跳到主要內容

臺灣博碩士論文加值系統

(44.220.251.236) 您好!臺灣時間:2024/10/11 14:29
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:康仲霖
研究生(外文):Chung-Lin Kang
論文名稱:以棲蘭山區臺灣扁柏樹輪最大密度重建過往800年溫度
論文名稱(外文):A Temperature Reconstruction for the Past 800 Years Using Tree-ring Maximum Density of Taiwan Yellow False Cypress from Chilan Shan, Northeastern Taiwan
指導教授:關秉宗
指導教授(外文):Biing T. Guan
口試委員:黃婉如魏國彥
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:森林環境暨資源學研究所
學門:農業科學學門
學類:林業學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:81
中文關鍵詞:臺灣扁柏樹輪氣候學總體經驗模態分解法溫度重建樹輪最大密度
外文關鍵詞:Chamaecyparis obtusa var. formosanaDendroclimatologyEnsemble Empirical Mode DecompositionTemperature reconstructionTree-ring maximum density
DOI:10.6342/NTU202000226
相關次數:
  • 被引用被引用:0
  • 點閱點閱:140
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
氣候變遷為當前重要的研究議題,但相關研究受限於氣象觀測資料的時間長度,重建與瞭解古氣候變異為探討現今氣候變遷不可或缺的步驟。樹輪最大密度已廣泛應用於樹輪氣候學,並用以重建許多地區過往之溫度變化。
本研究以棲蘭山區的臺灣扁柏(Chamaecyparis obtusa var. formosana)的樹輪密度為材料,使用集成經驗模態分解法(Ensemble empirical mode decomposition, EEMD)建立樹輪平均密度(ring density, RD)、最大密度(maximum density, MXD)、最小密度(minimum density, MND)年表。之後將樹輪年表與美國NCER/NCAR再分析資料進行相關性分析,瞭解樹輪密度與氣候之關係,並藉此重建氣候。
結果顯示,RD、MXD、MND皆與溫度呈顯著正相關,與相對濕度則呈顯著負相關,其中MXD與前一年6月至當年10月的臺灣北半部高空溫度(氣壓高度850mb)之相關性最高,因此使用MXD重建1200–2006年的前一年6月至當年10月之溫度。重建溫度顯示4個明顯暖期:1290–1350, 1390–1420, 1515–1535, 1990–2006年,以及3個明顯冷期:1460–1480, 1680–1720, 1810–1850年。
根據場域相關性分析,本研究的重建溫度可代表東亞和西太平洋的大範圍溫度變化。將本研究的重建溫度與北半球、東亞、青藏高原樹輪年表重建溫度相比,同樣發現有相似的溫度變化。另外,或許是受太陽輻射量影響,棲蘭山區臺灣扁柏的樹輪密度與太陽活動有密切關聯。
Limited instrumental records have hindered the efforts to understand long-term climate variability better. Using reliable paleoclimate proxies to reconstruct long-term climates is crucial to evaluate whether the current climate change is outside the range of natural climate variability. Tree-ring maximum density (MXD) has been extensively applied in dendroclimatology to reconstruct past climate variations.
The main objectives of this study were to understand the relationships between the variations of climate and the tree-ring density of Taiwan yellow false cypress (Chamaecyparis obtusa var. formosana) from Chilan Shan, northeastern Taiwan, and to reconstruct the region’s paleoclimate based on the relationships between tree-ring density and climate. Ensemble empirical mode decomposition was used to develop tree-ring density chronologies, including ring density, maximum density (MXD), and minimum density. Climate data was from NCEP/NCAR Reanalysis 1 data.
The three tree-ring density variables were all positively correlated with temperature and negatively correlated with relative humidity. The correlation of MXD with previous June to current October monthly mean temperature at 850mb pressure level over northern Taiwan was the highest. Therefore, this study used MXD chronology to reconstruct previous June to current October monthly mean temperature from CE 1200 to 2006. The reconstruction revealed four warm periods, namely, 1290–1350, 1390–1420, 1515–1535, 1990–2006, and three cold periods, namely, 1460–1480, 1680–1720, 1810–1850.
Spatial correlation analysis revealed that the temperature reconstruction could represent temperature variation in East Asia and West Pacific. The reconstructed temperature also had similar variations with East Asia and the North Hemisphere temperature reconstructions based on tree-ring width. Correspondences between the variability of solar activity and tree-ring density of Taiwan yellow false cypress were also found.
