|
1.Osterloh, F. E., Photocatalysis versus photosynthesis: a sensitivity analysis of devices for solar energy conversion and chemical transformations. ACS Energy Letters 2017, 2 (2), 445-453. 2.Brunning, A.; Institute, A. G. C. Endangered Elements. https://www.acs.org/content/acs/en/greenchemistry/research-innovation/endangered-elements.html (accessed 2020/06/28). 3.Sakakura, T.; Choi, J.-C.; Yasuda, H., Transformation of Carbon Dioxide. Chemical Reviews 2007, 107 (6), 2365-2387. 4.Tolman, W. B., Activation of small molecules: organometallic and bioinorganic perspectives. John Wiley & Sons: 2006. 5.Wu, J.; Yang, X.; He, Z.; Mao, X.; Hatton, T. A.; Jamison, T. F., Continuous Flow Synthesis of Ketones from Carbon Dioxide and Organolithium or Grignard Reagents. Angewandte Chemie International Edition 2014, 53 (32), 8416-8420. 6.Omae, I., Recent developments in carbon dioxide utilization for the production of organic chemicals. Coordination Chemistry Reviews 2012, 256 (13), 1384-1405. 7.Johnson, Matthew P., Photosynthesis. Essays in Biochemistry 2016, 60 (3), 255-273. 8.Ulmer, U.; Dingle, T.; Duchesne, P. N.; Morris, R. H.; Tavasoli, A.; Wood, T.; Ozin, G. A., Fundamentals and applications of photocatalytic CO2 methanation. Nature Communications 2019, 10 (1), 3169. 9.Fujishima, A.; Honda, K., Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature 1972, 238 (5358), 37-38. 10.Li, X.; Yu, J.; Jaroniec, M.; Chen, X., Cocatalysts for Selective Photoreduction of CO2 into Solar Fuels. Chemical Reviews 2019, 119 (6), 3962-4179. 11.Pellegrin, Y.; Odobel, F., Sacrificial electron donor reagents for solar fuel production. Comptes Rendus Chimie 2017, 20 (3), 283-295. 12.Wang, Z.; Teramura, K.; Huang, Z.; Hosokawa, S.; Sakata, Y.; Tanaka, T., Tuning the selectivity toward CO evolution in the photocatalytic conversion of CO2 with H2O through the modification of Ag-loaded Ga2O3 with a ZnGa2O4 layer. Catalysis Science & Technology 2016, 6 (4), 1025-1032. 13.Teramura , K.; Wang, Z.; Hosokawa , S.; Sakata, Y.; Tanaka , T., A Doping Technique that Suppresses Undesirable H2 Evolution Derived from Overall Water Splitting in the Highly Selective Photocatalytic Conversion of CO2 in and by Water. Chemistry – A European Journal 2014, 20 (32), 9906-9909. 14.Xie, S.; Zhang, Q.; Liu, G.; Wang, Y., Photocatalytic and photoelectrocatalytic reduction of CO2 using heterogeneous catalysts with controlled nanostructures. Chemical Communications 2016, 52 (1), 35-59. 15.Matsuoka, S.; Kohzuki, T.; Pac, C.; Yanagida, S., Photochemical Reduction of Carbon Dioxide to Formate Catalyzed by p-Terphenyl in Aprotic Polar Solvent. Chemistry Letters 1990, 19 (11), 2047-2048. 16.Wang, T.-X.; Liang, H.-P.; Anito, D. A.; Ding, X.; Han, B.-H., Emerging applications of porous organic polymers in visible-light photocatalysis. J. Mater. Chem. A 2020, 8 (15), 7003-7034. 17.Liu, M.; Guo, L.; Jin, S.; Tan, B., Covalent triazine frameworks: synthesis and applications. J. Mater. Chem. A 2019, 7 (10), 5153-5172. 