跳到主要內容

臺灣博碩士論文加值系統

(44.192.95.161) 您好!臺灣時間:2024/10/16 03:00
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:馬莉婷
研究生(外文):Li-Ting Ma
論文名稱:臺灣杉萜類合成酶的演化與生化功能探討
論文名稱(外文):Investigating the evolution and biochemical function of terpene synthases in Taiwania cryptomerioides
指導教授:曲芳華
指導教授(外文):Fang-Hua, Chu
口試委員:王升陽何政坤張淑華曾彥學孫英玄林盈仲
口試委員(外文):Sheng-Yang WangCheng-Kuen HoShu-Hwa ChangYen-Hsueh TsengYing-Hsuan SunYing-Chung Jimmy Lin
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:森林環境暨資源學研究所
學門:農業科學學門
學類:林業學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:150
中文關鍵詞:萜類代謝柏科萜類合成酶生化功能鑑定特有代謝物甲基茉莉酸裸子植物臺灣杉
外文關鍵詞:terpene metabolismcupressaceaeterpene synthasebiochemical enzyme characterizationplant specialized metabolismmethyl jasmonategymnospermsTaiwania cryptomerioides
DOI:10.6342/NTU202000471
相關次數:
  • 被引用被引用:1
  • 點閱點閱:423
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
臺灣杉 (Taiwania cryptomerioides Hay.) 為柏科 (Cupressaceae) 臺灣杉屬 (Taiwania) 下的單種屬植物 (monotypic species),木材抗腐朽性質良好,同時也是臺灣重要造林樹種之一。臺灣杉的萜類化合物是木材高耐久性 (durability) 的原因,特別是具有良好抗真菌與抗白蟻活性的倍半萜類化合物 cadinol,以及與雙萜類化合物ferruginol,被視為臺灣杉重要的防禦物質。萜類合成酶 (terpene synthases, TPSs) 是萜類生合成當中決定化學主要架構的關鍵酵素,且隨著演化推進,植物漸漸形成物種特有的萜類合成酶群,以應付環境中不同的逆境,然而許多柏科特有的萜類生合成途徑仍然未知。要探討柏科特有的萜類化合物的生合成途徑,以及萜類合成酶在裸子植物的功能演化歷程,必須結合轉錄體、蛋白質體與代謝體的研究,而臺灣杉具有特殊演化地位及豐富萜類化合物,能為柏科植物萜類生合成相關研究建立一個指標性的參考模板。本研究從臺灣杉的轉錄體中分離出萜類,從序列親緣性與生化功能都顯示了臺灣杉在演化上的獨特性。其中十二個酵素功能是尚未在裸子植物 (gymnosperms) 發現過的,包括兩個單功能的class II 雙萜合成酶 (labda-13-en-8-ol diphosphate 合成酶 (TcCPS2) 與(+)-copalyl diphosphate 合成酶 (TcCPS4))、六個class I雙萜合成酶 (manoyl oxide合成酶 (TcKSL1、TcKSL3~TcKSL7),biformene 合成酶 (TcKSL1),levopimaradiene合成酶 (TcKSL3) 與phyllocladanol 合成酶 (TcKSL5)) 以及四個倍半萜合成酶 (zingiberene合成酶 (TcTPS1)、germacrene-4-ol 合成酶 (TcTPS4與TcTPS12)與cedrol合成酶 (TcTPS6)。當中TcCPS4與TcKSL3藉由levopimaradiene這個中間產物參與abietatriene的生合成,並且相當可能參與臺灣杉防禦用雙萜化合物ferruginol生合成途徑。特別的是,裸子植物特有雙萜類化合物生合成,倚賴雙功能性的class I/II 雙萜類合成酶上兩個催化位置來完成兩步驟的催化作用,而臺灣杉則是由單功能的class II 與 class I 雙萜類合成酶,以接力的方式分開完成反應。加上臺灣杉特有的倍半萜合成酶基因分群的內隱子遺失現象 (intron loss),顯示基因與蛋白質結構改變使得這些酵素擁有尚未在裸子植物發現的特質,並且造就臺灣杉獨特的萜類化合物組成。本研究為裸子植物萜類化合物代謝的分子演化與蛋白質功能性構象帶來更深刻的見解,更有助於了解萜類化合物在針葉樹化學防禦上所扮演的角色。 
Taiwania cryptomerioides is a monotypic gymnosperm species, valued for the high decay resistance of its wood. This durability has been attributed to the abundance of terpenoids, especially the sesquiterpenoid cadinene and diterpenoid ferruginol with antifungal and antitermite activity. The important committed step in terpenoid biosynthesis is the backbone formation catalyzed by terpene synthases (TPSs), and to adapt to the environment, plants have evolved their own group of TPSs along with the species evolution. However, the biosynthesis pathways of many Cupressaceae-specific terpenoids remained unknown. To expand our knowleage of terpene biosyntehesis and evolution of TPSs in Cupressaceae, a research included transcriptome, proteome and metabolome is recquired, and T. cryptomerioides can provide a good model for terpenoid research in Cupressaceae species because of its unique evolutionary opposition and high numbers of terepnoids. In this study, we identified unrecognized groups of TPSs in T. cryptomerioides, including monofunctional diTPSs, which suggests a distinct evolutionary divergence of the TPS family in this species. Specifically, twelve TPS functions not previously observed in gymnosperms were characterized, including two monofunctional class II diTPSs ((labda-13-en-8-ol diphosphate synthase (TcCPS2) and (+)-copalyl diphosphate synthase (TcCPS4)), six class I diTPSs (manoyl oxide synthase (TcKSL1, TcKSL3~TcKSL7),biformene synthase (TcKSL1),levopimaradiene synthase (TcKSL3) and phyllocladanol synthase (TcKSL5)), and four sesquiterpene synthases (zingiberene synthase (TcTPS1)、germacrene-4-ol synthase (TcTPS4 and TcTPS12) and cedrol synthase (TcTPS6)). Furthermore, TcCPS4 and TcKSL3 likely contribute to abietatriene biosynthesis via levopimaradiene as an intermediate in ferruginol biosynthesis in Taiwania. Notably, diterpene biosynthesis in Pinaceae speciese denpends on bifunctional diterpene synthases to catalylyze two-step reaction on two catalytic sites of an enzyme, but Taiwania employs dominantly pairs of monofunctional diterpene synthases to complete the two-step reaction successively. In addition, the uncharacterized genome structures with intron loss were also observed in a phylogenetically distant group of Taiwania sesquiterpene synthases, suggesting the terpenoid biosynthesis of Taiwania is unique and diverse due to the genome and protein strucuture modification. This study provides deeper insight into the functional landscape and molecular evolution of specialized terpenoid metabolism in gymnosperms as a basis to better understand the role of these metabolites in tree chemical defenses.
