跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.91) 您好!臺灣時間:2024/12/11 01:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:郭雅心
研究生(外文):Ya-Hsin Kuo
論文名稱:地衣芽孢桿菌表面素粗萃物應用於乳牛的潛力
論文名稱(外文):The Potential Effect of Surfactin Crude Extract from Bacillus licheniformis on Dairy Cattle
指導教授:徐濟泰
指導教授(外文):Jih Tay Hsu
口試委員:陳怡蓁鄭永祥王翰聰
口試委員(外文):Yi Chen ChenYeong Hsiang ChengHan Tsung Wang
口試日期:2020-07-03
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:動物科學技術學研究所
學門:農業科學學門
學類:畜牧學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:106
中文關鍵詞:反芻動物地衣芽孢桿菌表面素
外文關鍵詞:RuminantsBacillus licheniformisSurfactin
DOI:10.6342/NTU202001882
相關次數:
  • 被引用被引用:3
  • 點閱點閱:242
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:2
隨著台灣的密集式養殖,牛隻的腸道疾病成為現今養牛產業必須面對的一個棘手問題。牛隻的腸道疾病會影響牛隻對營養分吸收,嚴重甚至會導致牛隻死亡。而在各種腸道疾病中以細菌性感染最為常見,而傳統會使用抗生素進行治療,但近年來由於食安問題、藥物殘留及抗藥性的產生,各國政府已逐年公告禁止經濟動物使用大部分抗生素於飼料中添加,然而卻也尚未尋得一個可以完全替代抗生素的方案。因此若能找到一種具備預防性且是牛隻身體可以代謝無殘留問題的天然抑菌物質,將會是養牛產業的一大福祉。芽孢桿菌類被分類為公認安全(GRAS)的菌株,且被允許使用於食品工業及商業產品的添加中,同時地衣芽孢桿菌也被認為是具有改善腸道免疫功能,以及能與宿主建立良好的共生關係之潛力益生菌。因此本試驗之研究目的在於探討由地衣芽孢桿菌所分泌的代謝物脂肽是否能成為有效代替抗生素抑制仔牛下痢的效果。
本研究分為兩個部分,第一部分為體外發酵試驗,透過體外發酵將表面素脂肽與瘤胃菌株進行共培養,在不同的劑量處理之下,觀察瘤胃微生物組成以及微生物產物的變化。結果顯示不論是添加純化或是粗萃表面素脂肽皆會抑制格蘭氏陽性菌,進一步分析有觀察到些微抑制部分纖維分解菌,但不會抑制澱粉分解菌、蛋白質分解菌、或酸利用菌,預期有可能支持高精料飼糧的較佳利用效率。而第二部分則為動物餵食實驗,選用15隻剛出生的荷蘭牛仔牛分為三個組別,分別為1倍劑量組、10倍劑量組及對照組,於代乳粉中添加不同劑量的表面素脂肽並觀察仔牛的糞便菌相、健康狀況以及生長表現。結果顯示表面素脂肽僅有在臀寬及血溶比的項目有正面的影響,並且不會對於牛隻造成負面的影響。
總結來說,表面素脂肽相較於孟寧素需要較高的使用劑量,且效果也較孟寧素弱,但其優點為無殘留問題且添加後也對於牛隻無負面影響。未來還需要尋找提升粗萃表面素脂肽濃度的方法,才能以更小的添加劑量使用於飼糧,以提高應用於養牛產業的可行性。
With the intensive animal farming in Taiwan, intestinal diseases of cattle have become a major issue that the cattle industry must face today. Intestinal diseases will affect nutrient absorption, and if the disease became more serious cattle will even die. Bacterial infections are the most common cause among various intestinal diseases. Traditionally, antibiotics can be used for treatment. However, in recent years, due to food safety issue, drug residues and the emerging of drug resistance, many countries have banned most antibiotics use in cattle farming.
Therefore, if we can find a preventive natural bacteriostatic substance that can be metabolized by cattle without residue problems, it will be a great benefit for the dairy industry. Bacillus is classified as a recognized safe (general recognized as safe, GRAS) and allowed to be used in the food industry and commercial product additions. Bacillus licheniformis is also considered to have the function of improving intestinal immune function, and can establish a symbiosis relationship with the host. The purpose of this study is to investigate whether the lipopeptidesurfactin secreted by Bacillus licheniformis can be an effective alternative to antibiotics to effectively prevent calf diarrhea.