18.Das, S.; Heasman, P.; Ben, T.; Qiu, S., Porous Organic Materials: Strategic Design and Structure–Function Correlation. Chemical Reviews 2017, 117 (3), 1515-1563. 19.Côté, A. P.; Benin, A. I.; Ockwig, N. W.; Keeffe, M.; Matzger, A. J.; Yaghi, O. M., Porous, Crystalline, Covalent Organic Frameworks. Science 2005, 310 (5751), 1166. 20.Lohse, M. S.; Bein, T., Covalent Organic Frameworks: Structures, Synthesis, and Applications. Advanced Functional Materials 2018, 28 (33), 1705553. 21.Zeng, Y.; Zou, R.; Zhao, Y., Covalent Organic Frameworks for CO2 Capture. Advanced Materials 2016, 28 (15), 2855-2873. 22.Cui, X.; Lei, S.; Wang, A. C.; Gao, L. K.; Zhang, Q.; Yang, Y. K.; Lin, Z. Q., Emerging covalent organic frameworks tailored materials for electrocatalysis. Nano Energy 2020, 70, 24. 23.Li, J. D.; Zhao, D. N.; Liu, J. Q.; Liu, A. A.; Ma, D. G., Covalent Organic Frameworks: A Promising Materials Platform for Photocatalytic CO2 Reductions. Molecules 2020, 25 (10), 21. 24.Zhi, Y. F.; Wang, Z. R.; Zhang, H. L.; Zhang, Q. C., Recent Progress in Metal-Free Covalent Organic Frameworks as Heterogeneous Catalysts. Small, 21. 25.Medina, D. D.; Petrus, M. L.; Jumabekov, A. N.; Margraf, J. T.; Weinberger, S.; Rotter, J. M.; Clark, T.; Bein, T., Directional Charge-Carrier Transport in Oriented Benzodithiophene Covalent Organic Framework Thin Films. ACS Nano 2017, 11 (3), 2706-2713. 26.Lv, J.; Tan, Y.-X.; Xie, J.; Yang, R.; Yu, M.; Sun, S.; Li, M.-D.; Yuan, D.; Wang, Y., Direct Solar-to-Electrochemical Energy Storage in a Functionalized Covalent Organic Framework. Angewandte Chemie International Edition 2018, 57 (39), 12716-12720. 27.Banerjee, T.; Gottschling, K.; Savasci, G.; Ochsenfeld, C.; Lotsch, B. V., H2 Evolution with Covalent Organic Framework Photocatalysts. ACS Energy Letters 2018, 3 (2), 400-409. 28.Wang, X.; Chen, L.; Chong, S. Y.; Little, M. A.; Wu, Y.; Zhu, W.-H.; Clowes, R.; Yan, Y.; Zwijnenburg, M. A.; Sprick, R. S.; Cooper, A. I., Sulfone-containing covalent organic frameworks for photocatalytic hydrogen evolution from water. Nature Chemistry 2018, 10 (12), 1180-1189. 29.Vyas, V. S.; Haase, F.; Stegbauer, L.; Savasci, G.; Podjaski, F.; Ochsenfeld, C.; Lotsch, B. V., A tunable azine covalent organic framework platform for visible light-induced hydrogen generation. Nature Communications 2015, 6 (1), 8508. 30.Wu, Y.; Xu, H.; Chen, X.; Gao, J.; Jiang, D., A π-electronic covalent organic framework catalyst: π-walls as catalytic beds for Diels–Alder reactions under ambient conditions. Chemical Communications 2015, 51 (50), 10096-10098. 31.Li, H.; Feng, X.; Shao, P.; Chen, J.; Li, C.; Jayakumar, S.; Yang, Q., Synthesis of covalent organic frameworks via in situ salen skeleton formation for catalytic applications. J. Mater. Chem. A 2019, 7 (10), 5482-5492. 32.Lin, C.-Y.; Zhang, D.; Zhao, Z.; Xia, Z., Covalent Organic Framework Electrocatalysts for Clean Energy Conversion. Advanced Materials 2018, 30 (5), 1703646. 