口試委員會審訂書 I
致謝 II
目錄 III
圖目錄 VI
表目錄 VIII
附錄表目錄 IX
摘要 X
Abstract XI
第一章 緒論 1
第二章 文獻探討 4
2.1 植物萜類化合物的功能 4
2.2 植物累積萜類的誘發機制 6
2.3 萜類化合物的類型 8
2.4 臺灣杉的萜類化合物 14
2.5 萜類化合物的生合成 15
2.6 萜類合成酶的演化 19
2.7 兼具物種普遍性與特有性的萜類化合物 21
2.8 臺灣杉的萜類合成酶 23
第三章 研究方法 25
3.1 植物材料 25
3.2 RNA萃取與轉錄體分析 25
3.3 萜類基因選殖 26
3.4 親源關係分析 26
3.5 以大腸桿菌共表現酵素 26
3.6 小圓葉菸草的暫時性酵素共表現 27
3.7 純化重組蛋白與酵素反應 29
3.8 代謝物分析 30
3.8.1 雙萜類化合物萃取與氣相層析 30
3.8.2 倍半萜化合物萃取與氣相分析 30
3.8.3 核磁共振波譜分析 30
3.9 倍半萜合成酶蛋白質結構模擬 31
3.10 萜類合成酶於臺灣杉不同部位基因與產物累積量分析 31
3.11 甲基茉莉酸誘導基因實驗 32
3.12.1 甲基茉莉酸誘導試驗 32
3.12.2 微陣列及基因表現分析 32
3.12 基因庫與基因登錄編號 33
第四章 結果 34
4.1. 臺灣杉雙萜類化合物生合成途徑的建立 35
4.1.1. 臺灣杉雙萜合成酶的選殖與功能預測 35
4.1.2. 臺灣杉雙萜類合成酶的親源分析 39
4.1.3. 臺灣杉雙萜類合成酶功能鑑定為單功能class II 與class I酵素 43
4.1.4. 植物內雙萜類化合物與相關基因的表現分析 57
4.1.5. 甲基茉莉酸誘導雙萜類合成酶基因表現 59
4.2. 臺灣杉倍半萜化合物生合成途徑的建立 63
4.2.1. 臺灣杉倍半萜合成酶的選殖與親源分析 63
4.2.2. 臺灣杉倍半萜合成酶群可合成多元化學結構 67
4.2.3. TcTPS仍存留關鍵催化殘基的保守性 74
4.2.4. TcTPS與臺灣杉主要倍半萜化合物-cadinene型化合物的累積有關 77
第五章 研究討論 80
5.1. 柏科與松科萜類合成酶在親緣關係有明顯的分歧 83
5.2. 臺灣杉有個功能多樣的單功能雙萜類合成酶家族 86
5.3. 臺灣杉單功能雙萜類合成酶演化自雙功能的先祖基因 88
5.4. TcTPS的內含子遺失事件造就臺灣杉與眾不同的倍半萜化合物組成 90
5.5. 臺灣杉萜類合成酶在植物防禦機制中扮演重要角色 92
第六章 結論 93
參考文獻 94
附錄 120
徐子凡(2017)。臺灣杉Tc-βFar/Lin、Tc-Lin、Tc-Zin/βOci、Tc-βFar/Ger、Tc-αFar/Ger萜類合成酶之基因選殖、活性分析與大腸桿菌生產系統之建立。國立臺灣大學森林環境暨資源學研究所碩士論文,台北市。
高清、方國運(1990)。臺灣杉松脂中之松鼠忌食物質。國立臺灣大學農學院研究報告,第30卷第一期,頁133‒137。
許力仁(2013)。臺灣杉單萜合成酶基因選殖與單萜二次環化機制。國立臺灣大學森林環境暨資源學研究所碩士論文,台北市。
許雅筑(2009)。臺灣杉雙萜合成酶基因之選殖與功能定性。國立臺灣大學森林環境暨資源學研究所碩士論文,台北市。
張上鎮、王升陽、鄭森松(2012)。臺灣主要造林樹種之創新利用及展望。臺灣林業,第38卷第三期,頁27‒35。
鄭仰兌(2017)。臺灣杉Tc-Lon、Tc-Ced/Ger、Tc-αCub/Ger、Tc-Ger1與Tc-Ger2萜類合成酶基因之選殖與特性分析。國立臺灣大學森林環境暨資源學研究所碩士論文,台北市。
劉璧綾(2015)。五個臺灣杉揮發性萜類合成酶基因選殖與性狀分析。國立臺灣大學森林環境暨資源學研究所碩士論文,台北市。
謝慧玲(2010)。臺灣杉倍半萜合成酶機基因之選殖與表現。國立臺灣大學森林環境暨資源學研究所碩士論文,台北市。
Abbott, E., Hall, D., Hamberger, B. and Bohlmann, J. (2010) Laser microdissection of conifer stem tissues: isolation and analysis ofhigh quality RNA, terpene synthase enzyme activity and terpenoid metabolites from resin ducts and cambial zone tissue ofwhite spruce (Picea glauca). BMC Plant Biol., 10, 1–16.
Abdallah, I.I., Czepnik, M., Merkerk, R.Van and Quax, W.J. (2016) Insights into the three-dimensional structure of amorpha-4,11-diene synthase and probing of plasticity residues. J. Nat. Prod., 79, 2455–2463.
Adams, R.P. (2007) Identification of essential oil components by gas chromatography/mass spectorscopy /, Carol Stream, Il.: Allured Pub. Corp..
Adams, R.P., Beauchamp, P.S., Dev, V. and Bathala, R.M. (2010) The leaf essential oils of juniperus communis L. varieties in north america and the NMR and MS data for isoabienol. J. Essent. Oil Res., 22, 23–28.
Ahmed, A.A., Mahmoud, A.A., Ahmed, U.M., El-Bassuony, A.A., Abd El-Razk, M.H., Pare, P.W. and Karchesy, J. (2001) Manoyl oxide α-arabinopyranoside and grindelic acid diterpenoids from Grindelia integrifolia. J. Nat. Prod. 64, 1365‒1367.
Ait-Ouazzou, A., Lorán, S., Arakrak, A., Laglaoui, A., Rota, C., Herrera, A., Pagán, R. and Conchello, P. (2012) Evaluation of the chemical composition and antimicrobial activity of Mentha pulegium, Juniperus phoenicea, and Cyperus longus essential oils from Morocco. Food Res. Int., 45, 313–319.
Ahuja, M.R. (2005) Polyploidy in Gymnosperms: Revisited. Silvae Genet., 54, 59–69.
Akhtar, Y. and Isman, M.B. (2003) Binary mixtures of feeding deterrents mitigate the decrease in feeding deterrent response to antifeedants following prolonged exposure in the cabbage looper, Trichoplusia ni (Lepidoptera: Noctuidae). Chemoecology, 13, 177–182.
Ansari, H.R. and Curtis, A.J. (1974). Sesquiterpenes in the perfumery industry. J. Soc. Cosmet. Chem., 25, 203-231.
Arigoni, D. (1975) Stereochemical aspects of sesquiterpene biosynthesis. Pure Appl. Chem., 41, 219–245.
Baloglu, E. and Kingston, D.G.I. (1999) The taxane diterpenoids. J. Nat. Prod., 62, 1448–1472.
Beek, T.A.van and Joulain, D. (2018) The essential oil of patchouli, Pogostemon cablin : A review. Flavour Fragr. J., 33, 6–51.
Birtić, S., Dussort, P., Pierre, F.X., Bily, A.C. and Roller, M. (2015) Carnosic acid. Phytochemistry, 115, 9–19.
Bohlmann, J., Crock, J., Jetter, R. and Croteau, R. (1998) Terpenoid-based defenses in conifers: cDNA cloning, characterization, and functional expression of wound-inducible (E)-bisabolene synthase from grand fir (Abies grandis). Proc. Natl. Acad. Sci. U. S. A., 95, 6756–6761.
Bohlmann, J. and Keeling, C.I. (2008) Terpenoid biomaterials. Plant J., 54, 656–669.
Bonkovsky, H.L., Cable, E.E., Cable, J.W., Donohue, S.E., White, E.C., Greene, Y.J., Lambrecht, R.W., Srivastava, K.K. and Arnold, W.N. (1992) Porphyrogenic properties of the terpenes camphor, pinene, and thujone. Biochem. Pharmacol., 43, 2359–2368.
Bordoloi, M., Shukla, V.S., Nath, S.C. and Sharma, R.P. (1989) Naturally occurring cadinenes. Phytochemistry, 28, 2007–2037.
Brückner, K., Božić, D., Manzano, D., Papaefthimiou, D., Pateraki, I., Scheler, U., Ferrer, A., de Vos, R.C.H., Kanellis, A.K. and Tissier, A. (2014) Characterization of two genes for the biosynthesis of abietane-type diterpenes in rosemary (Rosmarinus officinalis) glandular trichomes. Phytochemistry, 101, 52–64.
Brückner, K. and Tissier, A. (2013) High-level diterpene production by transient expression in Nicotiana benthamiana. Plant Methods, 9, 46.
Celedon, J.M. and Bohlmann, J. (2019) Oleoresin defenses in conifers: chemical diversity, terpene synthases, limitations of oleoresin defense under climate change. New Phytol., 224, 1444–1463.
Celedon, J.M., Yuen, M.M.S., Chiang, A., Henderson, H., Reid, K.E. and Bohlmann, J. (2017) Cell-type- and tissue-specific transcriptomes of the white spruce (Picea glauca) bark unmask fine-scale spatial patterns of constitutive and induced conifer defense. Plant J., 92, 710–726.
Chang, C.I., Chang, J.Y., Kuo, C.C., Pan, W.Y. and Kuo, Y.H. (2005) Four new 6-nor-5(6→7) abeo -abietane type diterpenes and antitumoral cytotoxic diterpene constituents from the bark of Taiwania cryptomerioides. Planta Med., 71, 72–76.
Chang, C.I., Chien, S.C., Lee, S.M. and Kuo, Y.H. (2003) Three novel 5(6→7)abeoabietane-type diterpenes from the bark of Taiwania cryptomerioides. Chem. Pharm. Bull., 51, 1420–1422.
Chang, S.T., Wang, S.Y., Su, Y.C., Huang, S.L. and Kuo, Y.H. (1999a) Chemical constituents and mechanisms of discoloration of Taiwania (Taiwania cryptomerioides Hayata) heartwood. the structure reconfirmation and conversion mechanism of taiwanin a. Holzforschung, 53, 142–146.
Chang, S.T., Wang, S.Y., Wu, C.L., Su, Y.C. and Kuo, Y.H. (1999b) Antifungal compounds in the ethyl acetate soluble fraction of the extractives of Taiwania (Taiwania cryptomerioides Hayata) heartwood. Holzforschung, 53, 487–490.
