotopic values than those of hydrothermal sites in Okinawa Trough that all are sediment-rich. Based on the dissolution-precipitation model, such untypical Li abundances of GLM hydrothermal fluid end-member are proposed to result from the involvement of rhyolite in the reaction zone of the GLM hydrothermal system. The case of the GLM hydrothermal system tells us that the lithology indeed can play an important role in controlling the Li abundances of hydrothermal circulation.
中文摘要...........................................................................................................................I
Abstract............................................................................................................................III
目錄..............................................................................................................................VI
圖目錄..........................................................................................................................VIII
表目錄..............................................................................................................................X
第一章 緒論.....................................................................................................................1
第二章 文獻回顧.............................................................................................................3
2.1 海底熱液循環...................................................................................................3
2.1.1水岩交互作用與岩漿脫氣.......................................................................5
2.1.2二次改性作用...........................................................................................8
2.2 海底熱液的鋰..................................................................................................11
2.2.1 水岩交互作用.......................................................................................13
2.2.2 二次改性作用.......................................................................................14
第三章 地質背景與樣本簡介.......................................................................................19
3.1 地質背景..........................................................................................................19
3.1.1 南沖繩海槽...........................................................................................19
3.1.2 石林隆堆熱液場址...............................................................................21
3.2 樣本簡介..........................................................................................................22
3.2.1建立鋰同位素分析方法.........................................................................24
3.2.2以鋰豐度探討熱液成因.........................................................................25
第四章 實驗與分析方法...............................................................................................33
4.1 採樣方法..........................................................................................................33
4.2 鋰同位素分析前處理流程建立......................................................................34
4.2.1樣本取樣量評估....................................................................................34
4.2.2 樣本前處理...........................................................................................37
4.3儀器分析............................................................................................................40
4.3.1 四極桿感應耦合電漿質譜儀...............................................................40
4.3.2 多接收感應耦合電漿質譜儀...............................................................41
4.4數據品質............................................................................................................44
第五章 分析結果...........................................................................................................47
5.1 提洗曲線..........................................................................................................48
5.1.1 鋰的提洗曲線.......................................................................................48
5.1.2 其他元素的提洗曲線...........................................................................49
5.2 樣本鋰豐度......................................................................................................50
第六章 討論...................................................................................................................57
6.1 影響間隙水化學組成的作用..........................................................................57
6.2 熱液形成原因探討..........................................................................................60
第七章 結論...................................................................................................................66
參考文獻.........................................................................................................................68
中文部分:
蔡慶輝,1999,沖繩海槽南端的火山及熱液作用之初步調查。國立台灣海洋大學應用地球物理研究所碩士論文。
郭富雯,2001,龜山島海底熱液活動初步調查。國立中山大學海洋地質及化學研究所碩士論文。
張逸安,2004,沖繩海槽西南端岩心沉積物之礦物組成與地球化學。國立台灣大學海洋研究所碩士論文。
李易隆,2005,台灣東北部海域海底火山與熱液噴泉之研究。國立臺灣海洋大學研究所碩士論文。
鄭智睿,2008,南沖繩海槽表層沈積物中黏土礦物之研究。國立台灣大學理學院海洋研究所碩士論文。
楊秉澔,2014,岩石鋰同位素的分析方法:應用多接收感應耦合電漿質譜術,國立台灣大學理學院海洋研究所碩士論文。
蘇志杰,2016,臺灣東北海域礦產資源潛能調查-地球化學與海床觀測調查研究(1/4):總論與地球化學調查研究。經濟部中央地質調查所報告第105-14-A號。
劉家瑄,2017,臺灣東北海域礦產資源潛能調查:臺灣東北海域礦產資源潛能調查:震測及地熱流調查研究(2/4)反射震測與海床聲納回聲剖面調查研究。經濟部中央地質調查所報告,第106-12-A號。
陳信宏,2017,臺灣東北海域礦產資源潛能調查-地球化學與海床觀測調查研究(2/4):海床表面礦物影像調查與採樣。經濟部中央地質調查所報告第106-14-B號。
蘇志杰,2017,臺灣東北海域礦產資源潛能調查-地球化學與海床觀測調查研究(2/4):總論與地球化學調查研究。經濟部中央地質調查所報告第106-14-A號。
劉家瑄,2018,臺灣東北海域礦產資源潛能調查:震測及地熱流調查研究(3/4)地熱流調查與流體移棲模式研究(3/4)。經濟部中央地質調查所報告,第107-13-B號。
江威德,2018,臺灣東北海域礦產資源潛能調查-地球化學與海床觀測調查研究(3/4):熱液礦石與脈石之礦物分析。經濟部中央地質調查所報告,第107-15-C號。

英文部分:
Alt, J.C., 1995. Subseafloor processes in mid-ocean ridge hydrothermal systems. AGU Monogr., 91: 85-114.