口試委員審定書 i
誌謝 ii
目錄 iii
圖目錄 vi
表目錄 viii
中文摘要 ix
Abstract x
第一章 緒論 1
1.1研究背景 1
1.2研究目的 2
第二章 前人研究 4
2.1樹輪形成 4
2.2樹輪變異 4
2.3樹輪學基本原理 5
2.4樹木生長概念模式 7
2.5建立年表的方法 7
2.5.1傳統方法 8
2.5.2總體經驗模態分解法 8
2.6樹輪氣候學研究發展 10
2.6.1全球樹輪氣候學發展 10
2.6.2國內樹輪氣候學研究 12
2.7樹輪密度於氣候研究之應用 13
第三章 研究材料與方法 15
3.1研究材料 15
3.2研究樣區概況 16
3.2.1地點 16
3.2.2氣候 16
3.3氣象資料 17
3.3.1再分析資料 18
3.3.2全球地表氣象網格資料 18
3.4研究方法 20
3.4.1樣本採集 21
3.4.2樣本前處理 21
3.4.3初步交叉定年 21
3.4.4輪寬量測 21
3.4.5統計交叉定年 21
3.4.6挑選樣本 22
3.4.7 X-ray影像掃描前處理 22
3.4.8 X-ray微密度量測 23
3.4.9影像分析 23
3.4.10建立年表 24
3.4.11分析樹輪與氣候之關係 26
3.4.12重建氣候 26
第四章 結果 29
4.1樹輪特徵值年表 29
4.2萃取前後樹輪密度之差異 30
4.3樹輪特徵值年表間的差異 30
4.4 樹輪密度年表之頻譜分析與EEMD分解結果 31
4.5 樹輪密度年表與氣候之關係 36
4.6重建氣候 39
4.6.1 樹輪最大密度重建溫度模式分析 39
4.6.2 樹輪最大密度重建溫度 44
4.6重建溫度與全球溫度之關係 47
第五章 討論 50
5.1臺灣扁柏樹輪年表 50
5.2臺灣扁柏樹輪密度與氣候之關係 51
5.2.1樹輪密度與NNR氣象資料之關係 51
5.2.2樹輪密度與其他氣候資料之關係 53
5.3重建模型之差異 54
5.4重建溫度與歷史記載之比較 55
5.5本研究重建溫度與其他重建溫度之比較 57
5.5.1與其他樹輪年表之比較 57
5.5.2與臺灣樹輪年表之比較 58
5.6影響全球溫度變化的自然因素 60
第六章 結論 63
參考文獻 64
附錄 79
王松永、丁昭義 (1984)。林產學上冊。臺北:臺灣商務印書館。
王思皓 (2013)。應用合歡山冷杉樹輪穩定氧同位素重建台灣高山 232 年氣候。國立臺灣大學森林環境暨資源學研究所碩士論文,頁 1–64。
王绍武、葉瑾琳、龔道溢 (1998)。中國小冰期的氣候。第四紀研究, 1(1): 54–56。
王震哲 (2000)。棲蘭山檜木林區植物資源調查研究。內政部營建署太魯閣國家公園管理處委託。
林振榮、林世宗、鍾智昕 (2010)。棲蘭山天然更新台灣扁柏林分樹輪及材質之研究。中華林學季刊, 43(1): 131–145。
林振榮、鍾智昕、邱志明、林謙佑 (2012)。主要平地造林闊葉樹種的樹輪特徵研究。中華林學季刊, 45(1): 31–41。
康家韶 (2008)。棲蘭山區亞熱帶雲霧林台灣扁柏冠層養分之動態。國立臺灣大學森林環境暨資源學研究所 碩士論文,頁 1–100。
張丕遠、龔高法 (1979)。十六世紀以來中國氣候變化的若干特徵。地理學報, 46(3): 238–247。
張世振 (2008)。臺灣西南部大武山氣候對樹輪寬度之影響。輔英科技大學環境工程與科學系 碩士論文,頁 1–87。
張琇慧 (2000)。臺灣北部昆欄樹樹輪對氣候因子之反映。國立臺灣大學地質學系 碩士論文。
張嫻、邵曉華、王濤 (2013)。中國小冰期氣候研究綜述。南京信息工程大學學報: 自然科學版, 5(4): 317–325。
陳信豪 (2015)。利用樹輪穩定氧同位素重建台灣霧林帶歷史氣候變異。國立成功大學生命科學系 碩士論文,頁 1–64。
陳姿彤 (2011)。以臺灣中部雲杉樹輪重建三百年古氣候: 利用傳統樹輪及總體經驗模態分解法。國立臺灣大學地質科學系 碩士論文,頁 1–116。
郭寶章 (1995)。臺灣貴重針葉五木。中華林學會叢書956 號。
程膺 (1999)。棲蘭山區樹木年輪和氣候關係之研究。國立東華大學自然資源管理研究所碩士論文, 頁 1–76。
黃裕星、鍾智昕、邱志明、林振榮 (2010)。七年生櫸木, 苦楝, 光腊樹在平地造林的林木樹輪特徵研究。中華林學季刊, 43(2): 201–212。
詹明勳、王亞男、王松永 (2004)。Soft X-ray 影像分析法應用於天然林台灣櫸; 樟樹及烏心石樹輪寬度及密度分析之研究。中華林學季刊, 37(4):379–392。
詹明勳、王亞男、葉永廉 (2005)。臺灣中部塔塔加地區台灣雲杉樹輪氣候學研究過去 245 年氣溫與降雨量趨勢。中華林學季刊, 38(1): 67–82。
鄒佩珊 (1998)。臺灣山區近五百年的氣候變化: 樹輪寬度的證據。國立臺灣大學地質研究所 博士論文。
劉俊毅 (2008)。棲蘭山區臺灣扁柏老熟林及次生林枯落物養分動態。國立臺灣大學森林環境暨資源學系 碩士論文,頁 1–68。
蔣麗雪 (2011)。臺灣中部威氏帝杉樹輪寬變化與當地氣候及中太平洋海面溫度之關係。國立臺灣大學森林環境暨資源學系 碩士論文,頁 1–91。
賴宜鈴 (2006)。光環境對臺灣棲蘭山區亞熱帶雲霧林內兩種檜木小苗生長與建立之影響。國立臺灣大學生態學與演化生物學研究所 博士論文,頁 1–128。
Ahmed, M., Anchukaitis, K. J., Asrat, A., Borgaonkar, H. P., Braida, M., Buckley, B. M., . . . Cook, E. R. (2013). Continental-scale temperature variability during the past two millennia. Nature Geoscience, 6(5), 339–346.
doi:10.1038/ngeo1797
Akaike, H. (1998). A new look at the statistical model identification. In E. Parzen, K. Tanabe, & G. Kitagawa (Eds.), Selected Papers of Hirotugu Akaike (pp. 215-222). New York, NY: Springer New York.