Chang, S.T., Wang, S.Y., Wu, C.L., Shiah, S.G., Kuo, Y.H. and Chang, C.J. (2000) Cytotoxicity of extractives from Taiwania cryptomerioides heartwood. Phytochemistry, 55, 227–232.
Chang, S.T., Chen, P.F., Wang, S.Y. and Wu, H.H. (2001) Antimite activity of essential oils and their constituents from Taiwania cryptomerioides. J. Med. Entomol., 38, 455–457.
Chang, S.T., Wang, S.Y. and Kuo, Y.H. (2003) Resources and bioactive substances from Taiwania (Taiwania cryptomerioides). J. Wood Sci., 49, 1–4.
Chapman, A.C. (1895) LXXX.—Some derivatives of humulene. J. Chem. Soc., Trans., 67, 780–784.
Chappell, J. (1995) Biochemistry and molecular biology of the isoprenoid biosynthetic pathway in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol., 46, 521–547.
Chaubey, M.K. (2012). Acute, lethal and synergistic effects of some terpenes against tribolium castaneum herbst (Coleoptera: Tenebrionidae). Ecologia Balkanica, 4, 53‒62.
Chen, F., Tholl, D., Bohlmann, J. and Pichersky, E. (2011) The family of terpene synthases in plants: a mid-size family of genes for specialized metabolism that is highly diversified throughout the kingdom. Plant J., 66, 212–229.
Chen, H.L., Lin, K.W., Gan, K.H., Wang, J.P., Won, S.J. and Lin, C.N. (2011) New diterpenoids and cytotoxic and anti-inflammatory diterpenoids from Amentotaxus formosana. Fitoterapia, 82, 219–224.
Chen, X.Y., Chen, Y., Heinstein, P. and Davisson, V.J. (1995) Cloning, expression, and characterization of (+)-δ-cadinene synthase: A catalyst for cotton phytoalexin biosynthesis. Arch. Biochem. Biophys., 324, 255–266.
Chen, Y.H., Lin, C.Y., Yen, P.L., Yeh, T.F., Cheng, S.S. and Chang S.T. (2017) Antifungal agents from heartwood extract of Taiwania cryptomerioides against brown root rot fungus Phellinus noxius. Wood Sci. Technol. 51, 639‒651.
Chen, Y.H., Yeh, T.F., Chu, F.H., Hsu, F.L. and Chang, S.T. (2015) Proteomics investigation reveals cell death-associated proteins of Basidiomycete fungus Trametes versicolor treated with ferruginol. J. Agric. Food Chem., 63, 85–91.
Chen, Y.R., Lee, Y.R., Wang, S.Y., Chang, S.T., Shaw, J.F. and Chu, F.H. (2004) Establishment of expressed sequence tags from Taiwania (Taiwania cryptomerioides Hayata) seedling cDNA. Plant Sci., 167, 955–957.
Cheng, S., Chung, M., Lin, C., Chang, S. and Wang, Y. (2010) Evaluation of essential oils and extracts of different plant parts from Taiwania cryptomerioides against Phellinus noxius, Jour. Exp. For. Nat. Taiwan Univ., 24, 85–95.
Cheng, S.S. and Chang, S.T. (2014) Bioactivity and characterization of exudates from Cryptomeria japonica bark. Wood Sci. Technol., 48, 831–840.
Cheng, Y.S., Kuo, Y.H. and Lin, Y.T. (1967) Extractive compounds from the wood of Taiwania cryptomerioides Hayata: the structures of “T-cadinol” and “T-murrolol”. Chem. Commun. (London), 12, 565‒566.
Chien, S.C., Chen, C.C., Chiu, H.L., Chang, C.I., Tseng, M.H. and Kuo, Y.H. (2008) 18-nor-Podocarpanes and podocarpanes from the bark of Taiwania cryptomerioides. Phytochemistry, 69, 2336–2340.
Chizzola, R. (2013) Regular monoterpenes and sesquiterpenes (essential oils). In: K. Ramawat., J.M. Mérillon (eds.) Natural Products. Springer, Berlin, Heidelberg, pp. 2973‒3008.
Chou, Y.W., Thomas, P.I., Ge, X.J., Lepage, B.A. and Wang, C.N. (2011) Refugia and phylogeography of Taiwania in East Asia. J. Biogeogr., 38, 1992–2005.
Chung, J.D., Chiu, C.M., High, G., Chien, C.T and Ying C.C. (2013) Genetic variation in wood property and growth of Taiwania (Taiwania cryptomerioides Hayata). Silvae Genet., 62, 265‒276
Christianson, D.W. (2006) Structural biology and chemistry of the terpenoid cyclases. Chem. Rev., 106, 3412–3442.
Chyu, C.F., Lin, H.C. and Kuo, Y.H. (2005) New abietane and seco-abietane diterpenes from the roots of Taiwania cryptomerioides. Chem. Pharm. Bull. (Tokyo), 53, 11–14.
Connell, D. and Sutherland, M. (1966) Terpenoid chemistry. XI. (-)-β-Sesquiphellandrene. Aust. J. Chem., 19, 283‒288
Connolly, J.D. and Hill, R.A. (1992). Dictionary of terpenoids. New York, Ny: Chapman and Hall.
Cox, R.E., Yamamoto, S., Otto, A. and Simoneit, B.R.T. (2007) Oxygenated di- and tricyclic diterpenoids of southern hemisphere conifers. Biochem. Syst. Ecol., 35, 342–362.
Criswell, J., Potter, K., Shephard, F., Beale, M.H. and Peters, R.J. (2012) A single residue change leads to a hydroxylated product from the class II diterpene cyclization catalyzed by abietadiene synthase. Org. Lett., 14, 5828–5831.
Crock, J., Wildung, M. and Croteau, R. (1997) Isolation and bacterial expression of a sesquiterpene synthase cDNA clone from peppermint (Mentha x piperita, L.) that produces the aphid alarm pheromone (E)-beta-farnesene. Biochemistry, 94, 12833–12838.
Cseke, L., Dudareva, N. and Pichersky, E. (1998) Structure and evolution of linalool synthase. Mol. Biol. Evol., 15, 1491–1498.
Davis, E.M. and Croteau, R. (2000) Cyclization Enzymes in the Biosynthesis of Monoterpenes, Sesquiterpenes, and Diterpenes. In: F.J. Leeper and J.C. Vederas (eds.) Biosynthesis: Aromatic Polyketides, Isoprenoids, Alkaloids. Springer, Berlin, Heidelberg, pp. 53–95.
Davis, G.D., Essenberg, M., Berlin, K.D., Faure, R. and Gaydou, E.M. (1996) Complete 1H and 13C NMR spectral assignment of δ-cadinene, a bicyclic sesquiterpene hydrocarbon. Magn. Reson. Chem., 34, 156–161.
Degenhardt, J., Köllner, T.G. and Gershenzon, J. (2009) Monoterpene and sesquiterpene synthases and the origin of terpene skeletal diversity in plants. Phytochemistry, 70, 1621–1637.
Denby, C.M., Li, R.A., Vu, V.T., et al. (2018) Industrial brewing yeast engineered for the production of primary flavor determinants in hopped beer. Nat. Commun., 9, 965.
Dev, S. (1981) The chemistry of longifolene and its derivatives. In: W. Herz, H. Grisebach and G.W. Kirby (eds.) Fortschritte der chemie organischer naturstoffe/Progress in the chemistry of organic natural products, vol 40. Springer, Vienna, pp. 49–104.
Ding, Y., Murphy, K., Poretsky, E., et al. (2019) Multiple genes recruited from hormone pathways partition maize diterpenoid defences. Nat. Plants, 5, 1043–1056.
Dosoky, N., Satyal, P. and Setzer, W. (2019) Variations in the volatile compositions of Curcuma species. Foods, 8, 53.
Emanuelsson, O., Nielsen, H. and Heijne, G.Von (1999) ChloroP, a neural network-based method for predicting chloroplast transit peptides and their cleavage sites. Protein Sci., 8, 978–984.
Falara, V., Akhtar, T.A., Nguyen, T.T.H. et al. (2011) The tomato terpene synthase gene family. Plant Physiol., 157, 770–89.
Falara, V., Alba, J.M., Kant, M.R., Schuurink, R.C. and Pichersky, E. (2014) Geranyllinalool synthases in Solanaceae and other Angiosperms constitute an ancient branch of diterpene synthases involved in the synthesis of defensive compounds. Plant Physiol., 166, 428–441.
Falara, V., Pichersky, E. and Kanellis, A.K. (2010) A copal-8-ol diphosphate synthase from the angiosperm Cistus creticus subsp. Creticus is a putative key enzyme for the formation of pharmacologically active, oxygen-containing labdane-type diterpenes. Plant Physiol., 154, 301–310.
