跳到主要內容

臺灣博碩士論文加值系統

(44.210.85.190) 您好!臺灣時間:2022/12/10 13:20
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:羅鈺棋
研究生(外文):Yu-Chi Lo
論文名稱:深入探討運動型自行車之空氣動力行為
論文名稱(外文):Investigation into sport bicycles aerodynamics
指導教授:許文翰
口試委員:羅弘岳趙修武高仕超
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:工程科學及海洋工程學研究所
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:108
語文別:英文
論文頁數:105
中文關鍵詞:計算流體力學OpenFOAM球體三角翼艾哈邁德體運動自行車自行車空氣動力學
外文關鍵詞:Computational Fluid Dynamics (CFD)OpenFOAMSpheredelta wingAhmed bodySport bicycleCycling aerodynamics
DOI:10.6342/NTU201904301
相關次數:
  • 被引用被引用:0
  • 點閱點閱:87
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究透過CFD分析工具深入探討運動自行車的空氣動力學,所使用的方法是基於有限體積法的CFD開源工具OpenFOAM來進行數值模擬。為了瞭解單一自行車者在迎風條件下騎乘時,探討不同類型的空氣動力套件對阻力面積的影響。採用的空氣動力套件包含不同形式的輪組、整流罩以及車架,並比較了九種運動自行車幾何配置與減阻百分比的關係。此外,選擇球體、 $65^{circ}$三角翼和$25^{circ}$艾哈邁德體三個基準問題,在與實驗相同的條件安排下進行特徵流場的驗證。當前模擬中的實體模型使用SolidWorks建立,網格由Pointwise和snappyHexMesh所生成。為建立一個有效率且具備一定準確性的穩態計算模型,選擇求解三維雷諾平均納維爾-斯托克斯方程,並採用傳統的SST $k$ - $omega$紊流模型和SIMPLEC算法。基準問題的數值結果與現有的實驗數據具有良好的一致性。自行車的模擬結果表明在適當的配置下,所考慮的三種形式空力套件都能有效地減少阻力,其中尾錐形式的整流罩給予了將近15\%的減阻百分比。最後,本研究統整出騎乘自行車時,人體後方主要渦流結構的成因及其對阻力的影響,並以視覺化的方式呈現,藉此幫助人們更清楚地了解自行車運動的空氣動力行為。
In the present study, the aerodynamic details of sport bicycles were explored by conducting CFD analysis. The numerical simulations were performed based on the finite-volume method by using the CFD open-source package OpenFOAM. To understand how different types of aerodynamic kits affect the drag area ($c_{mathrm {d}}A$) when a single cyclist is riding in windward conditions. The relationship between the geometry of nine sport bikes and the percentage of the drag reduction is compared. The aerodynamic kits under consideration used include different types of wheel sets, fairings, and frames. Also, benchmark studies on a sphere, the $65^{circ}$ delta wing, and the $25^{circ}$ Ahmed body have been carried out under the same arrangement of experiments. The solid models in this study are built using SolidWorks, and the meshes are generated by Pointwise and snappyHexMesh. In order to establish an efficient and accurate steady-state calculation model, we choose to solve the three dimensional Reynolds averaged Navier-Stokes equations. A conventional SST $k$ - $omega$ turbulence model and SIMPLEC solution algorithm were adopted. The numerical results of the benchmark studies were all found to have good agreements with the existing experimental data. The bicycle simulation results show that these three forms of aerodynamic kits can effectively affect the drag area in proper geometric shapes; among the kits under investigation, the form of a tail cone fairing gives a nearly 15\% reduction in drag area. This study integrates the causes of the eddy currents and their effect on drag area when a cyclist cycling in a dropped position. Moreover, the main vortex structures behind the human body have been visualized for aiding us to understand the aerodynamic behavior of cycling more clearly.