Anchukaitis, K. J., Evans, M. N., Wheelwright, N. T., & Schrag, D. P. (2008). Stable isotope chronology and climate signal calibration in neotropical montane cloud forest trees. Journal of Geophysical Research: Biogeosciences, 113(G3). doi:10.1029/2007JG000613
Atwell, W. S. (2002). Time, money, and the weather: Ming China and the “Great Depression” of the mid-fifteenth century. The Journal of Asian Studies, 61(1), 83-113. doi:10.2307/2700190
Büntgen, U., Frank, D. C., Nievergelt, D., & Esper, J. (2006). Summer temperature variations in the European Alps, AD 755–2004. Journal of Climate, 19(21), 5606–5623. doi:10.1175/JCLI3917.1
Bauer, E., Claussen, M., Brovkin, V., & Huenerbein, A. (2003). Assessing climate forcings of the Earth system for the past millennium. Geophysical Research Letters, 30(6). doi:10.1029/2002GL016639
Bouriaud, O., Bréda, N., Le Moguedec, G., & Nepveu, G. (2004). Modelling variability of wood density in beech as affected by ring age, radial growth and climate. Trees, 18(3), 264–276. doi:10.1007/s00468-003-0303-x
Bouriaud, O., Leban, J.-M., Bert, D., & Deleuze, C. (2005). Intra-annual variations in climate influence growth and wood density of Norway spruce. Tree Physiology, 25(6), 651–660. doi:10.1093/treephys/25.6.651
Bradley, R. S., Hughes, M. K., & Diaz, H. F. (2003). Climate in Medieval Time. Science, 302(5644), 404–405. doi:10.1126/science.1090372
Brienen, R. J., Lebrija‐Trejos, E., Van Breugel, M., Pérez‐García, E. A., Bongers, F., Meave, J. A., & Martínez‐Ramos, M. (2009). The potential of tree rings for the study of forest succession in southern Mexico. Biotropica, 41(2), 186–195. doi:10.1111/j.1744-7429.2008.00462.x
Briffa, K., Bartholin, T., Eckstein, D., Jones, P., Karlen, W., Schweingruber, F., & Zetterberg, P. (1990). A 1,400-year tree-ring record of summer temperatures in Fennoscandia. Nature 346, 434–39. doi:10.1038/346434a0
Briffa, K. R., Osborn, T. J., Schweingruber, F. H., Jones, P. D., Shiyatov, S. G., & Vaganov, E. A. (2002). Tree-ring width and density data around the Northern Hemisphere: Part 1, local and regional climate signals. The Holocene, 12(6), 737–757. doi:10.1191/0959683602hl587rp
Buckley, B. M., Hansen, K. G., Griffin, K. L., Schmiege, S., Oelkers, R., D''Arrigo, R. D., . . . Le, C. N. (2018). Blue intensity from a tropical conifer’s annual rings for climate reconstruction: An ecophysiological perspective. Dendrochronologia, 50, 10–22. doi:10.1016/j.dendro.2018.04.003
Bunn, A. G. (2008). A dendrochronology program library in R (dplR). Dendrochronologia, 26(2), 115–124. doi:10.1016/j.dendro.2008.01.002