Farjon, A. and Garcia, S.O. (2003) Cone and ovule development in Cunninghamia and Taiwania (Cupressaceae sensu lato) and its significance for conifer evolution. Am. J. Bot., 90, 8–16.
Foster, A.J., Hall, D.E., Mortimer, L., Abercromby, S., Gries, R., Gries, G., Bohlmann, J., Russell, J. and Mattsson, J. (2013) Identification of Genes in Thuja plicata Foliar Terpenoid Defenses. Plant Physiol., 161, 1993–2004.
Fox, N. (1927) Effect of camphor, eucalyptol and menthol on the vascular state of the mucous membrane. Arch. Otolaryngol. - Head Neck Surg., 6, 112–122.
Franceschi, V.R., Krekling, T. and Christiansen, E. (2002) Application of methyl jasmonate on Picea abies (Pinaceae) stems induces defense-related responses in phloem and xylem. Am. J. Bot., 89, 578–586.
Franceschi, V.R., Krokene, P., Christiansen. E. and Krekling, T. (2005) Anatomical and chemical defenses of conifer bark against bark beetles and other pests. New Phyto. 167, 353–376.
Geisler, K., Jensen, N.B., Yuen, M.M.S.S., Madilao, L. and Bohlmann, J. (2016) Modularity of conifer diterpene resin acid biosynthesis: p450 enzymes of different cyp720b clades use alternative substrates and converge on the same products. Plant Physiol., 171, 152–164.
Gennadios, H.A., Gonzalez, V., Costanzo, L.Di, Li, A., Yu, F., Miller, D.J., Allemann, R.K. and Christianson, D.W. (2009) Crystal structure of (+)-δ-cadinene synthase from Gossypium arboreum and evolutionary divergence of metal binding motifs for catalysis. Biochemistry, 48, 6175–6183.
George, K.W., Alonso-Gutierrez, J., Keasling, J.D. and Lee, T.S. (2015) Isoprenoid drugs, biofuels, and chemicals—artemisinin, farnesene, and beyond. In: J. Schrader and J. Bohlmann (eds.) Advances in Biochemical Engineering/Biotechnology. Springer, Berlin, Heidelberg, pp. 355–389.
Gershenzon, J. and Dudareva, N. (2007) The function of terpene natural products in the natural world. Nat. Chem. Biol., 3, 408–414.
Gertsch, J., Leonti, M., Raduner, S., Racz, I., Chen, J.Z., Xie, X.Q., Altmann, K.H., Karsak, M. and Zimmer, A. (2008) β-caryophyllene is a dietary cannabinoid. Proc. Natl. Acad. Sci. U. S. A., 105, 9099–9104.
González, M.A. (2015) Aromatic abietane diterpenoids: their biological activity and synthesis. Nat. Prod. Rep., 32, 684–704.
González, A.M., Tracanna, M.I., Amani, S.M., Schuff, C., Poch, M.J., Bach, H. and Catalán, C.A.N. (2012) Chemical composition, antimicrobial and antioxidant properties of the volatile oil and methanol extract of Xenophyllum poposum. Nat. Prod. Commun., 7, 1663–1666.
Grantham, P.J. and Douglas, A.G. (1980) The nature and origin of sesquiterpenoids in some tertiary fossil resins. Geochim. Cosmochim. Acta, 44, 1801–1810.
Grosdidier, A., Zoete, V. and Michielin, O. (2011) SwissDock, a protein-small molecule docking web service based on EADock DSS. Nucleic Acids Res., 39, 270–277.
Gscheidmeier, M. and Fleig, H. (2000) Turpentines. In Ullmann''s Encyclopedia of Industrial Chemistry, electronic release. Weinheim: Wiley-VCH.
Gugerli, F., Sperisen, C., Büchler, U., Brunner, I., Brodbeck, S., Palmer, J.D. and Qiu, Y.L. (2001) The evolutionary split of Pinaceae from other conifers: evidence from an intron loss and a multigene phylogeny. Mol. Phylogenet. Evol., 21, 167–175.
Guo, J., Zhou, Y.J., Hillwig, M.L., Shen, Y., Yang, L., Wang, Y., Zhang, X. and Liu, W. (2013) CYP76AH1 catalyzes turnover of miltiradiene in tanshinones biosynthesis and enables heterologous production of ferruginol in yeasts. Proc. Natl. Acad. Sci. U. S. A., 110, 12108–12113.
Hall, D.E., Robert, J.A., Keeling, C.I., et al. (2011) An integrated genomic, proteomic and biochemical analysis of (+)-3-carene biosynthesis in Sitka spruce (Picea sitchensis) genotypes that are resistant or susceptible to white pine weevil. Plant J., 65, 936–948.
Hall, D.E., Zerbe, P., Jancsik, S., Quesada, A.L., Dullat, H., Madilao, L.L., Yuen, M. and Bohlmann, J. (2013) Evolution of conifer diterpene synthases: diterpene resin acid biosynthesis in lodgepole pine and jack pine involves monofunctional and bifunctional diterpene synthases. Plant Physiol., 161, 600–616.
Hamberger, Björn, Ohnishi, T., Hamberger, Britta, Séguin, A. and Bohlmann, J. (2011) Evolution of diterpene metabolism: Sitka spruce CYP720B4 catalyzes multiple oxidations in resin acid biosynthesis of conifer defense against insects. Plant Physiol., 157, 1677–95.
Hansen, N.L., Nissen, J.N. and Hamberger, B. (2017) Phytochemistry Two residues determine the product profile of the class II diterpene synthases TPS14 and TPS21 of Tripterygium wilfordii. Phytochemistry. 138, 52–56.
Hanson, J.R. (2017) Diterpenoids of terrestrial origin. Nat. Prod. Rep., 34, 1233–1243.
Hayashi, K.I., Kawaide, H., Notomi, M., Sakigi, Y., Matsuo, A. and Nozaki, H. (2006) Identification and functional analysis of bifunctional ent-kaurene synthase from the moss Physcomitrella patens. FEBS Lett., 580, 6175–6181.
He, K., Zeng, L., Shi, G., Zhao, G.X., Kozlowski, J.F. and McLaughlin, J.L. (1997) Bioactive compounds from Taiwania cryptomerioides. J. Nat. Prod., 60, 38–40.
Henderson, W., Hart, J.W., How, P. and Judge, J. (1970) Chemical and morphological studies on sites of sesquiterpene accumulation in Pogostemon cablin (patchouli). Phytochemistry, 9, 1219–1228.
Herde, M., Gärtner, K., Köllner, T.G., Fode, B., Boland, W., Gershenzon, J., Gatz, C. and Tholl, D. (2008) Identification and regulation of TPS04/GES, an Arabidopsis geranyllinalool synthase catalyzing the first step in the formation of the insect-induced volatile C16-homoterpene TMTT. Plant Cell, 20, 1152–1168.
Hendrickson, J.B. (1959) Stereochemical implications in sesquiterpene biogenesis. Tetrahedron, 7, 82–89.
Hillwig, M.L., Xu, M., Toyomasu, T., Tiernan, M.S., Wei, G., Cui, G., Huang, L. and Peters, R.J. (2011) Domain loss has independently occurred multiple times in plant terpene synthase evolution. Plant J., 68, 1051–1060.
Himejima, M., Hobson, K.R., Otsuka, T., Wood, D.L. and Kubo, I. (1992) Antimicrobial terpenes from oleoresin of ponderosa pine tree Pinus ponderosa: A defense mechanism against microbial invasion. J. Chem. Ecol., 18, 1809–1818.
Ho, C.L., Yang, S.S., Chang, T.M. and Su, Y.C. (2012) Composition, antioxidant, antimicrobial and anti-wood-decay fungal activities of the twig essential oil of Taiwania cryptomerioides from Taiwan. Nat. Prod. Commun., 7, 261–264.
Ho, P.J., Chou, C.K., Kuo, Y.H., Tu, L.C. and Yeh, S.F. (2007) Taiwanin A induced cell cycle arrest and p53-dependent apoptosis in human hepatocellular carcinoma HepG2 cells. Life Sci., 80, 493–503.
Hong, G.J., Xue, X.Y., Mao, Y.B., Wang, L.J. and Chen, X.Y. (2012) Arabidopsis MYC2 interacts with DELLA proteins in regulating sesquiterpene synthase gene expression. Plant Cell, 24, 2635–2648.
Hormaza, J.I. and Wünsch, A. (2011) Pistacia. In: C. Kole (ed.) Wild Crop Relatives: Genomic and Breeding Resources. Springer, Berlin, Heidelberg, pp. 119‒128.
Horton, P., Park, K.-J., Obayashi, T., Fujita, N., Harada, H., Adams-Collier, C.J. and Nakai, K. (2007) WoLF PSORT: protein localization predictor. Nucleic Acids Res., 35, W585–W587.