This study is divided into two parts. The first part is an in vitro fermentation trial, in which surfactinlipopeptide and rumen fluid inoculant are co-cultured to observe the changes in rumen microbial composition and fermentation products at different doses of lipopeptide. The results showed both purified and crude extract surfactinlipopeptide could inhibit Gram-positive bacteria. Further analysis showed that surfactinlipopeptide could suppress some cellulolytic bacteria, but not amylolytic bacteria, proteolytic bacteria, or acid-utilizing bacteria, it might improve utilization of high concentrate feed. The second part is an animal feeding experiment with 15 newborn calves randomly assigned to three groups: control group, 1x dose group, and 10x dose group. SurfactinLipopeptide was added into calves’ milk replacer to examine its effect on fecal microbiota, health status and growth performance. The results showed that surfactinlipopeptide only had a positive effect on the hip width, weight and hematocrit without any negative impact on calves.
In summary, surfactinlipopeptide required a higher effective dosage than monensin, and its effect was weaker than monensin, but its advantage was free of drug residue problem. In the future, we need to find a way to increase the concentration of surfactinlipopeptide in crude extract, so that it can be used in diets with a smaller dosage and increase the feasibility of applying in the dairy industry.
口試委員會審定書 i
謝辭 ii
中文摘要 iii
英文摘要 v
圖目錄 xi
表目錄 xiii
壹、 文獻探討 1
一、下痢對現今養牛產業的影響 1
二、反芻動物的消化與瘤胃微生物 1
(一)瘤胃的環境 1
(二)瘤胃內的微生物組成 2
二、腸道益菌與牛隻健康的關係 4
(一)產生有機酸 4
(二)分泌抗菌肽 4
(三)競爭 5
三、下痢的發生原因及判定方式 5
四、下痢的治療方法 8
五、抗生素治療的瓶頸 9
六、地衣芽孢桿菌與枯草芽孢桿菌(Bacillus subtilis) 11
七、地衣芽孢桿菌與表面素(Bacillus licheniformis and surfactin) 12
八、表面素脂肽(Surfactin) 13
九、次世代定序(NGS) 13
貳、 材料方法 15
體外試驗 15
一、體外發酵材料 15
(一)瘤胃液: 15
(二)體外發酵的樣品: 15
(三)表面素: 15
二、步驟 16
(一)瘤胃液的採集: 16
(二)體外發酵: 18
(三)採樣時間點及培養條件: 18
三、檢測項目及方法 19
(一)菌落培養 19
(二)氨態氮及揮發性脂肪酸濃度的測定 22
(三)原蟲和真菌動孢子數目 23
動物試驗 24
一、試驗場所 24
二、實驗牛選用及分組 25
三、採樣的項目時間點及方法 26
(一)糞便菌相分析及球蟲卵檢測 26
(二)下痢持續天數及糞便評分 29
(三)血液生化值 29
(四)生長表現: 32
(五)疾病紀錄 33
次世代基因定序 (NGS) 34
統計分析 35
參、 結果討論 36
體外試驗 36
一、菌落培養 36
二、氨態氮及揮發性脂肪酸濃度的測定 40
三、原蟲和真菌動孢子數目 43
四、NGS 45
(一)格蘭氏陰陽性菌數量 45
(二)Top10 Group 48
(三)三元相圖 56
(四)Venn圖 58
(五)PCA 分析及Welch's t-test 60
(六)LEfSe進化分支圖和LDA 分布柱狀圖 70
動物實驗 75
一、糞便菌相分析及球蟲卵檢測 75
(一)糞便菌相分析 75
(二)球蟲卵檢測: 79
二、下痢持續天數及糞便評分 80
三、血液生化值 80
(一)血容比 80
(二)仔牛白血球數 81
(三)血漿總蛋白 82
(四)血中IgG1濃度 83
(五)血酮濃度 84
四、生長表現 85
五、疾病紀錄 86
六、NGS 86
(一)Top 10 group 88
(二)三元相圖 92
(三)Venn圖 93
(四)PCA 分析及Welch's t-test 94
(五) LEfSe進化分支圖和LDA 分布柱狀圖 97
(六)與先前文獻之比較 98
肆、 結論 99
伍、 參考文獻 100
吳義興(2006)。原蟲及寄生蟲檢查法。行政院農業委員會家畜衛生試驗所。取自https://vettech.nvri.gov.tw/Articles/handbook/71.html
Akin, D. E. and W. S. Borneman. 1990. Role of rumen fungi in fiber degradation. J. Dairy Sci. 73:3023-3032. doi: 10.3168/jds.S0022-0302(90)78989-8
Blanchard, P. C. 2012. Diagnostics of dairy and beef cattle diarrhea.Vet. Clin. Food Anim. 28:443-464. doi: 10.1016/j.cvfa.2012.07.002
Brownlie, J. 1985. Clinical aspects of the bovine virus diarrhea/ mucosal disease complex in cattle. In Pract. 7:195-202.
