跳到主要內容

臺灣博碩士論文加值系統

(44.222.64.76) 您好!臺灣時間:2024/06/17 09:29
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃巧菱
研究生(外文):Chiao-Ling Huang
論文名稱:新型含多苯胺功能性高分子之設計、合成與其電致變色性質探討
論文名稱(外文):Design, Synthesis and Electrochromic Properties of Novel Multi-Arylamine Based Functional Polymers
指導教授:劉貴生
指導教授(外文):Guey-Sheng Liou
口試委員:蕭勝輝龔宇睿張嘉文
口試委員(外文):Sheng-Huei HsiaoYu-Ruei KungCha-Wen Chang
口試日期:2020-07-01
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:高分子科學與工程學研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:英文
論文頁數:158
中文關鍵詞:電致變色三苯胺二甲胺基聚(醚碸)聚酯
外文關鍵詞:electrochromismtriphenylaminedimethylamino grouppoly(ether sulfone)spolyester
DOI:10.6342/NTU202001507
相關次數:
  • 被引用被引用:0
  • 點閱點閱:118
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文分為四個章節,第一章為總體序論,簡述電致變色現象及常見的材料與其應用及發展。第二章將二甲胺基引入以三苯胺為基底的電致變色材料中,所設計之三苯胺衍生物不僅擁有四段變色的特性,且因推電子基團的存在,其所需的氧化電壓相較低。利用能斯特方程式深入探討所合成之小分子NTPPA-2Si 及 NTPB-2Si的氧化行為,而相對應的高分子材料-聚(醚碸)可由甲矽烷基縮聚成功製備。所得之新高熱穩定性高分子薄膜材料NTPPA-PES 及 NTPB-PES具備良好的加工性及電致變色性質,於透明態具有高度透明性外,顯示多段顏色變化並且能夠回至基態的行為。第三章利用第二章的單體進行去保護,藉由介面聚合法成功合成新聚酯材料,NTPPA-PET 及 NTPB-PET,此材料因結構中脂肪烴長鏈的引入,具有良好的加工性及透明性。第四章為結論,此研究所開發合成之新材料在未來應用上具有潛力。
This study has been separated into four chapters. Chapter 1 is the general introduction of electrochromism including its commonly used materials and applications. In chapter 2, dimethylamino group has been introduced into TPA-based electrochromic materials. The designed TPA derivatives not only show four states of color change but also possess lower working potential due to the presence of dimethylamine as electron donating group. Nernst equation is used to discuss the oxidation behavior of small molecules, NTPPA-2Si and NTPB-2Si. On the other hand, the corresponding polymer NTPPA-PES and NTPB-PES can be obtained by silyl polycondensation. The polymers can be cast into thin films with great thermostability, processability and electrochromic property. These films also show high transparency with multiple color change states and can return to the original transparent state with ease. In Chapter 3, with the deprotection of monomers in Chapter 2, novel polyesters, NTPPA-PET and NTPB-PET, are successfully prepared by interfacial polymerization. Owing to the incorporation of aliphatic structure, both polymers perform great processability and transparency. Finally, Chapter 4 is the total conclusion of the study.
TABLE OF CONTENTS

ACKNOWLEDGEMENTS i
ABSTRACT (in English) ii
ABSTRACT (in Chinese) iii
TABLE OF CONTENTS iv
LIST OF TABLES viii
LIST OF FIGURES ix
LIST OF SCHEMES xviii
CHAPTER 1 1
CHAPTER 2 52
CHAPTER 3 135
CHAPTER 4 154
APPENDIX 157
LIST OF PUBLICATIONS 158
1.J. R. Platt, J. Chem. Phys.1961, 34, 862-863.
2.P. Monk, R. Mortimer and D. Rosseinsky, Electrochromism and electrochromic devices, Cambridge University Press, 2007.
3.S. Deb, App. Opt. 1969, 8, 192-195.
4.B. W. Faughnan, RCA Rev. 1975, 36, 177-197.
5.H. Hersh, W. Kramer and J. McGee, Appl. Phy. Lett. 1975, 27, 646-648.
6.R. J. Colton, A. M. Guzman and J. W. Rabalais, J. Appl. Phy. 1978, 49, 409-416.
7.S. Mohapatra, J. Electrochem. Soc. 1978, 125, 284-288.
8.S. Gottesfeld and J. McIntyre, J. Electrochem. Soc. 1979, 126, 742-750.