Anders, E. and Grevesse, N., 1989. Abundance of elements: Meteoritic and solar. Geochim. Cosmochim. Acta, 53: 197-214.

Anderson, M.A., Bertsch, P.M. and Miller, W.P., 1989. Exchange and apparent fixation of lithium in selected soils and clay minerals. Soil Sci., 148: 46-52.

Anghel, I., Turin, H.J. and Reimus, P.W., 2002. Lithium sorption to Yucca Mountain tuffs. Appl. Geochem., 17:819-824.

Araoka, D., Nishio, Y., Gamo, T., Yamaoka, K. and Kawahata, H., 2016. Lithium isotopic systematics of submarine vent fluids from arc and back-arc hydrothermal systems in the western Pacific. Geochem. Geophys. Geosyst., 17(10): 3835-3853.

Berndt, M.E. and Seyfried, W.E., 1990. Boron, bromine, and other trace elements as clues to the fate of chlorine in midocean ridge vent fluids. Geochim. Cosmochim. Acta, 54: 2235-2245.

Bischoff, J.L. and Rosenbauer, R.J., 1985. An empirical equation of state for hydrothermal seawater (3.2% NaCl). Am. J. Sci., 285: 725-763.

Bischoff, J.L. and Seyfried Jr., W.E., 1978. Hydrothermal chemistry of seawater from 25° to 350°C. Am. J. Sci., 278: 838-860.

Bowers, T.S., Campbell, A.C., Measures, C.I., Spivack, A.J., Khadem, M. and Edmond, J.M., 1988. Chemical controls on the composition of vent fluids at 138–118N and 218N, East Pacific Rise. J. Geophys. Res., 93: 4522-4536.

Brant, C., Coogan, L.A., Gillis, K.M., Seyfried, W.E., Pester, N.J. and Spence, J., 2012. Lithium and Li-isotopes in young altered upper oceanic crust from the East Pacific Rise. Geochim. Cosmochim. Acta, 96: 272-293.

Bruland, K.W., 1983. Trace elements in seawater. Chemical Oceanography, 8: 147-220.

Burton, K.W. and Vigier, N., 2011. Lithium Isotopes as Tracers in Marine and Terrestrial Environment. Handbook of Environmental Isotope Geochemistry, Advances in Isotope Geochemistry(ed. Baskaean, M.): 41-59.

Butterfield, D.A., Massoth, G.J., McDuff, R.E., Lupton, J.E. and Lilley, M.D., 1990. Geochemistry of hydrothermal fluids from Axial Seamount Hydrothermal Emissions Study vent field, Juan de Fuca Ridge: Subseafloor boiling and subsequent fluid-rock interaction. J. Geophys. Res., 95: 12895-12921.

Butterfield, D.A., McDuff, R.E., Franklin, J. and Wheat, G.C., 1994. Geochemistry of hydrothermal vent fluids from Middle Valley, Juan de Fuca Ridge. Proc. Ocean Drill. Program Sci. Results, 139: 395-410.

Byrne, R.H., Kump, L.R. and Cantrell, K.J., 1988. The influence of temperature and pH on trace metal speciation in seawater. Mar. Chem., 2: 163-181.

Campbell, A.C., Bowers, T.S., Meaures, C.I., Falkner, K.K., Khadem, M. and Edmond, J.M., 1988. A time series of vent fluid compositions from 218N, East Pacific Rise (1979, 1981, 1985), and the Guaymas Basin, Gulf of California (1982, 1985). J. Geophys. Res., 93: 4357-4549.


Chan, L.H., Alt, J.C. and Teagle, D.A.H., 2002. Lithium and lithium isotope profiles through the upper oceanic crust: A study of seawater-basalt exchange at ODP Sites 504B and 896A. Earth Planet. Sci. Lett., 201(1): 187-201.

Chan, L.H. and Edmond, J.M., 1988. Variation of lithium isotope composition in the marine environment: a preliminary report. Geochim. Cosmochim. Acta, 52(6): 1711-1717.

Chan, L.H., Edmond, J.M., Thompson, G. and Gillis, K., 1992. Lithium isotopic composition of submarine basalts—Implications for the lithium cycle in the oceans. Earth Planet. Sci. Lett., 108: 151-160.

Chan, L.H., Edmond, J.M. and Thompson, G., 1993. A lithium isotope study of hot springs and metabasalts from Mid-Ocean Ridge Hydrothermal Systems. J. Geophys. Res., 98: 9653-9659.

