跳到主要內容

臺灣博碩士論文加值系統

(44.200.122.214) 您好!臺灣時間:2024/10/07 12:10
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:翁凡
研究生(外文):Fan Weng
論文名稱:使用經平行化後的PNP-NS數學與數值模型模擬細胞膜上多離子通道之傳輸行為
論文名稱(外文):Simulation of Transport Phenomena in Multiple Ions Channels on Cell Membrane with Parallelized PNP-NS Mathematical and Numerical Models
指導教授:許文翰
指導教授(外文):Wen-Hann Sheu
口試委員:蔡順峰高仕超馬克沁
口試委員(外文):Shun-Feng TsaiShih-Chao KaoMaxim Soluvchuk
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:工程科學及海洋工程學研究所
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:108
語文別:英文
論文頁數:70
中文關鍵詞:平行化Poisson-Nernst-Planck方程組Navier-Stokes方程組週期性邊界條件仿離子通道
外文關鍵詞:ParallelizationPNPNSPeriodic boundary conditionImitation ion channels
DOI:10.6342/NTU201904404
相關次數:
  • 被引用被引用:0
  • 點閱點閱:142
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文改善及平行化一有限差分的高階數值方法來求解非正交座標複雜外型的PNP-NS方程組,此方程組包含了描述外加電場電位勢的Laplace方程、描述壁面電位勢的Poisson方程、描述離子濃度分布的Nernst-Planck方程以及由庫倫力驅動的不可壓縮Navier-Stokes方程組。論文內容主要描述因電位差開啟的各種不同邊界外型離子通道,其內部流體經由通道留出至外部的物理行為,以及模擬完整細胞膜上多離子通道的傳輸行為。
Abstract
In this study, a high-order numerical method of finite difference is improved and parallelized to solve the PNP-NS equations of complex external shape with non-orthogonal coordinates. The equations under investigation includes the Laplace equation for potential of the applied electric field and the Poisson equation describing the potential of the wall potential. The Nernst-Planck equation describing the ion concentration distribution and the incompressible Navier-Stokes equations for the Coulomb force. The content of the paper mainly describes the various boundary-shaped ion channels opened by the potential difference, the physical behavior of the internal fluid leaving the channel through the channel, and the transmission behavior of the multi-ion channel on the intact cell membrane.
Table of Contents i
List of Figures v
中文摘要 vii
Abstract viii
Explanation of Symbols ix
Chapter 1. Introduction 1
1.1 Preface 1
1.2 Research motivation 2
1.3 Literature Review 4
1.4 Thesis outline 8
Chapter 2.Theoretical Background 9
2.1 Introduction to Cells and Cell Structure 9
2.2 Introduction of Cell membrane 11
2.3 Introduction of Transphospholipid bilayer transport 15
2.4 Introduction of Ion channels 16
2.5 Introduction of Action potential 17
Chapter 3.The Establishment of Mathematical Models 20
3.1 Basic assumptions 20
3.2 The governing equation 21
3.2.1 Laplace equation describing the potential of the applied electric field 21
3.2.2 Poisson equation describing wall electric potential 22
3.2.3 Nernst-Planck equation describing positive and negative ion distribution 23
3.2.4 Navier-Stokes equation for incompressible viscous flow 24
3.3 Coordinate Transformation Equation 25
Chapter 4.Numerical Model 29
4.1 Discrete Time 30
4.2 Discrete Space 31
4.3 Discreteness of the pressure equation 36
4.4 Numerical verification 38
4.5 Calculation procedures 40
4.6 Parallelization 42
Chapter 5.Numerical Simulation of Ion Channels 45
5.1 Description of the problem 45
5.1.1 Parameter setting 46
5.2 Flow field analysis of rectangular non-periodic boundary 46
5.2.1 Initial and boundary conditions of the calculation model 46
5.3 Flow field analysis of rectangular periodic boundary 50
5.3.1 Initial and boundary conditions of the calculation model 50
5.4 Flow field analysis of sector-shaped periodic boundary conditions 52
5.4.1 Initial and boundary conditions of the calculation model 53
5.5 Discussion 55
Chapter 6.Conclusion 64
6.1 Research results and discussion 64
6.2 Future work and outlook 66
References 67
[1] Prashanta Dutta and Ali Beskok, Analytical solution of combined electroosmotic/
pressure driven flows in two-dimensional straight channels:Finite Debye layer effects, Anal. Chem., Vol 73, pp. 1979-1986, 2001
[2] Zhang Yao, Wu Jiankang. and Chen Bo, A coordinate transformation method for
numerical solutions of the electric double layer and electroosmotic flows in a microchannel Int. J. for Numerical Methods in Fluids , Vol 68, pp. 671-685, 2012
[3] David C. Grahame, The Electrical Double layer and the Theory of Electrocapillary,
Chem. Rev., Vol. 44, pp. 441-501, 1947
[4] Neelesh A. Patankar and Howard H. Hu, Numerical Simulation of Electroosmotic
Flow, Anal. Chem., Vol. 70, pp. 1870-1881, 1998
[5] Shizhi Qian and Haim H. Bau, Theoretical investigation of electro-osmotic flows
and chaotic stirring in rectangular cavities, Applied Mathematical Modeling, Vol. 29, pp. 726-753, 2005
[6] R.-J. Yang, L.-M. Fu, and C.-C. Hwang, Electroosmotic Entry Flow in a Microchannel, Journal of Colloid and Interface Science , Vol 244, pp. 173-179, 2001
[7] W.B. Russel, D.A. Saville, and W.R. Schowalter, Colloidal dispersions, cambridge
monographs on mechanics and applied mathematics Cambridge University Press, cambridge, 1989.