9.V. D. Neff, J. Electrochem. Soc. 1978, 125, 886-887.
10.Y. Hara and S. Minomura, J. Chem. Phys. 1974, 61, 5339-5343.
11.G. Wertheim and A. Rosencwaig, J. Chem. Phys. 1971, 54, 3235-3237.
12.S. Deb, Philos. Mag. 1973, 27, 801-822.
13.Y. Wang, E. L. Runnerstrom and D. J. Milliron, Annu. Rev. Chem. Biomol. Eng. 2016, 7, 283-304.
14.M. Morita, J. Polym. Sci., Part B: Polym. Phys. 1994, 32, 231-242.
15.W. Dautremont-Smith, Displays. 1982, 3, 3-22.
16.N. R. de Tacconi, K. Rajeshwar and R. O. Lezna, Chem. Mater. 2003, 15, 3046-3062.
17.K. Bange and T. Gambke, Adv. Mater. 1990, 2, 10-16.
18.R. J. Mortimer, Electrochim. Acta. 1999, 44, 2971-2981.
19.R. J. Mortimer, A. L. Dyer and J. R. Reynolds, Displays. 2006, 27, 2-18.
20.L. Zheng, Y. Xu, D. Jin and Y. Xie, Chem. Mater. 2009, 21, 5681-5690.
21.C. Girotto, E. Voroshazi, D. Cheyns, P. Heremans and B. P. Rand, ACS Appl. Mater. Interfaces. 2011, 3, 3244-3247.
22.K.-C. Cheng, F.-R. Chen and J.-J. Kai, Sol. Energy Mater. Sol. Cells. 2006, 90, 1156-1165.
23.M. R. Scherer, L. Li, P. M. Cunha, O. A. Scherman and U. Steiner, Adv. Mater. 2012, 24, 1217-1221.
24.A. Ghicov, M. Yamamoto and P. Schmuki, Angew. Chem. Int. Ed. 2008, 47, 7934-7937.
25.S. Mujawar, A. Inamdar, C. Betty, V. Ganesan and P. Patil, Electrochim. Acta. 2007, 52, 4899-4906.
26.Y.-S. Nam, H. Park, A. P. Magyar, D.-S. Yun, T. S. Pollom and A. M. Belcher, Nanoscale. 2012, 4, 3405-3409.
27.R.-T. Wen, G. A. Niklasson and C. G. Granqvist, ACS Appl. Mater. Interfaces. 2015, 7, 9319-9322.
28.W. Lin, Q. Zhao, H. Sun, K.-Y. Zhang, H. Yang, Q. Yu, X. Zhou, S. Guo, S. Liu and W. Huang, Adv. Opt. Mater. 2015, 3, 368-375.
29.F. Lin, D. Nordlund, T.-C. Weng, R. G. Moore, D. T. Gillaspie, A. C. Dillon, R. M. Richards and C. Engtrakul, ACS Appl. Mater. Interfaces. 2013, 5, 301-309.
30.R.-T. Wen, C. G. Granqvist and G. A. Niklasson, Adv. Funct. Mater. 2015, 25, 3359-3370.
31.R.-T. Wen, C. G. Granqvist and G. A. Niklasson, ChemElectroChem. 2016, 3, 675-675.
32.C. G. Granqvist, Handbook of inorganic electrochromic materials, Elsevier, 1995.
33.P. R. Somani and S. Radhakrishnan, Mater. Chem. Phys. 2003, 77, 117-133.
34.G. Beni and J. Shay, Appl. Phys. Lett. 1978, 33, 567-568.
35.S. Gottesfeld, J. McIntyre, G. Beni and J. Shay, Appl. Phys. Lett. 1978, 33, 208-210.
36.P. Patil, R. Kawar and S. Sadale, Electrochim. Acta. 2005, 50, 2527-2532.
37.Y. Sato, K. Ono, T. Kobayashi, H. Wakabayashi and H. Yamanaka, J. Electrochem. Soc. 1987, 134, 570-575.
38.Y. Takasu, S. Onoue, K. Kameyama, Y. Murakami and K. Yahikozawa, Electrochim. Acta. 1994, 39, 1993-1997.
39.K. Yamanaka, Jpn. J. Appl. Phys. 1991, 30, 1285.
40.K. Yamanaka, Jpn. J. Appl. Phys. 1989, 28, 632.
41.S. Hackwood, A. Dayem and G. Beni, Phys. Rev. B. 1982, 26, 471.