Campbell, R., McCarroll, D., Loader, N. J., Grudd, H., Robertson, I., & Jalkanen, R. (2007). Blue intensity in Pinus sylvestris tree-rings: developing a new palaeoclimate proxy. The Holocene, 17(6), 821–828. doi:10.1177/0959683607080523
Campelo, F. (2012). detrendeR: Start the detrendeR Graphical User Interface (GUI). Rpackage version 1.0.4. https://CRAN.R-project.org/package=detrendeR
Cole-Dai, J. (2010). Volcanoes and climate. WIREs Climate Change, 1(6), 824–839. doi:10.1002/wcc.76
Cook, E. R. (1985). A time series analysis approach to tree-ring standardization. Ph.D. dissertation, University of Arizona, Tucson.
Cook, E. R., Anchukaitis, K. J., Buckley, B. M., D''Arrigo, R. D., Jacoby, G. C., & Wright, W. E. (2010). Asian monsoon failure and megadrought during the last millennium. Science, 328(5977), 486–489. doi:10.1126/science.1185188
Cook, E. R., Briffa, K. R., Meko, D. M., Graybill, D. A., & Funkhouser, G. (1995). The ''segment length curse'' in long tree-ring chronology development for palaeoclimatic studies. The Holocene, 5(2), 229–237. doi:10.1177/095968369500500211
Cook, E. R., Krusic, P. J., Anchukaitis, K. J., Buckley, B. M., Nakatsuka, T., & Sano, M. (2013). Tree-ring reconstructed summer temperature anomalies for temperate East Asia since 800 CE. Climate Dynamics, 41(11–12), 2957–2972. doi:10.1007/s00382-012-1611-x
Cook, E. R., Meko, D. M., Stahle, D. W., & Cleaveland, M. K. (1999). Drought reconstructions for the continental United States. Journal of Climate, 12(4), 1145-1162. doi:10.1175/1520-0442(1999)012<1145:DRFTCU>2.0.CO;2
Cook, E. R., & Peters, K. (1981). The smoothing spline: a new approach to standardizing forest interior tree-ring width series for dendroclimatic studies. Tree-Ring Bulletin 41, 45–53.
Crowley, T. J. (2000). Causes of climate change over the past 1000 years. Science, 289(5477), 270–277. doi:10.1126/science.289.5477.270
D''Arrigo, R., Buckley, B., Kaplan, S., & Woollett, J. (2003). Interannual to multidecadal modes of Labrador climate variability inferred from tree rings. Climate Dynamics, 20(2–3), 219–228. doi:10.1007/s00382-002-0275-3
D''Arrigo, R. D., & Jacoby, G. C. (1991). A 1000-year record of winter precipitation from northwestern New Mexico, USA: a reconstruction from tree-rings and its relation to El Niño and the Southern Oscillation. The Holocene, 1(2), 95–101. doi:10.1177/095968369100100201
D''Arrigo, R. D., Jacoby, G. C., & Free, R. M. (1992). Tree-ring width and maximum latewood density at the North American tree line: parameters of climatic change. Canadian Journal of Forest Research, 22(9), 1290–1296. doi:10.1139/x92-171
Douglass, A. E. (1914). A method of estimating rainfall by the growth of trees. Bulletin of the American Geographical Society, 46(5), 321–335.