Hsieh, H.L., Ma, L.T., Wang, S.Y. and Chu, F.H. (2015) Cloning and expression of a sesquiterpene synthase gene from Taiwania cryptomerioides. Holzforschung, 69, 1041–1048.
Hsu, L.J. and Chu, F.H. (2015) Plasticity residues involved in secondary cyclization of terpene synthesis in Taiwania cryptomerioides. Tree Genet. Genomes, 11, 796.
Huang, J.F., Li, L., Werff, H.van der, et al. (2016) Origins and evolution of cinnamon and camphor: A phylogenetic and historical biogeographical analysis of the Cinnamomum group (Lauraceae). Mol. Phylogenet. Evol., 96, 33–44.
Huang, M., Sanchez-Moreiras, A.M., Abel, C., Sohrabi, R., Lee, S., Gershenzon, J. and Tholl, D. (2012) The major volatile organic compound emitted from Arabidopsis thaliana flowers, the sesquiterpene (E)-β-caryophyllene, is a defense against a bacterial pathogen. New Phytol., 193, 997–1008.
Huelin, F.E. and Murray, K.E. (1966) α-Farnesene in the natural coating of apples intergovernmental panel on climate change. Nature, 210, 1260–1261.
Ignea, C., Athanasakoglou, A., Andreadelli, A., Apostolaki, M., Iakovides, M., Stephanou, E.G., Makris, A.M. and Kampranis, S.C. (2017) Overcoming the plasticity of plant specialized metabolism for selective diterpene production in yeast. Sci. Rep., 7, 1–11.
Iijima, Y., Gang, D.R., Fridman, E., Lewinsohn and Pichersky, E. (2004) Characteriztion of geraniol synthase from the peltate glands of sweet basil. Plant Physiol., 134, 370‒379.
Itô, S., Endo, K., Yoshida, T., Yatagai, M. and Kodama, M. (1967) Chamigrene, a sesquiterpene hydrocarbon of a novel carbon skeleton. Chem. Commun. (London), 4, 186– 188.
Jana, C.K., Scopelliti, R. and Gademann, K. (2010) A synthetic entry into the taiwaniaquinoids based on a biogenetic hypothesis: Total synthesis of (-)-taiwaniaquinone H. Chem: A Eur. J., 16, 7692–7695.
Jia, M., Potter, K.C. and Peters, R.J. (2016) Extreme promiscuity of a bacterial and a plant diterpene synthase enables combinatorial biosynthesis. Metab. Eng., 37, 24–34.
Jia, M., Zhou, K., Tufts, S., Schulte, S. and Peters, R.J. (2017) A pair of residues that interactively affect diterpene synthase product outcome. ACS Chem. Biol., 12, 862–867.
Karchesy, J.J. and Kelsey, R.G. (2018) Yellow-Cedar , Callitropsis ( Chamaecyparis ) nootkatensis , Secondary Metabolites , Biological Activities , and Chemical Ecology. J. Chem. Ecol., 44, 510–524.
Karunanithi, P.S. and Zerbe, P. (2019) terpene synthases as metabolic gatekeepers in the evolution of plant terpenoid chemical diversity. Front. Plant Sci., 10, 1–23.
Kawaide, H., Hayashi, K.I., Kawanabe, R., Sakigi, Y., Matsuo, A., Natsume, M. and Nozaki, H. (2011) Identification of the single amino acid involved in quenching the ent-kauranyl cation by a water molecule in ent-kaurene synthase of Physcomitrella patens. FEBS J., 278, 123–133.
Kazanm, K. and Manners, J. (2013) MYC2: The master in action. Mol. Plant, 6, 656–703.
Keeling, C.I. and Bohlmann, J. (2006) Diterpene resin acids in conifers. Phytochemistry, 67, 2415–2423.
Keeling, Christopher I., Dullat, H.K., Yuen, M., Ralph, S.G., Jancsik, S. and Bohlmann, J. (2010) identification and functional characterization of monofunctional ent-copalyl diphosphate and ent-kaurene synthases in white spruce reveal different patterns for diterpene synthase evolution for primary and secondary metabolism in gymnosperms. Plant Physiol., 152, 1197–1208.
Keeling, C.I., Madilao, L.L., Zerbe, P., Dullat, H.K. and Bohlmann, J. (2011) The primary diterpene synthase products of Picea abies levopimaradiene/abietadiene synthase (PaLAS) are epimers of a thermally unstable diterpenol. J. Biol. Chem., 286, 21145–21153.
Keeling, C.I., Weisshaar, S., Lin, R.P.C. and Bohlmann, J. (2008) Functional plasticity of paralogous diterpene synthases involved in conifer defense. Proc. Natl. Acad. Sci. U. S. A., 105, 1085–1090.
Keeling, C.I., Weisshaar, S., Ralph, S.G., Jancsik, S., Hamberger, B., Dullat, H.K. and Bohlmann, J. (2011) Transcriptome mining, functional characterization, and phylogeny of a large terpene synthase gene family in spruce (Picea spp.). BMC Plant Biol., 11, 43.
Kitaoka, N., Wu, Y., Zi, J. and Peters, R.J. (2016) Investigating inducible short-chain alcohol dehydrogenases/reductases clarifies rice oryzalexin biosynthesis. Plant J., 88, 271–279.
Kopper, B.J., Illman, B.L., Kersten, P.J., Klepzig, K.D. and Raffa, K.F. (2005) Effects of diterpene acids on components of a conifer bark beetle–fungal interaction: tolerance by Ips pini and sensitivity by its associate Ophiostoma ips. Environ. Entomol., 34, 486–493.
Kosaka, K. and Yokoi, T. (2003) Carnosic acid, a component of rosemary (Rosmarinus officinalis L.), promotes synthesis of nerve growth factor in T98G human glioblastoma cells. Biol. Pharm. Bull., 26, 1620–1622.
Kováts, E. (1958) Gas-chromatographische charakterisierung organischer verbindungen. teil 1: retentionsindices aliphatischer halogenide, alkohole, aldehyde und ketone. Helv. Chim. Acta, 41, 1915–1932.
Kafuku, K. and Kato, R. (1931) On the essential oil of Taiwania cedar. Bull. Chem. Soc. Jpn., 6, 65–74.
Kumar, S., Kempinski, C., Zhuang, X. et al. (2016) Molecular diversity of terpene synthases in the liverwort Marchantia polymorpha. Plant cell, 28, 2632–2650.
Kumar, S., Stecher, G., Li, M., Knyaz, C. and Tamura, K. (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol., 35, 1547–1549.
Kuo, Y.H. and Chang, C.I. (2000) Podocarpane-type trinorditerpenes from the bark of Taiwania cryptomerioides. J. Nat. Prod., 63, 650–652.
Kuo, Y.H., Chang, C.I. and Lee, C.K. (2000) Six podocarpane-type trinorditerpenes from the bark of Taiwania cryptomerioides. Chem. Pharm. Bull. (Tokyo), 48, 597–599.
Kuo, Y.H. and Chien, S.C. (2001) Quinone-type podocarpanes from the bark of Taiwania cryptomerioides. Chem. Pharm. Bull., 49, 1033–1035.
Kuo, Y., Chien, S. and Huang, S. (2002) Four new podocarpane-type trinorditerpenes from the bark of Taiwania cryptomerioides, 50, 544–546.
Köllner, T.G., Gershenzon, J. and Degenthardt, J. (2009) Molecular and biochemical evolution of maize terpene synthase 10, an enzyme of indirect defense. Phytochemistry, 70, 1139‒1145.
Köpke, D., Schröder, R., Fischer, H.M., Gershenzon, J., Hilker, M. and Schmidt, A. (2008) Does egg deposition by herbivorous pine sawflies affect transcription of sesquiterpene synthases in pine? Planta, 228, 427–438.
Lah, L., Haridas, S., Bohlmann, J. and Breuil, C. (2013) The cytochromes P450 of Grosmannia clavigera: Genome organization, phylogeny, and expression in response to pine host chemicals. Fungal Genet. Biol., 50, 72–81.
Larkin, M.A., Blackshields, G., Brown, N.P., et al. (2007) Clustal W and Clustal X version 2.0. Bioinformatics, 23, 2947–2948.
Laude, E.A., Morice, A.H. and Grattan, T.J. (1994) The antitussive effects of menthol, camphor and cineole in conscious guinea-pigs. Pulm. Pharmacol., 7, 179–184.
Lepage, B.A. (2009) Earliest occurrence of Taiwania (Cupressaceae ) from the early cretaceous of alaska : evolution , biogeography , and paleoecology. J. Acad. Nat. Sci. Phila., 158, 129–158.