33.Lin, S.; Diercks, C. S.; Zhang, Y.-B.; Kornienko, N.; Nichols, E. M.; Zhao, Y.; Paris, A. R.; Kim, D.; Yang, P.; Yaghi, O. M.; Chang, C. J., Covalent organic frameworks comprising cobalt porphyrins for catalytic CO2 reduction in water. Science 2015, 349 (6253), 1208. 34.Fu, Y.; Zhu, X.; Huang, L.; Zhang, X.; Zhang, F.; Zhu, W., Azine-based covalent organic frameworks as metal-free visible light photocatalysts for CO2 reduction with H2O. Applied Catalysis B: Environmental 2018, 239, 46-51. 35.Li, Z.; Feng, X.; Zou, Y.; Zhang, Y.; Xia, H.; Liu, X.; Mu, Y., A 2D azine-linked covalent organic framework for gas storage applications. Chemical Communications 2014, 50 (89), 13825-13828. 36.Chakrabortty, S.; Nayak, J.; Ruj, B.; Pal, P.; Kumar, R.; Banerjee, S.; Sardar, M.; Chakraborty, P., Photocatalytic conversion of CO2 to methanol using membrane-integrated Green approach: A review on capture, conversion and purification. Journal of Environmental Chemical Engineering 2020, 8 (4), 103935. 37.Lei, K.; Wang, D.; Ye, L.; Kou, M.; Deng, Y.; Ma, Z.; Wang, L.; Kong, Y., A Metal-Free Donor–Acceptor Covalent Organic Framework Photocatalyst for Visible-Light-Driven Reduction of CO2 with H2O. ChemSusChem 2020, 13 (7), 1725-1729. 38.Wang, L. J.; Wang, R. L.; Zhang, X.; Mu, J. L.; Zhou, Z. Y.; Su, Z. M., Improved Photoreduction of CO2 with Water by Tuning the Valence Band of Covalent Organic Frameworks. ChemSusChem 2020, 13 (11), 2973-2980. 39.Yang, S.; Hu, W.; Zhang, X.; He, P.; Pattengale, B.; Liu, C.; Cendejas, M.; Hermans, I.; Zhang, X.; Zhang, J.; Huang, J., 2D Covalent Organic Frameworks as Intrinsic Photocatalysts for Visible Light-Driven CO2 Reduction. J. Am. Chem. Soc. 2018, 140 (44), 14614-14618. 40.Lu, M.; Li, Q.; Liu, J.; Zhang, F.-M.; Zhang, L.; Wang, J.-L.; Kang, Z.-H.; Lan, Y.-Q., Installing earth-abundant metal active centers to covalent organic frameworks for efficient heterogeneous photocatalytic CO2 reduction. Applied Catalysis B: Environmental 2019, 254, 624-633. 41.Zhong, W.; Sa, R.; Li, L.; He, Y.; Li, L.; Bi, J.; Zhuang, Z.; Yu, Y.; Zou, Z., A Covalent Organic Framework Bearing Single Ni Sites as a Synergistic Photocatalyst for Selective Photoreduction of CO2 to CO. J. Am. Chem. Soc. 2019, 141 (18), 7615-7621. 42.Sarkar, P.; Riyajuddin, S.; Das, A.; Hazra Chowdhury, A.; Ghosh, K.; Islam, S. M., Mesoporous covalent organic framework: An active photo-catalyst for formic acid synthesis through carbon dioxide reduction under visible light. Molecular Catalysis 2020, 484, 110730. 43.Fu, Z.; Wang, X.; Gardner, A. M.; Wang, X.; Chong, S. Y.; Neri, G.; Cowan, A. J.; Liu, L.; Li, X.; Vogel, A.; Clowes, R.; Bilton, M.; Chen, L.; Sprick, R. S.; Cooper, A. I., A stable covalent organic framework for photocatalytic carbon dioxide reduction. Chemical Science 2020, 11 (2), 543-550. 