[1] Prashanta Dutta and Ali Beskok, Analytical solution of combined electroosmotic/
pressure driven flows in two-dimensional straight channels:Finite Debye layer effects, Anal. Chem., Vol 73, pp. 1979-1986, 2001
[2] Zhang Yao, Wu Jiankang. and Chen Bo, A coordinate transformation method for
numerical solutions of the electric double layer and electroosmotic flows in a microchannel Int. J. for Numerical Methods in Fluids , Vol 68, pp. 671-685, 2012
[3] David C. Grahame, The Electrical Double layer and the Theory of Electrocapillary,
Chem. Rev., Vol. 44, pp. 441-501, 1947
[4] Neelesh A. Patankar and Howard H. Hu, Numerical Simulation of Electroosmotic
Flow, Anal. Chem., Vol. 70, pp. 1870-1881, 1998
[5] Shizhi Qian and Haim H. Bau, Theoretical investigation of electro-osmotic flows
and chaotic stirring in rectangular cavities, Applied Mathematical Modeling, Vol. 29, pp. 726-753, 2005
[6] R.-J. Yang, L.-M. Fu, and C.-C. Hwang, Electroosmotic Entry Flow in a Microchannel, Journal of Colloid and Interface Science , Vol 244, pp. 173-179, 2001
[7] W.B. Russel, D.A. Saville, and W.R. Schowalter, Colloidal dispersions, cambridge
monographs on mechanics and applied mathematics Cambridge University Press, cambridge, 1989.
[8] S. V. Patankar, Numerical Heat Transfer and Fuild Flow, Hemisphere, New York,
1980.
[9] Chun Yang, Dongqing Li, , Jacob H. Masliyah, Modeling forced liquid convection in rectangularmicrochannels with electrokinetic effects, Int. J. Heat and Mass Transfer
, Vol. 41, pp. 4229-4249, 1998
[10] Jahrul Alam, John C. Bowman, Energy-Conserving Simulation of Incompressible
Electro-Osmotic and Pressure-Driven Flow, Theoretical and computational Fluid
Dynamics, pp. 1-17, 2002.
[11] U. Ghia, K. N. Ghia, High Re Solutions for incompressible Flow Using the Navier-
Stokes Equation and a Multigrid Method, J. Comp. Physics, Vol. 48, pp. 387-411,
1982
[12] Ercan Erturk, Numerical solutions of 2-D steady incompressible flow over a backward-facing step, Part I: High Reynolds number solutions, Computers and Fluids,
Vol. 37, pp. 633-655, 2008
[13] Tony W. H. Sheu and P. H. Chiu, A divergence-free-condition compensated method for incompressible Navier-Stokes equations, Computer Methods in Applied Mechanics and Engineering, Vol. 196, pp. 4479-4494, 2007.
[14] Tony W. H. Sheu and R. K. Lin, An incompressible Navier-Stokes model implemented on non-staggered grids, Numer. Heat Transf., B Fundam., Vol. 44(3), pp.
277-294, 2003.
[15] 林瑞國, 不可壓縮黏性熱磁流之科學計算方法, 國立台灣大學博士論文, 2005.[16] Christopher K. W. Tam, Jay C. Webb, Dispersion-ralation-preserving finite difference schemes for computational acoustics, Journal of Computational Physics., Vol. 194, pp. 194-214, 1993.
[17] Richard D. Handy, A Frank von der Kammer, A Jamie R. Lead A, Martin Hassell ¨ ov, A Richard Owen, A Mark Crane, The ecotoxicology and chemistry of manufactured
nanoparticles, Ecotoxicology, Vol. 17, pp. 287-314, 2008.
[18] David E Clapham, Symmetry, Selectivity, and the 2003 Nobel Prize, Cell, Vol. 115, pp. 641-646, 2003.
[19] 袁聖宗, 在曲線座標下求解非線性EHD方程, 國立台灣大學碩士論文, 2013.[20] 王聖鋒, 發展求解NS與PNP耦合方程之方法, 國立台灣大學碩士論文, 2013.[21] P. H. Chiu, TonyW. H. Sheu, On the development of a dispersion-relation-preserving dual-compact upwind scheme for convection-diffusion equation, Journal of Computational Physics., Vol. 228, pp. 3640-3655, 2009.
[22] Peter C. Chu, Chenwu Fan, A three-point combined compact difference scheme, J. Comput. Phys., Vol. 140, pp. 370-399, 1998.
[23] Akil J. Harfash, Huda A. Jalob Sixth and Fourth Order Compact Finite Difference Scheme for Two and Three Dimension Poisson Equation with Two Methods to derive These Schemes, Basrah Journal of Science (A), Vol.24(2),1-20, 2006.
[24] Hans Johnston, Cheng Wang, Jian-Guo Liu A Local Pressure Boundary ondition Spectral Collocation Scheme for the Three-Dimensional Navier-Stokes Equations,
J. Sci. Comput., Vol. 60, pp. 612-626, 2014.
[25] 薛向成, 建構在細胞膜離子通道內傳輸行為的PNP-NS數學與數值模型, 國立台灣大學碩士論文, 2015.