Lee, C.H., Chan, M.H., Wang, Y.N. and Chu, F.H. (2006) Gene investigation into the inner bark of Taiwania (Taiwania cryptomerioides). Bot. Stud., 47, 111–118.
Lee, H.J., Ravn, M.M. and Coates, R.M. (2001) Synthesis and characterization of abietadiene, levopimaradiene, palustradiene, and neoabietadiene: Hydrocarbon precursors of the abietane diterpene resin acids. Tetrahedron, 57, 6155–6167.
Leebens-Mack, J.H., Barker, M.S., Carpenter, E.J., et al. (2019) One thousand plant transcriptomes and the phylogenomics of green plants. Nature, 574, 679–685.
Leonard, E., Ajikumar, P.K., Thayer, K., Xiao, W.H., Mo, J.D., Tidor, B., Stephanopoulos, G. and Prather, K.L.J. (2010) Combining metabolic and protein engineering of a terpenoid biosynthetic pathway for overproduction and selectivity control. Proc. Natl. Acad. Sci. U. S. A., 107, 13654–13659.
Leslie, A.B., Beaulieu, J.M., Rai, H.S., Crane, P.R., Donoghue, M.J. and Mathews, S. (2012) Hemisphere-scale differences in conifer evolutionary dynamics. Proc. Natl. Acad. Sci. U. S. A., 109, 16217–16221.
Li, H.L. and Keng, H. (1997) 6. Pinaceae. In: T.C. Huang (ed.) Flora of Taiwan, second edition. Volume one. Department of Botany, National Taiwan University, Taipei, Taiwan., pp. 567–595.
Li, J.X., Fang, X., Zhao, Q., Ruan, J.X., Yang, C.Q., Wang, L.J., Miller, D.J., Faraldos, J.A., Allemann, R.K., Chen, X.Y. and Zhang, P. (2013) Rational engineering of plasticity residues of sesquiterpene synthases from Artemisia annua: product specificity and catalytic efficiency. Biochem. J., 451, 417–426.
Li, R., Weldegergis, B.T., Li, J., et al. (2014) Virulence factors of geminivirus interact with MYC2 to subvert plant resistance and promote vector performance. Plant Cell, 26, 4991–5008.
Li, R., Wang, M., Wang, Y., Schuman, M.C., Weinhold, A., Schӓfer, M., Jiménez-Alemán, G.H., Barthel, A. and Baldwin, I.T. (2017) Flower-specific jasmonate signaling regulates constitutive floral defenses in wild tobacco. Proc. Natl. Acad. Sci. U. S. A., 114, E7205‒E7214.
Li, Z., Baniaga, A.E., Sessa, E.B., Scascitelli, M., Graham, S.W., Rieseberg, L.H. and Barker, M.S. (2015) Early genome duplications in conifers and other seed plants. Sci. Adv., 1, e1501084.
Li, Z., Baniaga, A.E., Sessa, E.B., Scascitelli, M., Graham, S.W., Rieseberg, L.H. and Barker, M.S. (2015) Early genome duplications in conifers and other seed plants. Sci. Adv., 1, e1501084–e1501084.
Li, Z., Gao, R., Hao, Q., et al. (2016) The T296V mutant of amorpha-4,11-diene synthase is defective in allylic diphosphate isomerization but retains the ability to cyclize the intermediate (3R)-nerolidyl diphosphate to amorpha-4,11-diene. Biochemistry, 55, 6599–6604.
Lin, T.P., Lu, C.S., Chung, Y.L. and Yang, Y.L. (1993) Allozyme variation in four populations of Taiwania cryptomerioides in Taiwan. Silvae Genet., 42, 278–284.
Lin, J.C., Chiu, C.M., Lin, Y.J. and Liu, W.Y. (2018) Thining effects on biomass and carbon stock for young Taiwania plantations. Sci. Rep., 8, 1‒7.
Lin, W.H., Fang, J.M. and Cheng, Y.S. (1995) Uncommon diterpenes with the skeleton of six-five-six fused-rings from Taiwania cryptomerioides. Phytochemistry, 40, 871–873.
Lin, W.H., Fang, J.M. and Cheng, Y.S. (1999) Lignans from Taiwania cryptomerioides. Phytochemistry, 50, 653‒658.
Lin, Y.T., Lin, Y.S. and Lo, T.B. (1963) Extractive components from the heartwood of Taiwania Cryptomerioides Hayata. II. The presence of hinokiol, savinin and α-cadinol intergovernmental panel on climate change. J. Chinese Chem. Soc., 10, 163–165.
Lin, Y.T., Wang, K.T. and Weinstein, B. (1965) Phytochemical studies. The structure of taiwanin A. Chem. Commun. (London), 23, 592.
Little, D.B. and Croteau, R.B. (2002) Alteration of product formation by directed mutagenesis and truncation of the multiple-product sesquiterpene synthases δ-selinene synthase and γ-humulene synthase. Arch. Biochem. Biophys., 402, 120–135.
Loizzi, M., González, V., Miller, D.J. and Allemann, R.K. (2018) Nucleophilic water capture or proton loss: single amino acid switch converts δ-cadinene synthase into germacradien-4-ol synthase. ChemBioChem, 19, 100–105.
Lu, X., Zhang, J., Brown, B., et al. (2018) Inferring roles in defense from metabolic allocation of rice diterpenoids. Plant Cell, 30, 1119–1131.
Mafu, S., Karunanithi, P.S., Palazzo, T.A., et al. (2017) Biosynthesis of the microtubule-destabilizing diterpene pseudolaric acid B from golden larch involves an unusual diterpene synthase. Proc. Natl. Acad. Sci. U. S. A., 114, 974–979.
Mafu, S., Potter, K.C., Hillwig, M.L., Schulte, S., Criswell, J.D. and Peters, R.J. (2015) Efficient heterocyclisation by (di)terpene synthases. Chem. Commun., 51, 13485–13487.
Magadum, S., Banerjee, U., Murugan, P., Gangapur, D. and Ravikesavan, R. (2013) Gene duplication as a major force in evolution. J. Genet., 92, 155–161.
Majetich, G. and Shimkus, J.M. (2010) The taiwaniaquinoids: a review. J. Nat. Prod., 73, 284–298.
Mao, K., Milne, R.I., Zhang, L., Peng, Y., Liu, J., Thomas, P., Mill, R.R. and S. Renner, S. (2012) Distribution of living Cupressaceae reflects the breakup of Pangea. Proc. Natl. Acad. Sci. U. S. A., 109, 7793–7798.
Martin, D., Tholl, D., Gershenzon, J. and Bohlmann, J. (2002) Methyl jasmonate induces traumatic resin ducts, terpenoid resin biosynthesis, and terpenoid accumulation in developing xylem of Norway spruce stems. Plant Physiol., 129, 1003–1018.
Martin, D., Fäldt, J. and Bohlmann, J. (2004) Functional characterization of nine Norway Spruce TPS genes and evolution of gymnosperm terpene synthases of the TPS-d subfamily. Plant Physiol., 135, 1908–1927.
Martin, V.J.J., Pitera, D.J., Withers, S.T., Newman, J.D. and Keasling, J.D. (2003) Engineering a mevalonate pathway in Escherichia coli for production of terpenoids. Nat. Biotechnol., 21, 796–802.
McAndrew, R.P., Peralta-Yahya, P.P., Degiovanni, A., Pereira, J.H., Hadi, M.Z., Keasling, J.D. and Adams, P.D. (2011) Structure of a three-domain sesquiterpene synthase: A prospective target for advanced biofuels production. Structure, 19, 1876–1884.
Miki, S. (1954) The occurrence of the remain of Taiwania and Palaeotsuga (n. subg.) from Pliocene beds in Japan. Proc. Jpn. Acad., 30, 976–981.
Miller, B, Madilao, L.L,. Ralph, S. and Bohlmann, J. (2005) Insect-induced conifer defense. White pine weevil and methyl jasmonate induce traumatic resinosis, de novo formed volatile emissions, and accumulation ofterpenoid synthase and putative octadecanoid pathway transcripts in Sitka spruce. Plant Physiol., 137: 369–382.
Mirov, N.T. (1946) Composition of Gum Turpentine of Coulter Pine. Ind. Eng. Chem., 38, 405–408.
Misra, L.N. and Singh, S.P. (1986) α-Thujone, the major component of the essential oil from Artemisia vulgaris growing wild in nilgiri hills. J. Nat. Prod., 49, 941.
Misra, R.C., Maiti, P., Chanotiya C.S., Shanker, K. and Ghosh, S. (2014) Methyl jasmonate-elicited transcriptional responses and pentacyclic triterpene biosynthesis in sweet basil. Plant physiol., 164, 1028‒1044.
Moore, R.C. and Purugganan, M.D. (2005) The evolutionary dynamics of plant duplicate genes. Curr. Opin. Plant Biol., 8, 122–128.