Cebra, M. L., F. B. Garry, C. K. Cebra, R. Adams, J. P. McCann, and M. J. Fettman. 1998. Treatment of neonatal calf diarrhea with an oral electrolyte solution supplemented with psyllium mucilloid. Veterinary Internal Medicine. 12(6): 449-455. doi: 10.1111/j.1939-1676.1998.tb02149.x
Chaney, A. L. and E. P. Marbach. 1962. Modified reagents for determination of urea and ammonia. Clin. Chem., 8:130-132.
Chaucheyras-Durand, F. and H. Durand. 2010. Probiotics in animal nutrition and health. Beneficial Microbes.1:3-9.
Chen, L. M., Y. Luo, H. R. Wang, S. M. Liu, Y. Z. Shen, and M. Z. Wang. 2016. Effects of glucose and starch on lactate production by newly isolated Streptococcus bovis s1 from saanen goats. Appl. Environ. Microb. 82:5982-5989. doi: 10.1128/AEM.01994-16
Cho, Y. I., and K. J. Yoon. 2014. An overview of calf diarrhea-infectious etiology, diagnosis, and intervention. J. Vet Sci 15:1-17.
Ciprandi, G., A. Scordamaglia, D. Venuti, M. Caria, and G. W. Canonica. In vitro effects of Bacillus subtilis on the immune response. Chemioterapia 5:404-407.
Deleu, M., O. Bouffioux, H. Razafindralambo, M. Paquot, C. Hbid, P. Thonart, P. Jacques, and R. Brasseur. 2003. Interaction of Surfactin with Membranes: A Computational Approach. Langmuir. 19:3377-3385. dio: 10.1021/la026543z
Delves Broughton, J., P. Blackburn, R. J. Evans, J. Hugenholtz. 1996. Applications of the bacteriocin, nisin. Antonie van Leeuwenhoek 69:193-202. doi: 10.1007/BF00399424
Dennis, S. M., T. G. Nagaraja, and E. E. Bartley. 1981. Effect of lasalocid or monensin on lactate-producing or using rumen bacteria. J. Anim. Sci. 52:418-426. doi: 10.2527/jas1981.522418x
Ducluzeau, R., F. Dubos, P. Raibaud, and G. D. Abrams. 1978. Production of an antibiotic substance by bacillus licheniformis within the digestive tract of gnotobiotic mice. Antimicrob. Agents Chemother. 13:97-103. doi: 10.1128/AAC.13.1.97
El Jack, E. M., R. J. Fallon, F. J. Harte, and M. J. Drennan. 1986. Effect of avoparcin, flavomycin and monensin sodium inclusion in a calf concentrate diet on calf performance. Journal of Agricultural Research 25:197-204.
Fallah, R., M. Saghafi, H. Rezaei, and R. Parvar. 2013. Effect of bioplus 2b and protoxin probiotics supplementation on growth performance, small intestinal morphology and carcass characteristics of broiler chickens. J. Poult. Sci. 2:11-15.
Friggens, N. C., J. D. Oldham, R. J. Dewhurst, and G. Horgan. 1998. Proportions of volatile fatty acids in relation to the chemical composition of feeds based on grass silage. J. Dairy Sci. 81:1331-1344. doi: 10.3168/jds.S0022-0302(98)75696-6
Gomez, D. E., L. G. Arroyo, M. C. Costa, L. Viel, and J. S. Weese. 2017. Characterization of the fecal bacterial microbiota of healthy and diarrheic dairy calves. J. Vet. Intern. Med. 31:928-939.