44.Liu, W.; Li, X.; Wang, C.; Pan, H.; Liu, W.; Wang, K.; Zeng, Q.; Wang, R.; Jiang, J., A Scalable General Synthetic Approach toward Ultrathin Imine-Linked Two-Dimensional Covalent Organic Framework Nanosheets for Photocatalytic CO2 Reduction. J. Am. Chem. Soc. 2019, 141 (43), 17431-17440. 45.Kuhn, P.; Antonietti, M.; Thomas, A., Porous, Covalent Triazine-Based Frameworks Prepared by Ionothermal Synthesis. Angewandte Chemie International Edition 2008, 47 (18), 3450-3453. 46.Hug, S.; Tauchert, M. E.; Li, S.; Pachmayr, U. E.; Lotsch, B. V., A functional triazine framework based on N-heterocyclic building blocks. Journal of Materials Chemistry 2012, 22 (28), 13956-13964. 47.Hall, P. J.; Mirzaeian, M.; Fletcher, S. I.; Sillars, F. B.; Rennie, A. J. R.; Shitta-Bey, G. O.; Wilson, G.; Cruden, A.; Carter, R., Energy storage in electrochemical capacitors: designing functional materials to improve performance. Energy & Environmental Science 2010, 3 (9), 1238-1251. 48.Zhu, X.; Tian, C.; Mahurin, S. M.; Chai, S.-H.; Wang, C.; Brown, S.; Veith, G. M.; Luo, H.; Liu, H.; Dai, S., A Superacid-Catalyzed Synthesis of Porous Membranes Based on Triazine Frameworks for CO2 Separation. J. Am. Chem. Soc. 2012, 134 (25), 10478-10484. 49.Liu, J.; Lyu, P.; Zhang, Y.; Nachtigall, P.; Xu, Y., New Layered Triazine Framework/Exfoliated 2D Polymer with Superior Sodium-Storage Properties. Advanced Materials 2018, 30 (11), 1705401. 50.Bi, J.; Fang, W.; Li, L.; Wang, J.; Liang, S.; He, Y.; Liu, M.; Wu, L., Covalent Triazine-Based Frameworks as Visible Light Photocatalysts for the Splitting of Water. Macromolecular Rapid Communications 2015, 36 (20), 1799-1805. 51.Yang, C.; Huang, W.; da Silva, L. C.; Zhang, K. A. I.; Wang, X., Functional Conjugated Polymers for CO2 Reduction Using Visible Light. Chemistry – A European Journal 2018, 24 (66), 17454-17458. 52.Yadav, R. K.; Kumar, A.; Park, N.-J.; Kong, K.-J.; Baeg, J.-O., A highly efficient covalent organic framework film photocatalyst for selective solar fuel production from CO2. J. Mater. Chem. A 2016, 4 (24), 9413-9418. 53.Xu, R.; Wang, X.-S.; Zhao, H.; Lin, H.; Huang, Y.-B.; Cao, R., Rhenium-modified porous covalent triazine framework for highly efficient photocatalytic carbon dioxide reduction in a solid–gas system. Catalysis Science & Technology 2018, 8 (8), 2224-2230. 54.Bi, J.; Xu, B.; Sun, L.; Huang, H.; Fang, S.; Li, L.; Wu, L., A Cobalt-Modified Covalent Triazine-Based Framework as an Efficient Cocatalyst for Visible-Light-Driven Photocatalytic CO2 Reduction. ChemPlusChem 2019, 84 (8), 1149-1154. 55.Liang, W.; Church, T. L.; Zheng, S.; Zhou, C.; Haynes, B. S.; D'Alessandro, D. M., Site Isolation Leads to Stable Photocatalytic Reduction of CO2 over a Rhenium-Based Catalyst. Chemistry – A European Journal 2015, 21 (51), 18576-18579. 56.Liang, H.-P.; Acharjya, A.; Anito, D. A.; Vogl, S.; Wang, T.-X.; Thomas, A.; Han, B.-H., Rhenium-Metalated Polypyridine-Based Porous Polycarbazoles for Visible-Light CO2 Photoreduction. ACS Catalysis 2019, 9 (5), 3959-3968. 