Chan, L.H., Gieskes, J.M., You, C.F. and Edmond, J.M., 1994. Lithium isotope geochemistry of sediments and hydrothermal fluids of the Guaymas Basin, Gulf of California. Geochim. Cosmochim. Acta, 58: 4443-4454.

Chan, L.H., Leeman, W.P. and Plank, T., 2006. Lithium isotopic composition of marine sediments. Geochem. Geophys. Geosyst., 7(6): Q06005.

Chen, Z., Zeng, Z., Wang, X., Yin, X., Chen, S., Guo, K., Laid, Z., Zhanga, Y., Ma, Y., Qi, H. and Wu, L., 2018. U-Th/He dating and chemical compositions of apatite in the dacite from the southwestern Okinawa Trough: Implications for petrogenesis. J. Asian Earth Sci., 161: 1-13.

Choi, M.S., Ryu, J.S., Park, H.Y., Lee, K.S., Kil, Y. and Shin, H.S., 2013. Precise determination of the lithium isotope ratio in geological samples using MC-ICP-MS with cool plasma. J. Anal. At. Spectrom., 28: 505-509.

Chukhrov, F.V., 1995. Colloids in earth’s crust. Мoscow: Izdatelstvo AN USSR, 671 pp.

Corliss, J.B., Dymond, J., Gordon, L.I., Edmond, J.M., von Herzen, R.P., Ballard, R.D., Green, K., Williams, D., Bainbridge, A., Crane, K. and van Andel, T.H., 1979. Submarine thermal springs on the Galapagos Rift. Science, 203:1073-1083.

Craig, H., Lupton, J.E. and Horibe, Y., 1978. A mantle helium component in Circum-Pacific volcanic gases: Hakone, the Marianas and Mt. Lassen. Terriestrial Rare Gases: 3-16.

De Beer, D., Haeckel, M., Neumann, J., Wegener, G., Inagaki, F. and Boetius, A., 2013. Saturated CO2 inhibits microbial processes in CO2-vented deep-sea sediments. Biogeosciences, 10: 5639-5649.

Delaney, J.R., Robigou, V., McDuff, R.E. and Tivey, M.K., 1992. Geology of a vigorous hydrothermal system on the Endeavour segment, Juan de Fuca Ridge. J. Geophys. Res., 97:19663-19682.

Ding, K. and Seyfried, W.E. Jr., 2007. In-situ measurement of pH and dissolved H2 in mid-ocean hydrothermal fluids at elevated temperatures and pressures. Chem. Rev., 107: 601-623.

Ding, K., Seyfried, W.E. Jr., Zhang, Z., Tivey, M.K., Von Damm, K.L. and Bradley, A.M., 2005. The in situ pH of hydrothermal fluids at mid-ocean ridges. Earth Planet. Sci. Lett., 237: 167-174.

Douville, E., Charlou, J.L., Oelkers, E.H., Bienvenu, P., Colon, C.F.J., Donval, J.P., Fouquet, Y., Prieur, D. and Appriou, P., 2002. The rainbow vent fluids (36 degrees 14’ N, MAR): the influence of ultramafic rocks and phase separation on trace metal content in Mid-Atlantic Ridge hydrothermal fluids. Chem. Geol., 184: 37-48.

Driesner, T., 2007. The system H2O-NaCl. Part II: Correlations for molar volume, enthalpy, and isobaric heat capacity from 0 to 1000℃, 1 to 5000 bar, and 0 to 1 XNaCl. Geochim. Cosmochim. Acta, 71: 4902-4919.

Edmond, J.M., Campbell, A.C., Palmer, M.R., Kinkhammer, G.P., German, C.R., Edmonds, H.N., Elderfield, H., Thompson, G. and Rona, P., 1995. Time series of vent fluids from the TAG and MARK sites (1986, 1990) Mid-Atlantic Ridge: A new solution chemistry model and a mechanism for Cu/Zn zonation in massive sulphide orebodies. Hydrothermal Vents and Processes(eds. Parson, L.M., Walker, C.L. and Dixon, D.R.):77-86.

Edmond, J.M., Measures, C.I., McDuff, R.E., Chan, L.H., Collier, R., Grant, B., Gordon, L.I. and Corliss, J.B., 1979. Ridge crest hydrothermal activity and the balances of the major and minor elements in the ocean: the Galapagos data. Earth Planet. Sci. Lett., 46: 1-18.