Gonzalez, M., H. W. Barkema, and G. P. Keefe. 2005. Monensin toxicosis in a dairy herd. Can Vet J. 46:910-912.
Hartinger, T., N. Gresner, and K. H. Südekum. 2018. Does intra-ruminal nitrogen recycling waste valuable resources? A review of major players and their manipulation. J. Anim. Sci. 9:1-21. doi: 10.1186/s40104-018-0249-x
Horng, Y. B., Y. H. Yu, A. Dybus, S. H. Hsiao, and Y. H. Cheng. 2019. Antibacterial activity of Bacillus species‑derived surfactin on Brachyspira hyodysenteriae and Clostridium perfringens. AMB Express. 9:1. doi: 10.1186/s13568-019-0914-2
Hook, S. E., A. D. G. Wright, and B. W. McBride. 2010. Methanogens: Methane producers of the rumen and mitigation strategies. Archaea 1-11.doi: 10.1155/2010/945785
Kahrs, R. F. 1977. Infectious bovine rhinotracheitis: A review and update. American Veterinary Medical Association 171:1055.
Koike, S. and Y. Kobayashi. 2001. Development and use of competitive pcr assays for the rumen cellulolytic bacteria: Fibrobacter succinogenes, Ruminococcus albus and Ruminococcus flavefaciens. FEMS Microbiol. Lett. 204:361-366. doi: 10.1016/S0378-1097(01)00428-1
Kowalski, Z. M., P. Górka, A. Schlagheck, W. Jagusiak, P. Micek, and J. Strzetelski. 2009. Performance of holstein calves fed milk-replacer and starter mixture supplemented with probiotic feed additive. J. Anim Feed Sci. 18:399-411. doi: 10.22358/jafs/66409/2009
Leedle, J. A. and R. B. Hespell. 1980. Differential carbohydrate media and anaerobic replica plating techniques in delineating carbohydrate-utilizing subgroups in rumen bacterial populations. Appl. Environ. Microbiol. 39:709-719. doi: 10.1128/AEM.39.4.709-719.1980
Lievin Le Moal, V. and A. L. Servin. 2006. The front line of enteric host defense against unwelcome intrusion of harmful microorganisms: Mucins, antimicrobial peptides, and microbiota. Clinical Microbiology Reviews 19:315-337. doi: 10.1128/CMR.19.2.315-337.2006
Łowicki, D. and A. Huczyński. 2013. Structure and antimicrobial properties of monensin a and its derivatives: Summary of the achievements. Biomed. Research Int. 2013:1-14.doi: 10.1155/2013/742149
Malmuthuge, N. and L. L. Guan. 2017. Understanding the gut microbiome of dairy calves: Opportunities to improve early-life gut health. J. Dairy Sci. 100:5996-6005. doi: 10.3168/jds.2016-12239
Matthews, C., F. Crispie, E. Lewis, M. Reid, P. W. O’Toole, and P. D. Cotter. 2019. The rumen microbiome: A crucial consideration when optimising milk and meat production and nitrogen utilisation efficiency. Gut Microbes 10:115-132. doi: 10.1080/19490976.2018.1505176
McGuffey, R. K., L. F. Richardson, and J. I. D. Wilkinson. 2001. Ionophores for dairy cattle: Current status and future outlook. J. Dairy Sci. 84:E194-E203. doi: 10.3168/jds.S0022-0302(01)70218-4
Mingmongkolchai, S. and W. Panbangred 2018. Bacillus probiotics: An alternative to antibiotics for livestock production. Journal of Applied Microbiology 124:1334-1346. doi: 10.1111/jam.13690
Mor, A. 2000. Peptide‐based antibiotics: A potential answer to raging antimicrobial resistance. Drug Development Research 50:440-447. doi: 10.1002/1098-2299(200007/08)50:3/4<440::AID-DDR27>3.0.CO;2-4
Morgavi, D. P., E. Forano, C. Martin, and C. J. Newbold. 2010. Microbial ecosystem and methanogenesis in ruminants. J. Anim. Sci. 4:1024-1036. doi: 10.1017/S1751731110000546
Naylor, J. M. 1989. A retrospective study of the relationship between clinical signs and severity of acidosis in diarrheic calves. Can. Vet. J. 30:577-580.