57.Chen, Y.; Ji, G.; Guo, S.; Yu, B.; Zhao, Y.; Wu, Y.; Zhang, H.; Liu, Z.; Han, B.; Liu, Z., Visible-light-driven conversion of CO2 from air to CO using an ionic liquid and a conjugated polymer. Green Chemistry 2017, 19 (24), 5777-5781. 58.Aghaie, M.; Rezaei, N.; Zendehboudi, S., A systematic review on CO2 capture with ionic liquids: Current status and future prospects. Renewable and Sustainable Energy Reviews 2018, 96, 502-525. 59.Yu, X.; Yang, Z.; Qiu, B.; Guo, S.; Yang, P.; Yu, B.; Zhang, H.; Zhao, Y.; Yang, X.; Han, B.; Liu, Z., Eosin Y-Functionalized Conjugated Organic Polymers for Visible-Light-Driven CO2 Reduction with H2O to CO with High Efficiency. Angewandte Chemie International Edition 2019, 58 (2), 632-636. 60.Wang, S.; Hai, X.; Ding, X.; Jin, S.; Xiang, Y.; Wang, P.; Jiang, B.; Ichihara, F.; Oshikiri, M.; Meng, X.; Li, Y.; Matsuda, W.; Ma, J.; Seki, S.; Wang, X.; Huang, H.; Wada, Y.; Chen, H.; Ye, J., Intermolecular cascaded π-conjugation channels for electron delivery powering CO2 photoreduction. Nature Communications 2020, 11 (1), 1149. 61.Zhou, N.; Facchetti, A., Naphthalenediimide (NDI) polymers for all-polymer photovoltaics. Materials Today 2018, 21 (4), 377-390. 62.Kolhe, N. B.; Lee, H.; Kuzuhara, D.; Yoshimoto, N.; Koganezawa, T.; Jenekhe, S. A., All-Polymer Solar Cells with 9.4% Efficiency from Naphthalene Diimide-Biselenophene Copolymer Acceptor. Chemistry of Materials 2018, 30 (18), 6540-6548. 63.Wu, Z.; Sun, C.; Dong, S.; Jiang, X.-F.; Wu, S.; Wu, H.; Yip, H.-L.; Huang, F.; Cao, Y., n-Type Water/Alcohol-Soluble Naphthalene Diimide-Based Conjugated Polymers for High-Performance Polymer Solar Cells. J. Am. Chem. Soc. 2016, 138 (6), 2004-2013. 64.Fan, B.; Zhang, D.; Li, M.; Zhong, W.; Zeng, Z.; Ying, L.; Huang, F.; Cao, Y., Achieving over 16% efficiency for single-junction organic solar cells. Science China Chemistry 2019, 62 (6), 746-752. 65.Sarang, K. T.; Miranda, A.; An, H.; Oh, E.-S.; Verduzco, R.; Lutkenhaus, J. L., Poly(fluorene-alt-naphthalene diimide) as n-Type Polymer Electrodes for Energy Storage. ACS Applied Polymer Materials 2019, 1 (5), 1155-1164. 66.Woods, D. J.; Hillman, S. A. J.; Pearce, D.; Wilbraham, L.; Flagg, L. Q.; Duffy, W.; McCulloch, I.; Durrant, J. R.; Guilbert, A. A. Y.; Zwijnenburg, M. A.; Sprick, R. S.; Nelson, J.; Cooper, A. I., Side-chain tuning in conjugated polymer photocatalysts for improved hydrogen production from water. Energy & Environmental Science 2020, 13 (6), 1843-1855. 67.Hu, Z.; Wang, Z.; Zhang, X.; Tang, H.; Liu, X.; Huang, F.; Cao, Y., Conjugated Polymers with Oligoethylene Glycol Side Chains for Improved Photocatalytic Hydrogen Evolution. iScience 2019, 13, 33-42. 68.Pahlavanlu, P.; Tilley, A.; McAllister, B.; Seferos, D., Microwave Synthesis of Thionated Naphthalene Diimide-Based Small Molecules and Polymers. The Journal of Organic Chemistry 2017, 82. 