Morrone, D., Lowry, L., Determan, M.K., Hershey, D.M., Xu, M. and Peters, R.J. (2010) Increasing diterpene yield with a modular metabolic engineering system in E. coli: Comparison of MEV and MEP isoprenoid precursor pathway engineering. Appl. Microbiol. Biotechnol., 85, 1893–1906.
Mozuraitis, R. (2002) (-)-Germacrene D increases attraction and oviposition by the tobacco budworm moth Heliothis virescens. Chem. Senses, 27, 505–509.
Murphy, K.M., Ma, L.T., Ding, Y., Schmelz, E.A. and Zerbe, P. (2018) Functional characterization of two class ii diterpene synthases indicates additional specialized diterpenoid pathways in maize (Zea mays). Front. Plant Sci., 871, 1–12.
Nagy, N.E., Franceschi, V.R., Solheim, H., Krekling, T. and Christiansen, E. (2000) Wound- induced traumatic resin duct development in stems of Norway spruce (Pinaceae): anatomy and cytochemical traits. Am. J. Bot., 87, 302–313.
Nigam, M.C., Nigam, I.C., Levi, L. and Handa, K.L. (1964) Essential oils and their constituents: xxii. detection of new trace components in oil of ginger. Can. J. Chem., 42, 2610–2615.
Nystedt, B., Street, N.R., Wetterbom, A., et al. (2013) The Norway spruce genome sequence and conifer genome evolution. Nature, 497, 579–584.
Otto, A. and Wilde, V. (2001) Sesqui-, di-, and triterpenoids as chemosystematie markers in extant conifers--A review. Bot. Rev., 67, 141–238.
Pateraki, I., Andersen-Ranberg, J., Hamberger, B., Heskes, A.M., Martens, H.J., Zerbe, P., Bach, S.S., Møller, B.L., Bohlmann, J. and Hamberger, B. (2014) Manoyl oxide (13R), the biosynthetic precursor of forskolin, is synthesized in specialized root cork cells in Coleus forskohlii. Plant Physiol., 164, 1222–36.
Pelot, K.A., Chen, R., Hagelthorn, D.M., Young, C.A., Addison, J.B., Muchlinski, A., Tholl, D. and Zerbe, P. (2018) Functional diversity of diterpene synthases in the biofuel crop switchgrass. Plant Physiol., 178, 54-71.
Pelot, K.A., Mitchell, R., Kwon, M., Hagelthorn, D.M., Wardman, J.F., Chiang, A., Bohlmann, J., Ro, D.K. and Zerbe, P. (2017) Biosynthesis of the psychotropic plant diterpene salvinorin A: Discovery and characterization of the Salvia divinorum clerodienyl diphosphate synthase. Plant J., 89, 885–897.
Pérez-López, A., Cirio, A.T., Rivas-Galindo, V.M., Aranda, R.S. and Torres, N.W.De (2011) Activity against Streptococcus pneumoniae of the essential oil and δ-cadinene isolated from Schinus molle fruit. J. Essent. Oil Res., 23, 25–28.
Peter, G.F. (2018) Breeding and engineering trees to accumulate high levels of terpene metabolites for plant defense and renewable chemicals. Front. Plant Sci., 9, 1–7.
Peters, R.J. (2010) Two rings in them all: The labdane-related diterpenoids. Nat. Prod. Rep., 27, 1521.
Peters, R.J., Carter, O.A., Zhang, Y., Matthews, B.W. and Croteau, R.B. (2003) Bifunctional abietadiene synthase: Mutual structural dependence of the active sites for protonation-initiated and ionization-initiated cyclizations. Biochemistry, 42, 2700–2707.
Peters, R.J., Flory, J.E., Jetter, R., Ravn, M.M., Lee, H., Coates, R.M. and Croteau, R.B. (2000) Abietadiene synthase from grand fir ( Abies grandis ): Characterization and mechanism of action of the “ pseudomature ” recombinant enzyme. Biochemistry, 39, 15592–15602.
Peters, R.J., Ravn, M.M., Coates, R.M. and Croteau, R.B. (2001) Bifunctional abietadiene synthase: Free diffusive transfer of the (+)-copalyl diphosphate intermediate between two distinct active sites. J. Am. Chem. Soc., 123, 8974–8978.
Phillips, M.A. and Croteau, R.B. (1999) Resin-based defenses in conifers. Trends Plant Sci., 4, 184–190.
Pichersky, E. and Raguso, R.A. (2018) Why do plants produce so many terpenoid compounds? New Phytol., 220, 692–702.
Potter, K., Criswell, J., Zi, J., Stubbs, A. and Peters, R.J. (2014) novel product chemistry from mechanistic analysis of ent -copalyl diphosphate synthases from plant hormone biosynthesis. Angew. Chemie Int. Ed., 53, 7198–7202.
Potter, K.C., Zi, J., Hong, Y.J., Schulte, S., Malchow, B., Tantillo, D.J. and Peters, R.J. (2016) Enzyme catalysis blocking deprotonation with retention of aromaticity in a plant ent -copalyl diphosphate synthase leads to product rearrangement. Angew. Chemie. Int. Ed., 55, 634–638.
Rauter, A.P., Branco, I., Bermejo, J., González, A.G., Garcı́a-Grávalos, M.D. and Feliciano, A.S. (2001) Bioactive humulene derivatives from Asteriscus vogelii. Phytochemistry, 56, 167–171.
Rinkel, J., Rabe, P., Garbeva, P. and Dickschat, J.S. (2016) Lessons from 1,3-hydride shifts in sesquiterpene cyclizations. Angew. Chemie. Int. Ed., 55, 13593–13596.
Ro, D.K. and Bohlmann, J. (2006) Diterpene resin acid biosynthesis in loblolly pine (Pinus taeda): Functional characterization of abietadiene/levopimaradiene synthase (PtTPS-LAS) cDNA and subcellular targeting of PtTPS-LAS and abietadienol/abietadienal oxidase (PtAO, CYP720B1). Phytochemistry, 67, 1572–1578.
Ro, D.K., Ehlting, J., Keeling, C.I., Lin, R., Mattheus, N. and Bohlmann, J. (2006) Microarray expression profiling and functional characterization of AtTPS genes: Duplicated Arabidopsis thaliana sesquiterpene synthase genes At4g13280 and At4g13300 encode root-specific and wound-inducible (Z)-γ-bisabolene synthases. Arch. Biochem. Biophys., 448, 104–116.
Ro, D.K., Arimura, G.I., Lau, S.Y.W., Piers, E. and Bohlmann, J. (2005) Loblolly pine abietadienol/abietadienal oxidase PtAO (CYP720B1) is a multifunctional, multisubstrate cytochrome P450 monooxygenase. Proc. Natl. Acad. Sci. U. S. A., 102, 8060–8065.
Rodrigues‐Corrêa, K.C.d.S., de, Lima, J.C. and Fett‐Neto, A.G. (2012) Pine oleoresin: tapping green chemicals, biofuels, food protection, and carbon sequestration from multipurpose trees. Food Energy Secur., 1: 81-93.
Rostelien, T. (2000) The plant sesquiterpene germacrene d specifically activates a major type of antennal receptor neuron of the tobacco budworm moth Heliothis virescens. Chem. Senses, 25, 141–148.
Sakamoto, T. (2004) An overview of gibberellin metabolism enzyme genes and their related mutants in rice. Plant Physiol., 134, 1642–1653.
Sallaud, C., Giacalone, C., Töpfer, R., Goepfert, S., Bakaher, N., Rösti, S. and Tissier, A. (2012) Characterization of two genes for the biosynthesis of the labdane diterpene Z-abienol in tobacco (Nicotiana tabacum) glandular trichomes. Plant J., 72, 1–17.
Salmon, M., Laurendon, C., Vardakou, M., Cheema, J., Defernez, M., Green, S., Faraldos, J. a, Maille, P.E.O. and O’Maille, P.E. (2015) Emergence of terpene cyclization in Artemisia annua. Nat. Commun., 6, 6143.
Scalerandi, E., Flores, G.A., Palacio, M., Defagó, M.T., Carpinella, M.C., Valladares, G., Bertoni, A. andPalacios, S.M. (2018) Understanding synergistic toxicity of terpenes as insecticides: contribution of metabolic detoxification in Musca domestica. Front. Plant Sci., 9, 1‒9.
Schepmann, H.G., Pang, J. and Matsuda, S.P. (2001) Cloning and characterization of Ginkgo biloba levopimaradiene synthase, which catalyzes the first committed step in ginkgolide biosynthesis. Arch. Biochem. Biophys., 392, 263–269.