Esper, J., Cook, E. R., & Schweingruber, F. H. (2002). Low-frequency signals in long tree-ring chronologies for reconstructing past temperature variability. Science, 295(5563), 2250–2253. doi:10.1126/science.1066208
Esper, J., Düthorn, E., Krusic, P. J., Timonen, M., & Büntgen, U. (2014). Northern European summer temperature variations over the Common Era from integrated tree‐ring density records. Journal of Quaternary Science, 29(5), 487–494. doi:10.1002/jqs.2726
Esper, J., Schneider, L., Krusic, P. J., Luterbacher, J., Büntgen, U., Timonen, M., . . . Zorita, E. (2013). European summer temperature response to annually dated volcanic eruptions over the past nine centuries. Bulletin of Volcanology, 75(7), 736. doi:10.1007/s00445-013-0736-z
Fichtler, E., Trouet, V., Beeckman, H., Coppin, P., & Worbes, M. (2004). Climatic signals in tree rings of Burkea africana and Pterocarpus angolensis from semiarid forests in Namibia. Trees, 18(4), 442–451.
doi:10.1007/s00468-004-0324-0
Fischer, E. M., Luterbacher, J., Zorita, E., Tett, S. F. B., Casty, C., & Wanner, H. (2007). European climate response to tropical volcanic eruptions over the last half millennium. Geophysical Research Letters, 34(5). doi:10.1029/2006gl027992
Fox, J., & Weisberg, S. (2019). An R companion to applied regression, Third Edition. Thousand Oaks CA: Sage.
URL: https://socialsciences.mcmaster.ca/jfox/Books/Companion/
Fritts, H.C. (1976). Tree rings and climate. Caldwell, NJ: The Blackburn Press.
Ge, Q. (2010). Climate change during the successive dynasties in China. Beijing: Science Press.
Gindl, W., Grabner, M., & Wimmer, R. (2000). The influence of temperature on latewood lignin content in treeline Norway spruce compared with maximum density and ring width. Trees, 14(7), 409–414. doi:10.1007/s004680000057
Graumlich, L. J. (1993). A 1000-Year Record of Temperature and Precipitation in the Sierra Nevada. Quaternary Research, 39(2), 249–255.
doi: 10.1006/qres.1993.1029
Grudd, H. (2008). Torneträsk tree-ring width and density AD 500–2004: a test of climatic sensitivity and a new 1500-year reconstruction of north Fennoscandian summers. Climate Dynamics, 31(7–8), 843–857. doi:10.1007/s00382-007-0358-2
Guan, B. T., Wright, W. E., Chiang, L. H., & Cook, E. R. (2018a). A dry season streamflow reconstruction of the critically endangered Formosan landlocked salmon habitat. Dendrochronologia, 52, 152–161. doi:10.1016/j.dendro.2018.10.008
Guan, B. T., Wright, W. E., & Cook, E. R. (2018b). Ensemble empirical mode decomposition as an alternative for tree-ring chronology development. Tree-ring Research, 74(1), 28–38. doi:10.3959/1536-1098-74.1.28
Hacke, U. G., Sperry, J. S., Pockman, W. T., Davis, S. D., & McCulloh, K. A. (2001). Trends in wood density and structure are linked to prevention of xylem implosion by negative pressure. Oecologia, 126(4), 457–461. doi:10.1007/s004420100628
Harris, I., Jones, P. D., Osborn, T. J., & Lister, D. H. (2014). Updated high‐resolution grids of monthly climatic observations–the CRU TS3.10 Dataset. International Journal of Climatology, 34(3), 623–642. doi:10.1002/joc.3711
Hegerl, G., Luterbacher, J., González-Rouco, F., Tett, S. F. B., Crowley, T., & Xoplaki, E. (2011). Influence of human and natural forcing on European seasonal temperatures. Nature Geoscience, 4(2), 99-103. doi:10.1038/ngeo1057
Hietz, P., Horsky, M., Prohaska, T., Lang, I., & Grabner, M. (2015). High-resolution densitometry and elemental analysis of tropical wood. Trees, 29(2), 487–497. doi:10.1007/s00468-014-1126-7
Holmes, R. L. (1983). Computer-assisted quality control in tree-ring dating and measurement. Tree-ring Bulletin, 43, 69–95.