42.M. Weil and W. D. Schubert, Newsletter. 2013.
43.S. H. Baeck, K. S. Choi, T. F. Jaramillo, G. D. Stucky and E. W. McFarland, Adv. Mater. 2003, 15, 1269-1273.
44.C.-P. Li, F. Lin, R. M. Richards, C. Engtrakul, R. C. Tenent and C. A. Wolden, Sol. Energy Mater. Sol. Cells. 2014, 121, 163-170.
45.S. Baeck, T. Jaramillo, G. Stucky and E. McFarland, Nano Lett. 2002, 2, 831-834.
46.A. J. Naik, M. E. Warwick, S. J. Moniz, C. S. Blackman, I. P. Parkin and R. Binions, J. Mater. Chem. A. 2013, 1, 1827-1833.
47.C. Delmas, H. Cognac-Auradou, J. Cocciantelli, M. Menetrier and J. Doumerc, Solid State Ionics. 1994, 69, 257-264.
48.Y. Wang and G. Cao, Chem. Mater. 2006, 18, 2787-2804.
49.W. Wang, H. Wang, S. Liu and J. Huang, J. Solid State Electrochem. 2012, 16, 2555-2561.
50.S. Jouanneau, A. L. G. La Salle, A. Verbaere and D. Guyomard, J. Electrochem.Soc. 2005, 152, A1660-A1667.
51.N.-S. Choi, J.-S. Kim, R.-Z. Yin and S.-S. Kim, Mater. Chem. Phys. 2009, 116, 603-606.
52.T. Chirayil, P. Y. Zavalij and M. S. Whittingham, Chem.Mater. 1998, 10, 2629-2640.
53.K. Zhu, X. Yan, Y. Zhang, Y. Wang, A. Su, X. Bie, D. Zhang, F. Du, C. Wang and G. Chen, ChemPlusChem. 2014, 79, 447-453.
54.S.-S. Kim, H. Ikuta and M. Wakihara, Solid State Ionics. 2001, 139, 57-65.
55.S. Denis, E. Baudrin, M. Touboul and J. M. Tarascon, J. Electrochem.Soc. 1997, 144, 4099-4109.
56.D. Guyomard, C. Sigala, A. d. G. La Salle and Y. Piffard, J. Power Sources. 1997, 68, 692-697.
57.B. J. Coe, J. A. Harris, B. S. Brunschwig, I. Asselberghs, K. Clays, J. Garín and J. Orduna, J. Am. Chem. Soc. 2005, 127, 13399-13410.
58.A. v. Braun and J. Tcherniac, Ber. Dtsch. Chem. Ges. 1907, 40, 2709-2714.
59.H. de Diesbach and E. von der Weid, Helv. Chim. Acta. 1927, 10, 886-888.
60.R. Linstead and A. Lowe, J. Chem. Soc. 1934, 1022-1027.
61.J. M. Robertson, J. Chem. Soc. 1935, 615-621.
62.P. Monk, Electrochromism: Fundamentals and applications, 1995.
63.G. Collins and D. Schiffrin, J. Electrochem. Soc. 1985, 132, 1835-1842.
64.N. L. Bill, O. Trukhina, J. L. Sessler and T. Torres, Chem. Commun. 2015, 51, 7781-7794.
65.P. M. Monk, R. J. Mortimer and D. R. Rosseinsky, Electrochromism: fundamentals and applications, John Wiley & Sons, 2008.
66.R. J. Mortimer, Chem. Soc. Rev. 1997, 26, 147-156.
67.J. Kerszulis, K. Johnson, M. Kuepfert, D. Khoshabo, A. Dyer and J. Reynolds, J. Mater. Chem.C, 2015, 3, 3211-3218.
68.J. A. Kerszulis, C. M. Amb, A. L. Dyer and J. R. Reynolds, Macromolecules. 2014, 47, 5462-5469.
69.C. M. Amb, A. L. Dyer and J. R. Reynolds, Chem. Mater. 2010, 23, 397-415.
70.M.-Y. Chou, M.-k. Leung, Y. O. Su, C. L. Chiang, C.-C. Lin, J.-H. Liu, C.-K. Kuo and C.-Y. Mou, Chem. Mater. 2004, 16, 654-661.
71.L. Otero, L. Sereno, F. Fungo, Y.-L. Liao, C.-Y. Lin and K.-T. Wong, Chem. Mater. 2006, 18, 3495-3502.