摘要.............................................i
Abstract...........................................iii
Table of Contents......................................v
List of Figures........................................vii
List of Tables........................................xi
Chapter 1 Introduction...................................1
1.1 Market Survey. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2
1.2 Literature Survey. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6
1.2.1 Types of Investigation on Sport Bicycle. . . . . . . . . . . . . .6
1.2.2 Experimental Calibration on Sport Bicycle. . . . . . . . . . . . .11
1.2.3 Numerical Simulation on Sport Bicycle. . . . . . . . . . . . . . .12
1.3 Motivation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13
1.4 Objectives. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14
Chapter 2 Background...................................15
2.1 Computational Fluid Dynamics. . . . . . . . . . . . . . . . . . . . . . .15
2.1.1 Governing Equations. . . . . . . . . . . . . . . . . . . . . . . .16
2.2 OpenFOAM Simulator. . . . . . . . . . . . . . . . . . . . . . . . . . .18
2.2.1 Features and Capabilities. . . . . . . . . . . . . . . . . . . . . .18
2.2.2 Paradigm of OpenFOAM. . . . . . . . . . . . . . . . . . . . . .20
2.2.3 Pros and Cons. . . . . . . . . . . . . . . . . . . . . . . . . . . .21
Chapter 3 Numerical Model................................23
3.1 Pre-Processing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24
3.1.1 Model Generation. . . . . . . . . . . . . . . . . . . . . . . . . .24
3.1.2 Grid Generation. . . . . . . . . . . . . . . . . . . . . . . . . . .26
3.2 Flow Solver. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28
3.2.1 Boundary Conditions. . . . . . . . . . . . . . . . . . . . . . . .28
3.2.2 Temporal and Spatial Discretizations. . . . . . . . . . . . . . . .31
3.2.3 Linear Solvers and Solution Algorithm. . . . . . . . . . . . . . .33
3.2.4 Turbulence Model. . . . . . . . . . . . . . . . . . . . . . . . .35
3.2.5 Wall Function. . . . . . . . . . . . . . . . . . . . . . . . . . . .39
3.3 Post-Processing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41
Chapter 4 Benchmark Studies...............................45
4.1 Flow over a 3D Sphere. . . . . . . . . . . . . . . . . . . . . . . . . . .45
4.2 Flow over a Delta Wing. . . . . . . . . . . . . . . . . . . . . . . . . . .58
4.3 Flow over an Ahmed Body. . . . . . . . . . . . . . . . . . . . . . . . .67
Chapter 5 Numerical Results of Cycling Sport.......................77
5.1 Description of Bicycles under Investigation. . . . . . . . . . . . . . . .77
5.2 Problem Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . .78
5.3 Computational Details. . . . . . . . . . . . . . . . . . . . . . . . . . . .78
5.4 Results and Discussion. . . . . . . . . . . . . . . . . . . . . . . . . . .83
Chapter 6 Concluding Remarks...............................95
6.1 Conclusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .95
6.2 Future Works. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .97
Reference..........................................99
1.Lessing HE. The evidence against Leonardo’s bicycle. in Cycle History 8:pp. 49–561998.
2.The Leonardo da Vinci Bicycle Hoax.http://www:cyclepublishing:com/history/leonardodavincibicycle:html. Accessed September 18, 2019.
3.Berto FJ. Bicycle.https://www:britannica:com/technology/bicycle. AccessedSeptember 18, 2019.
4.Wilson DG. BICYCLING SCIENCE. The MIT Pressthird edit ed. 2004.
5.Hadland T, Lessing HE. Bicycle Design: An Illustrated History. The MIT Press 2014.
6.Karl Drais’ Dandy Horse.https://www:deutsches-museum:de/en/collections/transport/road-transport/bicycles/karl-drais-dandy-horse/. Accessed Septem-ber 18, 2019.
7.A Bone Shaker Bicycle.https://www:magnoliabox:com/products/a-bone-shaker-bicycle-hu010143. Accessed September 18, 2019.
8.Rudder D. The penny farthing bicycle.https://maas:museum/inside- the-collection/2012/09/19/the-penny-farthing-bicycle/. Accessed September 18,2019.
9.Katie Fogel , Smith M. 25 of the Most Influential Bicycles of All Time.https://www:bicycling:com/news/a20006634/25-of-the-most-influential-bicycles-of-all-time/. Accessed September 18, 2019.
10.French Cycling Federation.https : / / en:wikipedia:org / wiki /French_Cycling_Federation. Accessed September 18, 2019.
11.Frank Condron . I Olympiad: Athens 1896. Warwick Press Inc 2015.
12.History.https://www:uci:org/inside-uci/history. Accessed September 18, 2019.
13.S-Works Shiv TT Disc.https://www:specialized:com/us/en/s-works-shiv-tt-disc/p/171304?color=271716-171304. Accessed September 18, 2019.
14.Firecrest – A better wheel in every way.https://www:zipp:com/technologies/aerodynamics/firecrest. Accessed September 18, 2019.
15.About Zzipper Designs.https://www:zzipper:com/about:php. Accessed Septem-ber 18, 2019.
16.Counterfeit product information.https://www:zipp:com/support/counterfeit. Ac-cessed September 18, 2019.