Huang, N. E., Shen, Z., Long, S. R., Wu, M. C., Shih, H. H., Zheng, Q., . . . Liu, H. H. (1998). The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 454(1971), 903–995. doi:10.1098/rspa.1998.0193
Huang, N. E., & Wu, Z. (2008). A review on Hilbert‐Huang transform: Method and its applications to geophysical studies. Reviews of Geophysics, 46(2). doi:10.1029/2007RG000228
Huang, R. (1988). China: A Macro History. Armonk NY: ME Sharpe.
Hughes, M. K., Swetnam, T. W., & Diaz, H. F. (2010). Dendroclimatology: Progress and Prospects (Vol. 11): Springer Science & Business Media.
IPCC. (2018). Summary for Policymakers. In: Global Warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty. World Meteorological Organization, Geneva, Switzerland.
Jacoby, G. C., & D''Arrigo, R. D. (1995). Tree ring width and density evidence of climatic and potential forest change in Alaska. Global Biogeochemical Cycles, 9(2), 227-234. doi:10.1029/95GB00321
Jacquin, P., Longuetaud, F., Leban, J.-M., & Mothe, F. (2017). X-ray microdensitometry of wood: A review of existing principles and devices. Dendrochronologia, 42, 42–50. doi:10.1016/j.dendro.2017.01.004
Jian, Z., Wang, P., Saito, Y., Wang, J., Pflaumann, U., Oba, T., & Cheng, X. (2000). Holocene variability of the Kuroshio Current in the Okinawa Trough, northwestern Pacific Ocean. Earth and Planetary Science Letters, 184(1), 305–319. doi:10.1016/S0012-821X(00)00321-6
Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L., . . . Woollen, J. (1996). The NCEP/NCAR 40-year reanalysis project. Bulletin of the American Meteorological Society, 77(3), 437–472.
doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2
Ljungqvist, F.C., Krusic, P. J., Brattström, G., & Sundqvist, H. S. (2012). Northern Hemisphere temperature patterns in the last 12 centuries. Climate of the Past, 8, 227–249. doi:10.5194/cp-8-227-2012
Liu, Y., Li, C. Y., Sun, C., Song, H., Li, Q., Cai, Q., & Liu, R. (2019). Temperature variation at the low‐latitude regions of East Asia recorded by tree rings during the past six centuries. International Journal of Climatology. doi:10.1002/joc.6287
Lusk, C. H., & Pozo, A. D. (2002). Survival and growth of seedlings of 12 Chilean rainforest trees in two light environments: Gas exchange and biomass distribution correlates. Austral Ecology, 27(2), 173–182.
doi:10.1046/j.1442-9993.2002.01168.x
Luukko, P. J. J., Helske, J., & Räsänen, E. (2016). Introducing libeemd: A program package for performing the ensemble empirical mode decomposition. Computational Statistics, 31, 545–557.
doi:10.1007/s00180-015-0603-9.
Man, Z. (2009). Climate Change Research in Chinese History. Jinan: Shandong Education Press.
Mann, M. E., & Lees, J. M. (1996). Robust estimation of background noise and signal detection in climatic time series. Climatic Change, 33(3), 409–445. doi:10.1007/BF00142586
Markonis, Y., & Koutsoyiannis, D. (2016). Scale-dependence of persistence in precipitation records. Nature Climate Change, 6(4), 399–401. doi:10.1038/nclimate2894
McCarroll, D., & Loader, N. J. (2004). Stable isotopes in tree rings. Quaternary Science Reviews, 23(7–8), 771–801. doi:10.1016/j.quascirev.2003.06.017
McCormick, M. P., Wang, P.-H., & Poole, L. R. (1993). Chapter 8 Stratospheric Aerosols and Clouds. In P. V. Hobbs (Ed.), International Geophysics (Vol. 54, pp. 205-222): Academic Press.
Meyers, S.R. (2014). Astrochron: An R Package for Astrochronology.
https://cran.r-project.org/package=astrochron
Miyamoto, K., Okuda, S., Inagaki, Y., Noguchi, M., & Itou, T. (2013). Within- and between-site variations in leaf longevity in hinoki cypress (Chamaecyparis obtusa) plantations in southwestern Japan. Journal of Forest Research, 18(3), 256–269. doi:10.1007/s10310-012-0346-1
Newhall, C. G., & Self, S. (1982). The volcanic explosivity index (VEI) an estimate of explosive magnitude for historical volcanism. Journal of Geophysical Research: Oceans, 87(C2), 1231-1238. doi:10.1029/JC087iC02p01231
Nilsen, E. T., & Orcutt, D. M. (1996). Physiology of plants under stress. Abiotic factors. New York: John Wiley and Sons.