72.J. Natera, L. Otero, L. Sereno, F. Fungo, N.-S. Wang, Y.-M. Tsai, T.-Y. Hwu and K.-T. Wong, Macromolecules. 2007, 40, 4456-4463.
73.J. Natera, L. Otero, F. D’Eramo, L. Sereno, F. Fungo, N.-S. Wang, Y.-M. Tsai and K.-T. Wong, Macromolecules. 2009, 42, 626-635.
74.C.-H. Yang, F.-J. Liu, L.-R. Huang, T.-L. Wang, W.-C. Lin, M. Sato, C.-H. Chen and C.-C. Chang, J. Electroanal. Chem. 2008, 617, 101-110.
75.F. B. Koyuncu, S. Koyuncu and E. Ozdemir, Electrochim. Acta. 2010, 55, 4935-4941.
76.S. Beaupré, J. Dumas and M. Leclerc, Chem.Materials. 2006, 18, 4011-4018.
77.B. Lim, Y.-C. Nah, J.-T. Hwang, J. Ghim, D. Vak, J.-M. Yun and D.-Y. Kim, J. Materi. Chem. 2009, 19, 2380-2385.
78.S.-H. Cheng, S.-H. Hsiao, T.-H. Su and G.-S. Liou, Macromolecules. 2005, 38, 307-316.
79.C.-W. Chang and G.-S. Liou, J. Mater. Chem. 2008, 18, 5638-5646.
80.G.-S. Liou and H.-Y. Lin, Macromolecules. 2008, 42, 125-134.
81.Y.-W. Chuang, H.-J. Yen, J.-H. Wu and G.-S. Liou, ACS Appl. Mater. Interfaces. 2014, 6, 3594-3599.
82.H.-J. Yen, H.-Y. Lin and G.-S. Liou, Chem. Mater. 2011, 23, 1874-1882.
83.H.-J. Yen and G.-S. Liou, Chem. Mater. 2009, 21, 4062-4070.
84.H.-J. Yen, K.-Y. Lin and G.-S. Liou, J. Mater. Chem. 2011, 21, 6230-6237.
85.C.-W. Chang, G.-S. Liou and S.-H. Hsiao, J. Mater. Chem. 2007, 17, 1007-1015.
86.H.-J. Yen, C.-J. Chen and G.-S. Liou, Adv. Funct. Mater. 2013, 23, 5307-5316.
87.L.-C. Lin, H.-J. Yen, Y.-R. Kung, C.-M. Leu, T.-M. Lee and G.-S. Liou, J. Mater. Chem. C. 2014, 2, 7796-7803.
88.N. M. Rowley and R. J. Mortimer, Sci. progress. 2002, 85, 243-262.
89.R. J. Mortimer, D. R. Rosseinsky and P. M. Monk, Electrochromic materials and devices, John Wiley & Sons, 2015.
90.L.-C. Cao, M. Mou and Y. Wang, J. Mater. Chem. 2009, 19, 3412-3418.
91.L. Cen, K. Neoh and E.-T. Kang, Adv. Mater. 2005, 17, 1656-1661.
92.F. B. Koyuncu, Electrochim. Acta. 2012, 68, 184-191.
93.E. Sefer and F. B. Koyuncu, Electrochim. Acta. 2014, 143, 106-113.
94.G.-S. Liou, S.-H. Hsiao, N.-K. Huang and Y.-L. Yang, Macromolecules. 2006, 39, 5337-5346.
95.G.-S. Liou, S.-H. Hsiao and T.-H. Su, J. Mater. Chem. 2005, 15, 1812-1820.
96.G.-S. Liou, H.-W. Chen and H.-J. Yen, J. Polym. Sci. A Polym. Chem. 2006, 44, 4108-4121.
97.G.-S. Liou, S.-H. Hsiao and H.-W. Chen, J. Mater. Chem. 2006, 16, 1831-1842.
98.G.-S. Liou, Y.-L. Yang and Y.-O. Su, J. Polym. Sci. A Polym. Chem. 2006, 44, 2587-2603.
99.G.-S. Liou, C.-W. Chang, H.-M. Huang and S.-H. Hsiao, J. Polym. Sci. A Polym. Chem. 2007, 45, 2004-2014.
100.G.-S. Liou, H.-J. Yen and M.-C. Chiang, J. Polym. Sci. A Polym. Chem. 2009, 47, 5378-5385.