17.Upright Bikes.https://www:zzipper:com/Products/prod_upright:php. AccessedSeptember 18, 2019.
18.Gross AC, Kyle CR, Malewicki DJ. The Aerodynamics of Human-powered LandVehicles. 1983.
19.Aerohead mips.https : / / www:giro:com / p / aerohead - mips - road - bike -helmet#pid=7074561. Accessed September 18, 2019.
20.Speedwear concept TT suit.https://www:bioracer:com/en/collection/66043/speedwear-concept-tt-suit. Accessed September 18, 2019.
21.PROPEL空氣力學公路競賽用車.https://www:giantcyclingworld:com/bike_brand:php?id=20032655. Accessed September 18, 2019.
22.REACTO (銳克多)空氣動力型.https://www:merida:tw/reacto:htm. AccessedSeptember 18, 2019.
23.S-SERIES.https://www:cervelo:com/en/s-series. Accessed September 18, 2019.
24.McFarland M. Electric bicycles emerge as a hot trend in the U.S..https://money:cnn:com/2018/01/17/technology/ebikes-electric-bikes/index:html2018.
25.Rectors T, General TS, Editor E, Science C. Sports Aerodynamics . 2008.
26.Simmons A. Pour me a draft.https://wattmatters:blog/home/2013/02/pour-me-draft:html. Accessed September 18, 2019.
27.Schmitz A. Human Power: The Forgotten Energy. Hadland Books 2000.
28.Parc des Princes, bicyclette Bunau-Varilla.https://gallica:bnf:fr/ark:/12148/btv1b6928192g/. Accessed September 18, 2019.
29.Ailes L. Marcel Berthet dans le Vélodyne de Marcel Riffard, en 1933.https://commons:wikimedia:org/wiki/File:Marcel_Berthet_dans_le_V%C3%A9lodyne_de_Marcel_Riffard;_en_1933:jpg. Accessed September 18, 2019.
30.Tim . Velocar by Charles Mochet.http://velo-citta:blogspot:com/2014/02/1947-velocar-by-charles-mochet:html2014. Accessed September 18, 2019.
31.Zzipper road fairings.https://www:zzipper:com/index:php. Accessed September18, 2019.
32.Equipment.https : / / www:uci:org / inside - uci / constitutions - regulations /equipment. Accessed September 18, 2019.
33.Blocken B, Defraeye T, Koninckx E, Carmeliet J, Hespel P. CFD simulations of theaerodynamic drag of two drafting cyclists. Computers and Fluids. 2013;71:435–445.
34.Blocken B, Toparlar Y. Journal of Wind Engineering A following car in fl uencescyclist drag : CFD simulations and wind tunnel measurements. 2015;145:178–186.
35.Blocken B, Toparlar Y, Andrianne T. Journal of Wind Engineering Aerodynamic benefi t for a cyclist by a following motorcycle. 2016;155:1–10.
36.Blocken B, Druenen TV, Toparlar Y, et al. Journal of Wind Engineering IndustrialAerodynamics Aerodynamic drag in cycling pelotons : New insights by CFD simula-tion and wind tunnel testing. Journal of Wind Engineering Industrial Aerodynamics.2018;179(May):319–337.
37.Pontefract D. The Organization as a Cycling Peloton.https : / /www:danpontefract:com/the-organization-as-a-cycling-peloton/2013. Ac-cessed September 18, 2019.
38.Defraeye T, Blocken B, Koninckx E, Hespel P, Carmeliet J. Aerodynamic study ofdifferent cyclist positions : CFD analysis and full-scale wind-tunnel tests. Journal ofBiomechanics. 2010;43(7):1262–1268.
39.Crouch TN, Burton D, Brown NAT, Thompson MC, Sheridan J. Flow topology inthe wake of a cyclist and its effect on aerodynamic drag. Journal of Fluid Mechanics.2014;748:5–35.
40.Crouch TN, Burton D, LaBry ZA, Blair KB. Riding against the wind: a review ofcompetition cycling aerodynamics. Sports Engineering. 2017;20(2):81–110.
41.Defraeye T, Blocken B, Koninckx E, et al. Cyclist drag in team pursuit: Influenceof cyclist sequence, stature, and arm spacing. Journal of Biomechanical Engineering.2014;136(1):1–9.
42.Beaumont F, Taiar R, Polidori G, Trenchard H, Grappe F. Aerodynamic study oftime-trial helmets in cycling racing using CFD analysis. Journal of Biomechanics.2018;67:1–8.