[8] S. V. Patankar, Numerical Heat Transfer and Fuild Flow, Hemisphere, New York,
1980.
[9] Chun Yang, Dongqing Li, , Jacob H. Masliyah, Modeling forced liquid convection in rectangularmicrochannels with electrokinetic effects, Int. J. Heat and Mass Transfer
, Vol. 41, pp. 4229-4249, 1998
[10] Jahrul Alam, John C. Bowman, Energy-Conserving Simulation of Incompressible
Electro-Osmotic and Pressure-Driven Flow, Theoretical and computational Fluid
Dynamics, pp. 1-17, 2002.
[11] U. Ghia, K. N. Ghia, High Re Solutions for incompressible Flow Using the Navier-
Stokes Equation and a Multigrid Method, J. Comp. Physics, Vol. 48, pp. 387-411,
1982
[12] Ercan Erturk, Numerical solutions of 2-D steady incompressible flow over a backward-facing step, Part I: High Reynolds number solutions, Computers and Fluids,
Vol. 37, pp. 633-655, 2008
[13] Tony W. H. Sheu and P. H. Chiu, A divergence-free-condition compensated method for incompressible Navier-Stokes equations, Computer Methods in Applied Mechanics and Engineering, Vol. 196, pp. 4479-4494, 2007.
[14] Tony W. H. Sheu and R. K. Lin, An incompressible Navier-Stokes model implemented on non-staggered grids, Numer. Heat Transf., B Fundam., Vol. 44(3), pp.
277-294, 2003.
[15] 林瑞國, 不可壓縮黏性熱磁流之科學計算方法, 國立台灣大學博士論文, 2005.
[16] Christopher K. W. Tam, Jay C. Webb, Dispersion-ralation-preserving finite difference schemes for computational acoustics, Journal of Computational Physics., Vol. 194, pp. 194-214, 1993.
[17] Richard D. Handy, A Frank von der Kammer, A Jamie R. Lead A, Martin Hassell ¨ ov, A Richard Owen, A Mark Crane, The ecotoxicology and chemistry of manufactured
nanoparticles, Ecotoxicology, Vol. 17, pp. 287-314, 2008.
[18] David E Clapham, Symmetry, Selectivity, and the 2003 Nobel Prize, Cell, Vol. 115, pp. 641-646, 2003.
[19] 袁聖宗, 在曲線座標下求解非線性EHD方程, 國立台灣大學碩士論文, 2013.
[20] 王聖鋒, 發展求解NS與PNP耦合方程之方法, 國立台灣大學碩士論文, 2013.
[21] P. H. Chiu, TonyW. H. Sheu, On the development of a dispersion-relation-preserving dual-compact upwind scheme for convection-diffusion equation, Journal of Computational Physics., Vol. 228, pp. 3640-3655, 2009.
[22] Peter C. Chu, Chenwu Fan, A three-point combined compact difference scheme, J. Comput. Phys., Vol. 140, pp. 370-399, 1998.
[23] Akil J. Harfash, Huda A. Jalob Sixth and Fourth Order Compact Finite Difference Scheme for Two and Three Dimension Poisson Equation with Two Methods to derive These Schemes, Basrah Journal of Science (A), Vol.24(2),1-20, 2006.
[24] Hans Johnston, Cheng Wang, Jian-Guo Liu A Local Pressure Boundary ondition Spectral Collocation Scheme for the Three-Dimensional Navier-Stokes Equations,
J. Sci. Comput., Vol. 60, pp. 612-626, 2014.
[25] 薛向成, 建構在細胞膜離子通道內傳輸行為的PNP-NS數學與數值模型, 國立台灣大學碩士論文, 2015.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top