101.H.-J. Yen, K.-Y. Lin and G.-S. Liou, J. Polym. Sci. A Polym. Chem. 2012, 50, 61-69.
102.H.-M. Wang and S.-H. Hsiao, J. Mater. Chem. C. 2014, 2, 1553-1564.
103.Y.-C. Kung and S.-H. Hsiao, J. Polym. Sci. A Polym. Chem. 2011, 49, 4830-4840.
104.Y.-C. Kung and S.-H. Hsiao, J. Mater. Chem. 2011, 21, 1746-1754.
105.L.-T. Huang, H.-J. Yen and G.-S. Liou, Macromolecules. 2011, 44, 9595-9610.
106.S.-H. Hsiao and J.-Y. Lin, J. Polym. Sci. A Polym. Chem. 2016, 54, 644-655.
107.S.-H. Hsiao and S.-L. Cheng, Polym. Int. 2015, 64, 811-820.
108.D.-C. Huang, J.-T. Wu, Y.-Z. Fan and G.-S. Liou, J. Mater. Chem. C. 2017, 5, 9370-9375.
109. https://www.sageglass.com/en
110. https://www.ausbt.com.au/light-fantastic-boeing-787-dreamliner-s-digital-window-tinting
111. http://www.gentex.com/automotive/products/driver-safety
112. http://degrees-180.blogspot.tw/2007/05/siemens-electrochromic-display.html
113. https://www.wired.com/2005/12/e-papers-killer-app-packaging/
1.J. R. Platt, J. Chem. Phys. 1961, 34, 862-863.
2.S. K. Deb, Appl. Opt. 1969, 8, 192-195.
3.H. N. Hersh, W. E. Kramer, J. H. McGee, Appl. Phys. Lett. 1975, 27, 646-648.
4.R. J. Colton, A. M. Guzman, J. W. Rabalais, J. Appl. Phys. 1978, 49, 409-416.
5.S. Gottesfeld, J. Electrochem. Soc. 1979, 126, 742.
6.N. R. de Tacconi, K. Rajeshwar, R. O. Lezna, Chem. Mater. 2003, 15, 3046-3062.
7.A. Ghicov, M. Yamamoto, P. Schmuki, Angew. Chem. Int. Ed. 2008, 47, 7934-7937.
8.D. Qiu, H. Ji, X. Zhang, H. Zhang, H. Cao, G. Chen, T. Tian, Z. Chen, X. Guo, L. Liang, J. Gao, F. Zhuge, Inorg. Chem. 2019, 58, 2089-2098.
9.R. J. Mortimer, Chem. Soc. Rev. 1997, 26, 147-156.
10.N. L. Bill, O. Trukhina, J. L. Sessler, T. Torres, Chem. Commun. 2015, 51, 7781-7794.
11.N. M. Rowley, R. J. Mortimer, Sci. Prog. 2002, 85, 243-262.
12.C. L. Bird, Chem. Soc. Rev. 1981, 10, 49-82.
13.K. Madasamy, D. Velayutham, V. Suryanarayanan, M. Kathiresan, K.-C. Ho, J. Mater. Chem. C. 2019, 7, 4622-4637.
14.C. M. Amb, A. L. Dyer, J. R. Reynolds, Chem. Mater. 2011, 23, 397-415.
15.J. A. Kerszulis, C. M. Amb, A. L. Dyer, J. R. Reynolds, Macromolecules. 2014, 47, 5462-5469.
16.A. M. Österholm, D. E. Shen, J. A. Kerszulis, R. H. Bulloch, M. Kuepfert, A. L. Dyer, J. R. Reynolds, ACS Appl. Mater. Interfaces. 2015, 7, 1413-1421.
17.C. G. Granqvist, M. A. Arvizu, İ. B. Pehlivan, H. Y. Qu, R. T. Wen, G. A. Niklasson, Electrochim. Acta. 2018, 259, 1170-1182.
18.S. Beaupré, A.-C. Breton, J. Dumas, M. Leclerc, Chem. Mater. 2009, 21, 1504-1513.
19.J. Kim, M. Rémond, D. Kim, H. Jang, E. Kim, Adv. Mater. Technol. 2020, 1900890.
20.L. Otero, L. Sereno, F. Fungo, Y.-L. Liao, C.-Y. Lin, K.-T. Wong, Chem. Mater. 2006, 18, 3495-3502.