Edmond, J.M., Von Damm, K.L., McDuff, R.E. and Measures, C.I., 1982. The chemistry of the hot springs on the East Pacific Rise and their effluent dispersal. Nature, 297: 187-191.

Fouquet, Y., Von Stackelberg, U., Charlou, J.L., Donval, J.P., Erzinger, J., Foucher, J.P., Herzig, P., Muhe, R., Soakai, S., Wiedicke, M. and Whitechurch, H., 1991. Hydrothermal activity and metallogenesis in the Lau back-arc basin. Nature, 349: 778-781.

Foustoukos, D.I., James, R.H., Berndt, M.E. and Seyfried, W.E., 2004. Lithium isotopic systematics of hydrothermal vent fluids at the Main Endeavour Field, Northern Juan de Fuca Ridge. Chem. Geol., 212: 17-26.

Foustoukos, D.I. and Seyfried Jr., W.E., 2007. Trace element partitioning between vapor, brine and halite under extreme phase separation conditions. Geochim. Cosmochim. Acta, 71(8): 2056-2071.

Gamo, T., 1995. Wide variation of chemical characteristics of submarine hydrothermal fluids due to secondary modification processes after high temperature water-rock interaction: a review. Biogeochemical Processes and Ocean Flux in the Western Pacific: 425-451.

Gamo, T., et al., 1990. Geochemical studies on the hydrothermal activity of the mid-Okinawa Trough: A report on dive 416 of the ‘‘SHINKAI 2000’’ and characterization of hydrothermal fluids from concentration of major chemical components (in Japanese with English abstract), Proc. JAMSTEC Symp. Deep Sea Res., 6: 51-62.

Gamo, T., Okamura, K., Charlou, J.L., Urabe, T., Auzende, J.M., Ishibashi, J., Shitashima, K. and Chiba, H., 1997. Acidic and sulfate-rich hydrothermal fluids from the Manus back-arc basin, Papua New Guinea. Geology, 25: 139-142.

Gao, Y., Vils, F., Cooper, K.M., Banerjee, N., Harris, M., Hoefs, J., Teagle, D.A.H., Casey, J.F., Elliott, T., Laverne, C., Alt, J.C. and Muehlenbachs, K., 2012. Downhole variation of lithium and oxygen isotopic compositions of oceanic crust at East Pacific Rise, ODP Site 1256. Geochem. Geophys. Geosyst., 13(10): Q10001.

German, C. R., and Seyfried, W. E., Jr., 2014. Hydrothermal processes. Treatise on Geochemistry, 2nd edn. Oxford, Elsevier, 8: 191-233.

Gieskes, J. M., 1983.The chemistry of interstitial waters of deep sea sediments: implication of Deep Sea Drilling data. Chemical oceanography, 8: 221-269.

Goldfarb, M.S., Converse, D.R., Holland, H.D. and Edmond, J.M., 1983. The genesis of hot spring deposits on the East Pacific Rise, 21°N. Econ. Geol. Monogr., 5:184-197.

Grimaud, D., Ishibashi, J., Lagabrielle, Y., Auzende, J.M. and Urabe, T., 1991. Chemistry of hydrothermal fluids from the 178S active site on the North Fiji Basin Ridge (SW Pacific). Chem. Geol., 93: 209-218.

Hannington, M.D., Jamieson, J.J., Monecke, T., Petersen, S. and Beaulieu, S., 2011. The abundance of seafloor massive sulfide deposits. Geology, 39(12): 1155-1158.

Hannington, M.D., Jonasson, I.R., Herzig, P.M. and Petersen, S., 1995. Physical and chemical processes of seafloor mineralization at mid-ocean ridges. Geophys. Monogr., 91: 115-157.

Haymon, R., 1983. Growth history of hydrothermal black smoker chimneys. Nature, 301:695-698.

Henley, R.W. and Ellis, A.J., 1983. Geothermal systems ancient and modern: A geochemical review. Earth Sci. Rev., 19: 1-50.

Hongo, Y., Obata, H., Gamo, T., Nakaseama, M., Ishibashi, J., Konno, U., Saegusa, S., Ohkubo, S. and Tsunogai, U., 2007. Rare Earth Elements in the hydrothermal system at Okinawa Trough back-arc basin. Geochem. J., 41: 1-15.

Horita, J. and Berndt, M.E., 1999. Abiogenic methane formation and isotopic fractionation under hydrothermal conditions. Science, 285(5430): 1055-1057.

Hosono, T., Nakano, T., and Murakami, H., 2003. Sr–Nd–Pb isotopic compositions of volcanic rocks around the Hishikari gold deposit, southwest Japan: implications for the contribution of a felsic lower crust. Chem. Geol., 201(1), 19-36.