O’Hara, S. P., and X. M. Chen. 2011. The cell biology of cryptosporidium infection. J. Microbes Infection 13:721-730. doi: 10.1016/j.micinf.2011.03.008
Paster, B. J., J. B. Russell, C. M. J. Yang, J. M. Chow, C. R. Woese, and R. Tanner. 1993. Phylogeny of the ammonia-producing ruminal bacteria Peptostreptococcus anaerobius, Clostridium sticklandii, and Clostridium aminophilum sp. Int. J. Syst. Bacteriol. 43:107-110. doi: 10.1099/00207713-43-1-107
Perez-Marin, C. C. 2012. Values of blood variables in calves. A Bird s-Eye View of Veterinary Medicine pp.301-320. doi: 10.5772/2124
Potgieter, L. N., M. D. McCracken, F. M. Hopkins, and R. D. Walker 1984. Effect of bovine viral diarrhea virus infection on the distribution of infectious bovine rhinotracheitis virus in calves. Journal of Veterinary Research 45:687-690.
Riddell, J. B., A. J. Gallegos, D. L. Harmon, and K. R. McLeod. 2010. Addition of a Bacillus based probiotic to the diet of preruminant calves: Influence on growth, health, and blood parameters. J. Appl. Res. Vet. Med. 8:78-85.
Sargeant, J. M., M. W. Sanderson, R . A. Smith, and D. D. Griffin. 2004. Associations between management, climate, and escherichia coli o157 in the faeces of feedlot cattle in the midwestern USA. Preventive Veterinary Medicine 66:175-206. doi: 10.1016/j.prevetmed.2004.09.007
Schallmey, M., A. Singh, and O. P. Ward. 2004. Developments in the use of Bacillus species for industrial production. Canadian Journal of Microbiology. 50:1-17. doi: 10.1139/w03-076
Schelling, G. T. 1984. Monensin mode of action in the rumen. J. Anim. Sci. 58:1518-1527. doi: 10.2527/jas1984.5861518x
Shen, J.-S., Z. Liu, Z.-T. Yu, and W.-Y. Zhu. 2017. Monensin and nisin affect rumen fermentation and microbiota differently in vitro. Frontiers in Microbiology 8:1-13. doi: 10.3389/fmicb.2017.01111
Shen, J., Y. Chen, L. E. Moraes, Z. Yu, and Zhu, W. 2018. Effects of dietary protein sources and nisin on rumen fermentation, nutrient digestion, plasma metabolites, nitrogen utilization, and growth performance in growing lambs. J. Anim. Sci. 96:1929-1938.
Singh, P. and S. S. Cameotra. 2004. Potential applications of microbial surfactants in biomedical sciences. Trends Biotechnol. 22:142-146. dio: 10.1016/j.tibtech.2004.01.010
Staples, G. E., K. Wohlgemuth, and W. D. Eide. 1982. Calf scours: Causes, prevention, treatment. North Dakota Cooperative Extension Service Circular:1-5.
Sudhakara Reddy, B., S. Sivajothi, and V. C. Rayulu. 2015. Clinical coccidiosis in adult cattle. Journal of Parasitic Diseases 39:557-559. doi: 10.1007/s12639-013-0395-1
Tejero-Sariñena, S., J. Barlow, A. Costabile, G. R. Gibson, and I. Rowland. 2012. In vitro evaluation of the antimicrobial activity of a range of probiotics against pathogens: Evidence for the effects of organic acids. Anaerobe 18:530-538. doi: 10.1016/j.anaerobe.2012.08.004
Van Dijl, J. M. and M. Hecker. 2013. Bacillus subtilis: from soil bacterium to super-secreting cell factory. Microbial Cell Factories.12:3. doi: 10.1186/1475-2859-12-3
Van Nevel, C. J. and D. I. Demeyer. 1977. Effect of monensin on rumen metabolism in vitro. Appl. Environ. Microbiol. 34:251-257.
Yang, C. M. J. and G. A. Varga. 1989. Effect of three concentrate feeding frequencies on rumen protozoa, rumen digesta kinetics, and milk yield in dairy cows. J. Dairy Sci., 72:950-957
Yu, A. C. S., J. F. C. Loo, S. Yu, S. K. Kong, and T. F. Chan. 2014. Monitoring bacterial growth using tunable resistive pulse sensing with a pore-based technique. Applied Microbiology and Biotechnology 98:855-862. doi: 10.1007/s00253-013-5377-9
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top