21.J. Natera, L. Otero, L. Sereno, F. Fungo, N.-S. Wang, Y.-M. Tsai, T.-Y. Hwu, K.-T. Wong, Macromolecules. 2007, 4456-4463.
22.Z. Ning, H. Tian, Chem. Commun. 2009, 37, 5483-5495.
23.M. h. Chahma, J. B. Gilroy, R. G. Hicks, J. Mater. Chem. 2007, 17, 4768-4771.
24.S.-H. Cheng, S.-H. Hsiao, T.-H. Su, G.-S. Liou, Macromolecules. 2005, 38, 307-316.
25.C.-W. Chang, G.-S. Liou, J. Mater. Chem. 2008, 18, 5638-5646.
26.P. Blanchard, C. Malacrida, C. Cabanetos, J. Roncali, S. Ludwigs, Polym. Int. 2019, 68, 589-606.
27.Y. Dai, W. Li, Z. Chen, X. Zhu, J. Liu, R. Zhao, D. S. Wright, A. Noori, M. F. Mousavi, C. Zhang, J. Mater. Chem. A. 2019, 7, 16397-16405.
28.J. Zeng, H. Li, Z. Wan, L. Ai, P. Liu, W. Deng, Sol. Energy Mater. Sol. Cells. 2019, 195, 89-98.
29.H.-J. Yen, G.-S. Liou, Prog. Polym. Sci. 2019, 89, 250-287.
30.H.-J. Yen, H.-Y. Lin, G.-S. Liou, Chem. Mater. 2011, 23, 1874-1882.
31.L.-C. Lin, H.-J. Yen, Y.-R. Kung, C.-M. Leu, T.-M. Lee, G.-S. Liou, J. Mater. Chem. C. 2014, 2, 7796-7803.
32.J.-T. Wu, T.-L. Hsiang, G.-S. Liou, J. Mater. Chem. C. 2018, 6, 13345-13351.
33.N. Leventis, J. Electrochem. Soc. 1998, 145, L55.
34.K.-C. Ho, Y.-W. Fang, Y.-C. Hsu, L.-C. Chen, Solid State Ionics. 2003, 165, 279-287.
35.D. Weng, Y. Shi, J. Zheng, C. Xu, Org. Electron. 2016, 34, 139-145.
36.S.-H. Hsiao, G.-S. Liou, Y.-C. Kung, H.-J. Yen, Macromolecules. 2008, 41, 2800-2808.
37.J.-T. Wu, H.-T. Lin, G.-S. Liou, ACS Appl. Mater. Interfaces. 2019, 11, 14902-14908.
38.L.-T. Huang, H.-J. Yen, J.-H. Wu, G.-S. Liou, Org. Electron. 2012, 13, 840-849.
39.H.-S. Liu, B.-C. Pan, D.-C. Huang, Y.-R. Kung, C.-M. Leu, G.-S. Liou, NPG Asia Mater. 2017, 9, e388-e388.
40.N. Sun, K. Su, Z. Zhou, X. Tian, Z. Jianhua, D. Chao, D. Wang, F. Lissel, X. Zhao, C. Chen, Macromolecules. 2019, 52, 5131-5139.
41.H.-J. Yen, C.-J. Chen, G.-S. Liou, Adv. Funct. Mater. 2013, 23, 5307-5316.
42.H.-J. Yen, J.-H. Wu, Y.-H. Huang, W.-C. Wang, K.-R. Lee, G.-S. Liou, Polym. Chem. 2014, 5, 4219-4226.
43.L.-C. Lin, H.-J. Yen, C.-J. Chen, C.-L. Tsai, G.-S. Liou, Chem. Commun. 2014, 50, 13917-13920.
44.Y.-W. Chuang, H.-J. Yen, G.-S. Liou, Chem. Commun. 2013, 49, 9812-9814.
45.Y.-W. Chuang, H.-J. Yen, J.-H. Wu, G.-S. Liou, ACS Appl. Mater. Interfaces. 2014, 6, 3594-3599.
46.M. A. Hickner, H. Ghassemi, Y. S. Kim, B. R. Einsla, J. E. McGrath, Chem. Rev. 2004, 104, 4587-4612.
47.F. Li, J. Wang, M. Zhou, X. Liu, C. Wang, D. Chao, Chem. Res. Chin. Univ. 2015, 31, 1066-1071.
48.H. R. Kricheldorf, K. Bornhorst, J. Polym. Sci., Part A: Polym. Chem. 2008, 46, 3732-3739.