Huang, K.F., You, C.F., Liu, Y.H., Wang, R.M., Lin, P.Y. and Chung, C.H., 2010. Low-memory, small sample size, accurate and high-precision determinations of lithium isotopic ratios in natural materials by MC-ICP-MS. J J. Anal. At. Spectrom., 25: 1019-1024.

Humphris, S.E. and Thompson, G., 1978. Trace element mobility during hydrothermal alteration of oceanic basalts. Geochim. Cosmochim. Acta, 42: 127-136.

Ishibashi, J., Grimaud, D., Nojiri, Y., Auzende, J.M. and Urabe, T., 1994a. Fluctuation of chemical compositions of the phase-separated hydrothermal fluid from the North Fiji Basin Ridge. Mar. Geol., 116: 215-226.

Ishibashi, J., Tsunogai, U., Wakita, H., Watanabe, K., Kajimura, T., Shibata, A., Fujiwara, Y. and Hashimoto, J., 1994b. Chemical composition of hydrothermal fluids from the Suiyo and the Mokuyo Seamounts, Izu-Bonin Arc (in Japanese with English abstract). JAMSTEC J. Deep Sea Res., 10: 89-97.

Ishibashi, J.I. and Urabe, T., 1995. Hydrothermal activity related to arc-backarc magmatism in the western Pacific. Backarc Basins: Tectonics and Magmatism (ed. Taylor, B.). Plenum, NY: 451-495.

Ishikawa, T. and Nakamura, E., 1993, Boron isotope systematics of marine sediments, Earth Planet. Sci. Lett., 117: 567-580.

James, R.H., Allen, D.E. and Seyfried Jr., W.E., 2003. An experimental study of alteration of oceanic crust and terrigenous sediments at moderate temperatures (51 to 350°C): Insights as to chemical processes in near-shore ridge-flank hydrothermal systems. Geochim. Cosmochim. Acta, 67(4): 681-691.

James, R.H., Rudnicki, M.D. and Palmer, M.R., 1999. The alkali element and boron geochemistry of the Escanaba Trough sediment-hosted hydrothermal system. Earth Planet. Sci. Lett., 171: 157-169.

Jean-Baptiste, P., Charlou, J.L., Stievenard, M., Donval, J.P., Bougault, H. and Mevel, C., 1991. Helium and methane measurements in hydrothermal fluids from the mid-Atlantic ridge: The Snake Pit site at 238N. Earth Planet. Sci. Lett., 106: 17-28.

Jochum, K.P., Weis, U., Schwager, B., Stoll, B., Wilson, S.A., Haug, G.H., Andreae M.O. and Enzweiler, J., 2016. Reference values following ISO guidelines for frequently requested rock reference materials. Geostand. Geoanal. Res., 40(3): 333-350.

Jupp, T. and Schultz, A., 2000. A thermodynamic explanation for black smoker temperatures. Nature, 403: 880-883.

Kawagucci, S., 2015. Fluid Geochemistry of High-Temperature Hydrothermal Fields in the Okinawa Trough. Subseafloor Biosphere Linked to Hydrothermal Systems: TAIGA Concept (eds. Ishibashi et al.): 387-403.

Kawagucci, S., Ueno, Y., Takai, K., Toki, T., Ito, M., Inoue, K., Makabe, A., Yoshida, N., Muramatsu, Y., Takahata, N., Sano, Y., Narita, T., Teramoshi, G., Obata, H., Nakagawa, S., Nunoura, T. and Gamo, T., 2013. Geochemical origin of hydrothermal fluid methane in sediment-associated fields and its relevance to the geographical distribution of whole hydrothermal circulation. Chem. Geol. 339: 213-225.

Kawahata, H., 1989. Chemical properties and evolution of mid-ocean ridge hydrothermal systems-flow system approach. Geochem. J., 23: 255-268.

Kelley, D.S., Karson, J.A., Fruh-Green, G.L., Yoerger, D.R., Shank, T.M., Butterfield, D.A., Hayes, J.M., Schrenk, M.O., Olson, E.J., Proskurowski, G., Jakuba, M., Bradley, A., Larson, B., Ludwig, K., Glackson, D., Buckman, K., Bradley, A.S., Brazelton, W.J., Roe, K., Elend, M.J., Delacour, A., Bernasconi, S.M., Lilley, M.D., Baross, J.A., Summons, R.E. and Sylva, S.P., 2005. A serpentinite-hosted ecosystem: The Lost City Hydrothermal Field. Science, 307:1428-1434.