Poussart, P. F., Evans, M. N., & Schrag, D. P. (2004). Resolving seasonality in tropical trees: multi-decade, high-resolution oxygen and carbon isotope records from Indonesia and Thailand. Earth and Planetary Science Letters, 218(3–4), 301–316. doi:10.1016/S0012-821X(03)00638-1
Pumijumnong, N. (2013). Dendrochronology in Southeast Asia. Trees, 27(2), 343–358. doi:10.1007/s00468-012-0775-7
Rayner, N., Parker, D. E., Horton, E., Folland, C. K., Alexander, L. V., Rowell, D., . . . Kaplan, A. (2003). Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. Journal of Geophysical Research: Atmospheres, 108(D14). doi:10.1029/2002JD002670
R Core Team (2019). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.
URL: https://www.R-project.org/.
Rydval, M., Larsson, L.-Å., McGlynn, L., Gunnarson, B. E., Loader, N. J., Young, G. H., & Wilson, R. (2014). Blue intensity for dendroclimatology: should we have the blues? Experiments from Scotland. Dendrochronologia, 32(3), 191–204. doi:10.1016/j.dendro.2014.04.003
Schweingruber, F. H. (2007). Wood structure and environment: Springer Science & Business Media.
Schweingruber, F. H., Bartholin, T., Schaur, E., & Briffa, K. R. (1988). Radiodensitometric-dendroclimatological conifer chronologies from Lapland (Scandinavia) and the Alps (Switzerland). Boreas, 17(4), 559-566. doi:10.1111/j.1502-3885.1988.tb00569.x
Schweingruber, F. H., Fritts, H., Bräker, O., Drew, L., & Schär, E. (1978). The X-ray technique as applied to dendroclimatology. Tree-Ring Bulletin 38, 61–91.
Shapiro, A., Schmutz, W., Rozanov, E., Schoell, M., Haberreiter, M., Shapiro, A., & Nyeki, S. (2011). A new approach to the long-term reconstruction of the solar irradiance leads to large historical solar forcing. Astronomy & Astrophysics, 529, A67. doi:10.1051/0004-6361/201016173
Sheu, D. D., Kou, P., Chiu, C., & Chen, M.-J. (1996). Variability of tree-ring δ13C in Taiwan fir: growth effect and response to May–October temperatures. Geochimica et Cosmochimica Acta, 60(1), 171–177.
doi:10.1016/0016-7037(95)00401-7
Shi, F., Yang, B., von Gunten, L., Qin, C., & Wang, Z. (2012). Ensemble empirical mode decomposition for tree-ring climate reconstructions. Theoretical and Applied Climatology, 109(1–2), 233–243. doi:10.1007/s00704-011-0576-8
Speer, J. H. 2010. Fundamentals of tree-ring research. Tucson, Arizona: University of Arizona Press.
Stahle, D. W., Cook, E. R., Cleaveland, M. K., Therrell, M. D., Meko, D. M., Grissino‐Mayer, H. D., . . . Luckman, B. H. (2000). Tree‐ring data document 16th century megadrought over North America. Eos, Transactions American Geophysical Union, 81(12), 121-125. doi:10.1029/00EO00076
Stoffel, M., Khodri, M., Corona, C., Guillet, S., Poulain, V., Bekki, S., . . . Lebas, N. (2015). Estimates of volcanic-induced cooling in the Northern Hemisphere over the past 1,500 years. Nature Geoscience, 8(10), 784. doi:10.1038/ngeo2526
Su, H.-J. (1984). Studies on the climate and vegetation types of the natural forest in Taiwan.(II). Altitudinal vegetation zones in relation to temperature gradient. Quarterly Journal of Chinese Foresty, 17, 57–73.
Takechi, N. (2005). Reconstruction of the past temperature distribution in Southwest Japan from annual ring width. Journal of Forest Research, 10(5), 367–372. doi:10.1007/s10310-005-0146-y
Trouet, V., & Van Oldenborgh, G. J. (2013). KNMI Climate Explorer: A web-based research tool for high-resolution paleoclimatology. Tree-ring Research, 69, 3–13. doi:10.3959/1536-1098-69.1.3
Usoskin, I. G., Solanki, S. K., Schüssler, M., Mursula, K., & Alanko, K. (2003). Millennium-scale sunspot number reconstruction: Evidence for an unusually active Sun since the 1940s. Physical Review Letters, 91(21), 211101. doi:10.1103/PhysRevLett.91.211101
Venables, W. N., & Ripley, B. D. (2013). Modern applied statistics with S-PLUS: Springer Science & Business Media.