43.Why Jens Voigt and a new group of cyclists want to break the Hour record.https://www:theguardian:com/sport/100-tours-100-tales/2014/sep/19/why-jens-voigt-and-a-new-group-of-cyclists-want-to-break-the-hour-record2014. Ac-cessed September 18, 2019.
44.Why exactly did Boardman manage a further distance than Wiggins?.https://bicycles:stackexchange:com/questions/31187/why-exactly-did-boardman-manage-a-further-distance-than-wiggins2015. Accessed September 18, 2019.
45.Chen G, Xiong Q, Morris PJ, Paterson EG, Sergeev A, Wang YC. OpenFOAMfor Computational Fluid Dynamics. Notices of the American Mathematical Society.2014;61(4):354.
46.OpenFOAM History.https://en:wikipedia:org/wiki/OpenFOAM. AccessedSeptember 18, 2019.
47.Greenshields CJ. OpenFOAM. No. July 2017.
48.Akrem . Bike Aerodynamics Analysis with CFD.https://www:simscale:com/projects/Akrem/bike_aerodynamics_1/2017. Accessed September 18, 2019.
49.Ferziger JH, Peric M, Street RL. Computational Methods for Fluid Dynamics. third,rev. Springer. 2020.
50.Raithby. JVD, G.D. . Enhancements of the SIMPLE Method for Predicting Incom-pressible Fluid Flows. Numerical Heat Transfer. 1984;7(2).
51.Guerrero J. Tips and tricks in OpenFOAM. Tech. Rep.
52.B.Pope S. Turbulent Flows. Cambridge University Press 2000.
53.Frei W. Which Turbulence Model Should I Choose for My CFD Application?.https://www:comsol:com/blogs/which-turbulence-model-should-choose-cfd-application/2017.
54.Menter FR. Two-Equation Eddy-Viscosity Turbulence Models for Engineering Ap-plications. AIAA Journal. 1994;32(2):1598–1605.
55.Tongchitpakdee, C., Benjanirat, S., and Sankar L. Numerical simulation of the aero-dynamics of horizontal axis wind turbines under yawed flow conditions. Journal ofsolar energy engineering. 2005;127(4):464.
56.Aokomoriuta . Law of the wall (English).https://commons:wikimedia:org/wiki/File:Law_of_the_wall_(English):svg2011. Accessed September 18, 2019.
57.White FM. The Flat-Plate Boundary Layer. in Fluid Mechanicsch. 7 Flow Pas,:467McGraw-Hill8 ed. 2015.
58.Batchelor G. An Introduction to Fluid Dynamics. Cambridge University Press 1967.
59.Holmen V. Methods for Vortex Identi cation. Tech. Rep. 2012.
60.Cabral, Brian; Leedom LC. Imaging Vector Fields Using Line Integral Convolution.in Proceedings of the 20th annual conference on Computer graphics and interactivetechniques. SIGGRAPH(Anaheim, California):263–270 1993.
61.Achenbach E. Experiments on the flow past spheres at very high Reynolds numbers.1972;54:565–575.
62.Constantinescu, George S; Squires KD. LES AND DES INVESTIGATIONS OFTURBULENT FLOW OVER A SPHERE. AIAA Journal. 2000;7.
63.Robertson E, Choudhury V, Bhushan S, Walters DK. Validation of OpenFOAM nu-merical methods and turbulence models for incompressible bluff body flows. Com-puters and Fluids. 2015;123:122–145.
64.張涵信,劉偉,謝昱飛,葉友達.后掠三角翼的搖滾及其動態演化問題. ACTAAERODYNAMICA SINICA. 2006;24(1).
65.Ninja H2.http://www:tw-kawasaki:com/moto_page:php?id=10. AccessedSeptember 18, 2019.
66.Chu J, Luckring JM. Experimental Surface Pressure Data Obtained on 65 deg DeltaWing Across Reynolds Number and Mach Number Ranges. NASA Technical Mem-orandum 4645. 1996;3.
67.Konrath R, Klein C, Schroder A. PSP and PIV investigations on the VFE-2 configura-tion in sub- and transonic flow. Aerospace Science and Technology. 2013;24(1):22–31.
68.S.R. Ahmed GR, G.Faltin . Some Salient Features Of The Time-Averaged GroundVehicle Wake. SAE. 1984.
69.Serre E, Minguez M, Pasquetti R, et al. On simulating the turbulent flow around theAhmed body: A French-German collaborative evaluation of LES and DES. Comput-ers and Fluids. 2013;78:10–23.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top