Lalou, C., Reyss, J.L., Brichet, E., Rona, P.A. and Thompson, G., 1995. Hydrothermal activity on a 105-year scale at a slow-spreading ridge, TAG hydrothermal field, Mid-Atlantic Ridge 26°N. J. Geophys. Res., 100:17855-17862.

Landing, W.M. and Bruland, K.W., 1987. The contrasting biogeochemistry of iron and manganese in the Pacific Ocean. Geochim. Cosmochim. Acta, 51: 29-43.

Lin, J., Liu, Y., Hu, Z., Yang, L., Chen, K., Chen, H., Zong, K. and Gao, S., 2016. Accurate determination of lithium isotope ratios by MC-ICP-MS without strict matrix-matching by using a novel washing method. J. Anal. At. Spectrom., 31: 390-397.

Lin, J.-Y., 2019. Unpublished master’s thesis.

Magna, T., Wiechert, U., Grove, T.L. and Halliday, A.N., 2006. Lithium isotope fractionation in the southern Cascadia subduction zone. Earth Planet. Sci. Lett., 250: 428-443.

Magna, T., Wiechert, U. and Halliday, A.N., 2004. Low-blank isotope ratio measurement of small samples of lithium using multiple-collector ICPMS. Int. J. Mass Spectrom., 239: 67-76.

McCollom, T.M., Lollar, B.S., Lacrampe-Couloume, G. and Seewald, J.S., 2010. The influence of carbon source on abiotic organic synthesis and carbon isotope fractionation under hydrothermal conditions. Geochim. Cosmochim. Acta, 74(9): 2717-2740.

McCollom, T.M. and Seewald, J.S., 2006. Carbon isotope composition of organic compounds produced by abiotic synthesis under hydrothermal conditions. Earth Planet. Sci. Lett., 243(1-2): 74-84.

Mester, Z., 2013. PACS-3 Marine Sediment Certified Reference Material for Trace Metals and other Constituents. 2013 National Research Council of Canada.

Millot, R., Guerrot, C. and Vigier, N., 2004. Accurate and high-precision measurement of lithium isotopes in two reference materials by MC-ICP-MS. Geostand. Geoanal. Res., 28: 153-159.

Millot, R., Scaillet, B. and Sanjuan, B., 2010. Lithium isotopes in island arc geothermal systems: Guadeloupe, Martinique (French West Indies) and experimental approach. Geochim. Cosmochim. Acta, 74: 1852-1871.

Miyazaki, J., Kawagucci, S.,Makabe, A., Takahashi, A., Kitada, K., Torimoto, J., Matsui, Y., Tasumi, E., Shibuya, T., Nakamura, K., Horai, S., Sato, S., Ishibashi, J.I., Kanzaki, H., Nakagawa, S., Hirai, M., Takaki, Y., Okino, K., Watanabe, H.K., Kumagai, H. and Chen, C., 2017. Deepest and hottest hydrothermal activity in the Okinawa Trough: the Yokosuka site at Yaeyama Knoll. Roy. Soc. Open Science, 4(12): 171570.

Miyoshi, Y., Ishibashi, J., Shimada, S., Inoue, H., Uehara, S. and Tsukimura, K., 2015. Clay minerals in an active hydrothermal field at Iheya-North-Knoll, Okinawa Trough. Resour. Geol., 65: 346-360.

Morrison, P. and Pine, J., 1955. Radiogenic origin of the helium isotopes in rock. Annual New York Academic Science, 62: 69-92.

Mottl, M.J., Seewald, J.S., Wheat, C.G., Tivey, M.K., Michael, P.J., Proskurowski, G., McCollom, T.M., Reeves, E., Sharkey, J., You, C.F., Chan, L.H. and Pichler, T., 2011. Chemistry of hot springs along the Eastern Lau Spreading Center. Geochim. Cosmochim. Acta, 75: 1013-1038.

Nozaki, Y., Alibo, D.S., Amakawa, H., Gamo, T. and Hasumoto, H., 1999. Dissolved rare earth elements and hydrography in the Sulu Sea. Geochim. Cosmochim. Acta, 63: 2171-2181.

Ozima, H. and Podosek, F.A., 2002. Noble gas geochemistry. 2nd ed., Cambridge University Press, 286 pp.

Pistiner, J.S. and Henderson, G.M., 2003. Lithium-isotope fractionation during continental weathering processes. Earth Planet. Sci. Lett., 214: 327-339.

Potapov, V.V., Povarov, K.O. and Podverbny, V.M., 2003. Methods of increasing of effectiveness of binary blocks’ at geothermal electric power station. Teploenergetica, 10: 41-48.