49.J.-T. Wu, Y.-Z. Fan, G.-S. Liou, Polym. Chem. 2019, 10, 345-350.
50.J. T. W. Kan, P. Toy, Tetrahedron Lett. 2004, 45, 6357-6359.
51.H. R. Kricheldorf, G. Bier, J. Polym. Sci. Polym. Chem. Ed. 1983, 21, 2283-2289.
52.M. B. Robin, P. Day, Adv. Inorg. Chem. Radiochem. 1968, 247-422.
53.A. J. Bard, L. R. Faulkner, Electrochem. Methods. 2001, 2, 580-632.
54.E. T. Seo, R. F. Nelson, J. M. Fritsch, L. S. Marcoux, D. W. Leedy, R. N. Adams, J. Am. Chem. Soc. 1966, 88, 3498-3503.
55.R. R. Nelson, R. N. Adams, J. Am. Chem. Soc. 1968, 90, 3925-3930.
56.H.-J. Yen, S.-M. Guo, G.-S. Liou, J.-C. Chung, Y.-C. Liu, Y.-F. Lu, Y.-Z. Zeng, J. Polym. Sci. Part A: Polym. Chem. 2011, 49, 3805-3816.
57.L.-T. Huang, H.-J. Yen, G.-S. Liou, Macromolecules. 2011, 44, 9595-9610.
58.S.-H. Hsiao, Y.-H. Hsiao, Y.-R. Kung, C.-M. Leu, T.-M. Lee, React. Funct. Polym. 2016, 108, 54-62.
1.L. A. Pothan, Z. Oommen and S. Thomas, Compos. Sci. Technol. 2003, 63, 283-293.
2.S. Mishra, A. Mohanty, L. Drzal, M. Misra, S. Parija, S. Nayak and S. Tripathy, Compos. Sci. Technol. 2003, 63, 1377-1385.
3.C.-J. Chen, Y.-C. Hu and G.-S. Liou, Chemi. Commun. 2013, 49, 2536-2538.
4.G.-S. Liou, M.-A. Kakimoto and Y. Imai, Polym. J. 1994, 26, 722.
5.G.-S. Liou, M.-A. Kakimoto and Y. Imai, J. Polym. Sci., Part A: Polym. Chem. 1994, 32, 587-590.
6.S. G. Sanadhya, S. Oswal and K. C. Parmar, J. Chem. Pharm. Res. 2014, 6, 705-714.
7.H. R. Kricheldorf and G. Schwarz, Polym. Bull. 1979, 1, 383-388.
8.E. Lallana and N. Tirelli, Macromol. Chem. and Phys. 2013, 214, 143-158.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 具有高對比、多顏色及低驅動電壓之新型高穩定電致變色聚醯胺材料
2. 合成新型含三苯胺結構之聚醯胺及其性質研究
3. 含有二苯基芘基胺結構的電致變色聚合物薄膜之電化學合成及其光電性質
4. 具多顏色與高穩定電致變色之新型含多三苯胺之聚醯胺
5. 含雙咔唑取代基團之三苯胺及N-苯基咔唑衍生物的電聚合高分子薄膜之製備及其光電特性
6. 含三苯胺結構之新型聚醯胺及聚醯亞胺之合成與性質研究
7. 合成新型含三苯胺及雜環結構之聚醯胺與聚酯及其性質研究
8. 具有芳香氧取代基之三苯胺結構之芳香族聚醯胺及聚醯亞胺之合成與光電性質研究
9. 取代基和連接基對於三苯胺衍生物的電化學及光學性質之影響
10. 具三芳香胺結構之電致變色共軛高分子的電化學合成與光電性質研究
11. 主鏈含三蝶烯或六氟異亞丙基結構之三苯胺聚醚醯亞胺之合成與電致變色性質
12. 高性能電致變色材料的設計與合成及製備電化學安定之奈米銀線電極
13. 含10,11-二氫化-5H-二苯[b,f]氮呯結構之聚(芳香胺-醯亞胺)與聚(芳香胺-醯胺)的電化學合成與電致變色性質之研究
14. 具多個三苯胺或N-苯基咔唑封端基的雙(三苯胺)所衍生的高度交聯聚芳香胺之電化學合成及其電致變色性質
15. 新型具醚基連接雙三苯胺結構之 微孔聚合物網絡及超分歧高分子的合成 與光電性質研究
 
無相關期刊