69.DeBlase, C. R.; Hernández-Burgos, K.; Rotter, J. M.; Fortman, D. J.; dos S. Abreu, D.; Timm, R. A.; Diógenes, I. C. N.; Kubota, L. T.; Abruña, H. D.; Dichtel, W. R., Cation-Dependent Stabilization of Electrogenerated Naphthalene Diimide Dianions in Porous Polymer Thin Films and Their Application to Electrical Energy Storage. Angewandte Chemie International Edition 2015, 54 (45), 13225-13229. 70.Royuela, S.; Martínez-Periñán, E.; Arrieta, M. P.; Martínez, J. I.; Ramos, M. M.; Zamora, F.; Lorenzo, E.; Segura, J. L., Oxygen reduction using a metal-free naphthalene diimide-based covalent organic framework electrocatalyst. Chemical Communications 2020, 56 (8), 1267-1270. 71.Spano, F. C.; Silva, C., H- and J-Aggregate Behavior in Polymeric Semiconductors. Annual Review of Physical Chemistry 2014, 65 (1), 477-500. 72.Henson, Z. B.; Zhang, Y.; Nguyen, T.-Q.; Seo, J. H.; Bazan, G. C., Synthesis and Properties of Two Cationic Narrow Band Gap Conjugated Polyelectrolytes. J. Am. Chem. Soc. 2013, 135 (11), 4163-4166. 73.Gong, J.; Krishnan, S., Chapter 2 - Mathematical Modeling of Dye-Sensitized Solar Cells. In Dye-Sensitized Solar Cells, Soroush, M.; Lau, K. K. S., Eds. Academic Press: 2019; pp 51-81. 74.Cardona, C. M.; Li, W.; Kaifer, A. E.; Stockdale, D.; Bazan, G. C., Electrochemical Considerations for Determining Absolute Frontier Orbital Energy Levels of Conjugated Polymers for Solar Cell Applications. Advanced Materials 2011, 23 (20), 2367-2371. 75.Tokmakoff, A. 15.5: Marcus Theory for Electron Transfer. https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Book%3A_Time_Dependent_Quantum_Mechanics_and_Spectroscopy_(Tokmakoff)/15%3A_Energy_and_Charge_Transfer/15.05%3A_Marcus_Theory_for_Electron_Transfer (accessed July 10). 76.Zimmermann, J.; Zeug, A.; Röder, B., A generalization of the Jablonski diagram to account for polarization and anisotropy effects in time-resolved experiments. Physical Chemistry Chemical Physics 2003, 5 (14), 2964-2969. 77.Huang, J.; Wu, Y.; Fu, H.; Zhan, X.; Yao, J.; Barlow, S.; Marder, S. R., Photoinduced Intramolecular Electron Transfer in Conjugated Perylene Bisimide-Dithienothiophene Systems: A Comparative Study of a Small Molecule and a Polymer. The Journal of Physical Chemistry A 2009, 113 (17), 5039-5046. 78.Scheblykin, I. G.; Yartsev, A.; Pullerits, T.; Gulbinas, V.; Sundström, V., Excited State and Charge Photogeneration Dynamics in Conjugated Polymers. The Journal of Physical Chemistry B 2007, 111 (23), 6303-6321. 79.Wakerley, D.; Lamaison, S.; Ozanam, F.; Menguy, N.; Mercier, D.; Marcus, P.; Fontecave, M.; Mougel, V., Bio-inspired hydrophobicity promotes CO2 reduction on a Cu surface. Nature Materials 2019, 18 (11), 1222-1227. 80.Teramura, K.; Hori, K.; Terao, Y.; Huang, Z.; Iguchi, S.; Wang, Z.; Asakura, H.; Hosokawa, S.; Tanaka, T., Which is an Intermediate Species for Photocatalytic Conversion of CO2 by H2O as the Electron Donor: CO2 Molecule, Carbonic Acid, Bicarbonate, or Carbonate Ions? The Journal of Physical Chemistry C 2017, 121 (16), 8711-8721.
|