Reeves, E.P., Seewald, J.S., Saccocia, P., Bach, W., Craddock, P.R., Shanks, W.C., Sylva, S.P., Walsh, E., Pichler, T. and Rosner, M., 2011. Geochemistry of hydrothermal fluids from the PACMANUS, Northeast Pual and Vienna Woods hydrothermal fields, Manus Basin, Papua New Guinea. Geochim. Cosmochim. Acta, 75: 1088-1123.

Sano, Y., Kosugi, T., Takahata, N. and Yokochi, R., 2004. Helium isotopes in Pacific waters from adjacent region of Honshu, Japan. J. Oceanogr., 60: 625-630.

Sclater, J.G., Parsons, B. and Jaupar, C., 1981. Oceans and continents: similarities and differences in the mechanisms of heat loss. Journal of Geophysical Research. 86(B12): 11535-11552.

Schmidt, K., Koschinsky, A., Garbe-Schonberg, D., de Carvalho, L.M. and Seifert, R., 2007. Geochemistry of hydrothermal fluids from the ultramafic-hosted Logatchev hydrothermal field, 15N on the Mid-Atlantic Ridge: Temporal and spatial investigation. Chem. Geol., 242: 1-21.

Scholz, F., Hensen, C., De Lange, G.J., Haeckel, M., Liebetrau, V., Meixner, A., Reitz, A. and Romer, R.L., 2010. Lithium isotope geochemistry of marine pore waters – insights from cold seep fluids. Geochim. Cosmochim. Acta, 74: 3459-3475.

Seyfried Jr., W.E., Chen, X. and Chan, L.-H., 1998. Trace element mobility and lithium isotopic exchange during hydrothermal alteration of seafloor weathered basalt: an experimental study at 350℃, 500 bars. Geochim. Cosmochim. Acta, 62: 949-960.

Shinjo, R., Chung, S.L., Kato, Y. and Kimura, M., 1999. Geochemical and Sr-Nd isotopic characteristics of volcanic rocks from the Okinawa Trough and Ryukyu Arc: implications for the evolution of a young, intracontinental back arc basin. J. Geophys. Res., 104: 10591-10608.

Shinjo, R., Hokakubo, S., Haraguchi, S., Matsumoto, T. and Woodhead, J., 2003a. Geochemical characteristics of volcanic rocks from the southern Okinawa Trough and its implications for tectono-magmatic evolution. Eos Trans. AGU, 84(46): Fall Meet. Suppl., Abstract V31E-0973.

Shinjo, R., Hokakubo, S., Haraguchi, S. and Matsumoto, T., 2003b. Regional variation in geochemistry of volcanic rocks from the southern Okinawa Trough (in Japanese). Earth Mon., 43: 21-26.

Sibuet, J.C., Letouzey, J., Barbier, F., Charvet, J., Foucher, J.P., Hilde, T., Kimura, M., Ling-Yun, C., Marsset, B., Muller, C. and Stephan, J.F., 1987. Back arc extension in the Okinawa Trough. J. Geophys. Res., 92: 14041-14063.

Sibuet, J.C., Deffontaines, B., Hsu, S.K., Thareau, N., Le Formal, J.P. and Liu, C.S., 1998. Okinawa trough backarc basin: early tectonic and magmatic evolution. J. Geophys. Res., 103: 30245-30267.

Sohn, R.A., 2005. A general inversion for end‐member ratios in binary mixing systems. Geochem. Geophys. Geosyst., 6(11): Q11007.

Statham, P.J., Yeats, P.A. and Landing, W.M., 1998. Manganese in the eastern Atlantic Ocean: Processes influencing deep and surface water distributions. Mar. Chem., 61: 55-68.

Stein, C.A. and Stein, S., 1994. Constraints on hydrothermal heat flux through the oceanic lithosphere from global heat flow. J. Geophys. Res., 99: 3081-3095.

Stoffyn-Egli, P. and Mackenzie, F.T., 1984. Mass balance of dissolved lithium in the oceans. Geochim. Cosmochim. Acta, 48: 859-872.

Suzuki, R., Ishibashi, J.I., Nakaseama, M., Konno, U., Tsunogai, U., Gena, K. and Chiba, H., 2008. Diverse Range of Mineralization Induced by Phase Separation of Hydrothermal Fluid: Case Study of the Yonaguni Knoll IV Hydrothermal Field in the Okinawa Trough Back-Arc Basin. Resour. Geol., 58(3): 267-288.

Takahata, N., Watanabe, T., Shirai, K., Nishizawa, M. and Sano, Y., 2004. Helium isotopes of seawater in adjacent sea of Nansei Islands, Southwest Japan. Geochem. J., 38(6): 593-600.