Watson, E., & Luckman, B. H. (2002). The dendroclimatic signal in Douglas-fir and ponderosa pine tree-ring chronologies from the southern Canadian Cordillera. Canadian Journal of Forest Research, 32(10), 1858–1874.
doi:10.1139/x02-096
Wigley, T. M. L., Briffa, K. R., & Jones, P. D. (1984). On the Average Value of Correlated Time Series, with Applications in Dendroclimatology and Hydrometeorology. Journal of Climate and Applied Meteorology, 23(2), 201–213. doi:10.1175/1520-0450(1984)023<0201:Otavoc>2.0.Co;2
Wilson, R., Anchukaitis, K., Briffa, K. R., Büntgen, U., Cook, E., D''Arrigo, R., . . . Gunnarson, B. (2016). Last millennium northern hemisphere summer temperatures from tree rings: Part I: The long term context. Quaternary Science Reviews, 134, 1–18. doi:10.1016/j.quascirev.2015.12.005
Worbes, M. (2002). One hundred years of tree-ring research in the tropics–a brief history and an outlook to future challenges. Dendrochronologia, 20(1-2), 217–231. doi:10.1078/1125-7865-00018
Wright, W., Guan, B., Tseng, Y.-H., Cook, E., Wei, K.-Y., & Chang, S.-T. (2015). Reconstruction of the springtime East Asian Subtropical Jet and Western Pacific pattern from a millennial-length Taiwanese tree-ring chronology. Climate Dynamics, 44(5–6), 1645–1659. doi:10.1007/s00382-014-2402-3
Wu, R., Kinter III, J. L., & Kirtman, B. P. (2005). Discrepancy of Interdecadal Changes in the Asian Region among the NCEP–NCAR Reanalysis, Objective Analyses, and Observations. Journal of Climate, 18(15), 3048-3067. doi:10.1175/jcli3465.1
Wu, Z., & Huang, N. E. (2009). Ensemble empirical mode decomposition: a noise-assisted data analysis method. Advances in Adaptive Data Analysis, 1(01), 1–41. doi:10.1142/S1793536909000047
Xu, C., Sano, M., & Nakatsuka, T. (2013). A 400-year record of hydroclimate variability and local ENSO history in northern Southeast Asia inferred from tree-ring δ18O. Palaeogeography, Palaeoclimatology, Palaeoecology, 386, 588–598. doi:10.1016/j.palaeo.2013.06.025
Xu, G., Liu, X., Zhang, Q., Zhang, Q., Hudson, A., & Trouet, V. (2019). Century-scale temperature variability and onset of industrial-era warming in the Eastern Tibetan Plateau. Climate Dynamics, 53(7), 4569–4590.
doi:10.1007/s00382-019-04807-z
Yin, H., Liu, H., Linderholm, H. W., & Sun, Y. (2015). Tree ring density-based warm-season temperature reconstruction since AD 1610 in the eastern Tibetan Plateau. Palaeogeography, Palaeoclimatology, Palaeoecology, 426, 112–120. doi:10.1016/j.palaeo.2015.03.003
Zhang, D. D., Zhang, J., Lee, H. F., & He, Y.-q. (2007). Climate change and war frequency in Eastern China over the last millennium. Human Ecology, 35(4), 403–414. doi:10.1007/s10745-007-9115-8
Zhang, H., Beggs, H., Wang, X. H., Kiss, A. E., & Griffin, C. (2016). Seasonal patterns of SST diurnal variation over the Tropical Warm Pool region. Journal of Geophysical Research: Oceans, 121(11), 8077–8094. doi:10.1002/2016jc012210
Zhang, P., Linderholm, H. W., Gunnarson, B. E., Björklund, J., & Chen, D. (2016). 1200 years of warm-season temperature variability in central Scandinavia inferred from tree-ring density. Clim. Past, 12(6), 1297–1312.
doi:10.5194/cp-12-1297-2016
Zobel, D. B. 1998. Chamaecyparis forests: a comparative analysis. Pages 39–53 in Coastally Restricted Forests. Oxford University Press, Oxford.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