Tang, M., Rudnick, R.L. and Chauvel, C., 2014. Sedimentary input to the source of Lesser Antilles lavas: A Li perspective. Geochim. Cosmochim. Acta, 144: 43-58.

Taylor, T.I. and Urey, H.C., 1938. Fractionation of the lithium and potassium isotopes by chemical exchange with zeolites. J. Chem. Phys., 6: 429-438.

Teng, F.Z., McDonough, W.F., Rudnick, R.L., Dalpe, C., Tomascak, P.B., Chappell, B.W. and Gao, S., 2004. Lithium isotopic composition and concentration of the upper continental crust. Geochim. Cosmochim. Acta, 68: 4167-4178.

Thompson, G., 1983. Basalt-seawater interaction. Hydrothermal processes at seafloor spreading centers(eds. Rona, P.A., Bostrom, K., Laubier, L. and Smith, K.L.): 225-278.

Tivey, M.K., Humphris, S.E., Thompson, G., Hannington, M.D. and Rona, P., 1995. Deducing patterns of fluid flow and mixing within the active TAG hydrothermal mound using mineralogical and geochemical data. J. Geophys. Res., 100:12527-12555.

Tivey, M.K., 2007. Generation of seafloor hydrothermal vent fluids and associated mineral deposits. Oceanography, 20(1): 50-65.

Tomascak, P.B., Langmuir, C.H., Roux, P.J. and Shirey, S.B., 2008. Lithium isotopes in global mid-ocean ridge basalts. Geochim. Cosmochim. Acta, 72: 1626-1637.

Tomascak, P.B., Magna, T. and Dohmen, R., 2016. Advances in Lithium Isotope Geochemistry.

Von Damm, K.L., 1995. Controls on the chemistry and temporal variability of seafloor hydrothermal fluids. Seafloor Hydrothermal Systems: Physical, Chemical, Biological and Geological Interactions(eds. Humphris, S.E., Zierenberg, R.A., Mullineaux, L.S. and Thomson, R.E.). Geophys. Monogr., 91: 222-248.

Von Damm, K.L., 2000. Chemistry of hydrothermal vent fluids from 9–10ºN, East Pacific Rise: time zero the immediate post-eruptive period. J. Geophys. Res., 105: 11203-11222.

Von Damm, K.L., 2004. Evolution of the hydrothermal system at East Pacific Rise 9º50’ N: geochemical evidence for changes in the upper oceanic crust. AGU Monogr., 148: 285-305.

Von Damm, K.L., Edmond, J.M., Grant, B., Measures, C.I., Walden, B. and Weiss, R.F., 1985a. Chemistry of submarine hydrothermal solutions at 21°N, East Pacific Rise. Geochim. Cosmochim. Acta, 49(2): 2197-2220.

Von Damm, K.L., Edmond, J.M., Measures, C.I. and Grant, B., 1985b. Chemistry of submarine hydrothermal solutions at Guaymas Basin, Gulf of California. Geochim. Cosmochim. Acta, 49: 2221-2237.

Verney-Carron, A., Vigier, N., Millot, R. and Hardarson, B.S., 2015. Lithium isotopes in hydrothermally altered basalts from Hengill (SW Iceland). Earth Planet. Sci. Lett., 411: 62-71.

Williams, L.B. and Hervig, R.L., 2005. Lithium and boron isotopes in illite-smectite: The importance of crystal size. Geochim. Cosmochim. Acta, 69(24): 5705-5716.

Yamaoka, K., Hong, E., Ishikawa, T., Gamo, T. and Kawahata, H., 2015. Boron isotope geochemistry of vent fluids from arc/back-arc seafloor hydrothermal systems in the western Pacific. Chem. Geol., 392(21): 9-18.

You, C.F., Butterfield, D.A., Spivack, A.J., Gieskes, J.M., Gamo, T. and Campbell, A.J., 1994. Boron and halide systematics in submarine hydrothermal systems: Effects of phase separation and sedimentary contributions. Earth Planet. Sci. Lett., 123: 227-238.

Zhang, W., Hu, Z., Liu, Y.S., Chen, L., Chen, H.H., Li, M., Zhao, L.S., Hu, S.H., Gao, S., 2012. Reassessment of HF/HNO3 decomposition capability in the high-pressure digestion of felsic rocks for multi-element determination by ICP-MS. Geostand. Geoanal. Res., 36(3): 271-289.

Zindler, A. and Hart, S., 1986. Chemical geodynamics. Ann. Rev. Earth Planet. Sci., 14: 493-571.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