Schlarbaum, S.E. and Tsuchiya, T. (1984) The chromosomes of Cunninghamia konishii, C. lanceolata, and Taiwania cryptomerioides (Taxodiaceae). Plant Syst. Evol., 145, 169–181.
Schmelz, E.A., Kaplan, F., Huffaker, A., Dafoe, N.J., Vaughan, M.M., Ni, X., Rocca, J.R., Alborn, H.T. and Teal, P.E. (2011) Identity, regulation, and activity of inducible diterpenoid phytoalexins in maize. Proc. Natl. Acad. Sci., 108, 5455–5460.
Schmid, R. (2013) "The distribution, morphology and classification of Taiwania" (Cupressaceae): An unpublished manuscript (1941) by John Theodore Buchholz (1888-1951). Taiwania, 58, 85–103.
Schnee, C., Kollner, T.G., Held, M., Turlings, T.C.J., Gershenzon, J. and Degenhardt, J. (2006) The products of a single maize sesquiterpene synthase form a volatile defense signal that attracts natural enemies of maize herbivores. Proc. Natl. Acad. Sci., 103, 1129–1134.
Schulte, S., Potter, K.C., Lemke, C. and Peters, R.J. (2018) catalytic bases and stereocontrol in lamiaceae class II diterpene cyclases. Biochemistry, 57, 3473–3479.
Schulz, C. and Stützel, T. (2007) Evolution of taxodiaceous Cupressaceae (Coniferopsida). Org. Divers. Evol., 7, 124–135.
Scott, A.D., Stenz, N.W.M., Ingvarsson, P.K. and Baum, D.A. (2016) Whole genome duplication in coast redwood (Sequoia sempervirens) and its implications for explaining the rarity of polyploidy in conifers. New Phytol., 211, 186–193.
Seca, A.M.L., Pinto, D.C.G.A. and Silva, A.M.S. (2008) Structural elucidation of pimarane and isopimarane diterpenoids: The 13C NMR contribution. Nat. Prod. Commun., 3, 399‒412.
Shalev, T.J., Yuen, M.M.S., Gesell, A., Yuen, A., Russell, J.H. and Bohlmann, J. (2018) An annotated transcriptome of highly inbred Thuja plicata (Cupressaceae) and its utility for gene discovery of terpenoid biosynthesis and conifer defense. Tree Genet. Genomes, 14. 35.
Sharkey, T.D., Gray, D.W., Pell, H.K., Breneman, S.R. and Topper, L. (2013) Isoprene synthase genes form a monophyletic clade of acyclic terpene synthases in the Tps-b terpene synthase family. Evolution, 67, 1026‒1040.
Shimakura, M. (1937) Anatomy of the wood of Taiwania. Bot. Mag., 51, 694–700.
Shishova, E.Y., Yu, F., Miller, D.J., Faraldos, J.A., Zhao, Y., Coates, R.M., Allemann, R.K., Cane, D.E. and Christianson, D.W. (2008) X-ray crystallographic studies of substrate binding to aristolochene synthase suggest a metal ion binding sequence for catalysis. J. Biol. Chem., 283, 15431–15439.
Shyur, L.F., Lee, S.H., Chang, S.T., Lo, C.P., Kuo, Y.H. and Wang, S.Y. (2010) Taiwanin A inhibits MCF-7 cancer cell activity through induction of oxidative stress, upregulation of DNA damage checkpoint kinases, and activation of p53 and FasL/Fas signaling pathways. Phytomedicine, 18, 16–24.
Sipponen, A. and Laitinen, K. (2011) Antimicrobial properties of natural coniferous rosin in the European Pharmacopoeia challenge test. APMIS, 119, 720–724. Available at: http://doi.wiley.com/10.1111/j.1600-0463.2011.02791.x.
Simoneit, B.R.T., Cox, R.E., Oros, daniel R. and Otto, A. (2018) Terpenoid Compositions of resins from Callitris species (Cupressaceae). Molecules, 23, 3384.
Sitton, D. and West, C.A. (1975) Casbene: An anti-fungal diterpene produced in cell-free extracts of Ricinus communis seedlings. Phytochemistry, 14, 1921–1925.
Steele, C.L., Crock, J., Bohlmann, J. and Croteau, R. (1998a) Sesquiterpene synthases from Grand Fir (Abies grandis). J. Biol. Chem., 273, 2078–2089.
Steele, C.L., Katoh, S., Bohlmann, J. and Croteau, R. (1998b) Regulation of Oleoresinosis in Grand Fir (Abies grandis). Plant Physiol., 116, 1497–1504.
Stefanova, M., Markova, K., Marinov, S. and Simoneit, B.R.T. (2005) Biomarkers in the fossils from the Miocene-aged Chukurovo lignite, Bulgaria: Sesqui- and diterpenoids. Bull. Geosci., 80, 93–97.
Sun, T.P. and Kamiya, Y. (1994) The Arabidopsis GA1 locus encodes the cyclase ent-kaurene synthetase a of gibberellin biosynthesis. Plant Cell, 6, 1509–1518.
Sy, L.K. and Brown, G.D. (1997) Total assignment of the 1H and 13C NMR chemical shifts of three bisabolane hydrocarbons by 2D-NMR spectroscopy. Magn. Reson. Chem., 35, 424–425.
Szczepanik, M., Dams, I. and Wawrzeńczyk, C. (2009) Feeding deterrent activity of terpenoid lactones with the p-menthane system against the colorado potato beetle (Coleoptera: Chrysomelidae). Environ. Entomol., 34, 1433–1440.
Sémon, M. and Wolfe, K.H. (2007) Consequences of genome duplication. Curr. Opin. Genet. Dev., 17, 505–512.
Takoi, K., Itoga, Y., Koie, K., Kosugi, T., Katayama, Y., Nakayama, Y. and Watari, J. (2010) The contribution of geraniol metabolism to the citrus flavour of beer : synergy of geraniol and β -citronellol under coexistence with excess linalool. J. Inst. Brew., 116, 251–260.
Talavera, G. and Castresana, J. (2007) Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Syst. Biol., 56, 564–577.
Tapia, R., Guardia, J.J., Alvarez, E., Haidöur, A., Ramos, J.M., Alvarez-Manzaneda, R., Chahboun, R. and Alvarez-Manzaneda, E. (2012) General access to taiwaniaquinoids based on a hypothetical abietane C7-C8 cleavage biogenetic pathway. J. Org. Chem., 77, 573–584.
Tholl, D. (2006) Terpene synthases and the regulation, diversity and biological roles of terpene metabolism. Curr. Opin. Plant Biol., 9, 297–304.
Tian, X., Ruan, J.X., Huang, J.Q., et al. (2018) Characterization of gossypol biosynthetic pathway. Proc. Natl. Acad. Sci. U. S. A., 115, E5410–E5418.
Trapp, S.C. and Croteau, R.B. (2001a) Genomic organization of plant terpene synthases and molecular evolutionary implications. Genetics, 158, 811–832.
Trapp, S.C. and Croteau, R.B. (2001b) Defensive resin biosynthesis in conifers. Annu. Rev. Plant Physiol. Plant Mol. Biol., 52, 689–724.
Tsutomu, N., Hitoshi, M., Masao, N., Hideko, H. and Kaisuke, Y. (1983) Production of cryptotanshinone and ferruginol in cultured cells of Salvia miltiorrhiza. Phytochemistry, 22, 721–722.
Tümen, I. and Reunanen, M. (2010) A comparative study on turpentine oils of oleoresins of Pinus sylvestris L. from three districts of Denizli. Rec. Nat. Prod., 4, 224–229.
Vaughan, M.M., Wang, Q., Webster, F.X., et al. (2013) Formation of the unusual semivolatile diterpene rhizathalene by the Arabidopsis class I terpene synthase TPS08 in the root stele is involved in defense against belowground herbivory. Plant Cell, 25, 1108–25.
Vogel, B.S., Wildung, M.R., Vogel, G. and Croteau, R. (1996) Abietadiene Synthase from Grand Fir ( Abies grandis ). J. Biol. Chem., 271, 23262–23268.
Wajs-Bonikowska, A., Szoka, L., Karna, E., Wiktorowska-Owczarek, A. and Sienkiewicz, M. (2017) Abies concolor seeds and cones as new source of essential oils-composition and biological activity. Molecules, 22, 1–12.
Wang, S.Y., Wang, Y.S., Tseng, Y.H., Lin, C.T. and Liu, C.P. (2006) Analysis of fragrance compositions of precious coniferous woods grown in Taiwan. Holzforschung, 60, 528–532.
Wang, S.Y., Wu, C.L., Chu, F.H., Chien, S.C., Kuo, Y.H., Shyur, L.F. and Chang, S.T. (2005) Chemical composition and antifungal activity of essential oil isolated from Chamaecyparis formosensis Matsum. wood. Holzforschung, 59, 295–299.
Wang, S.Y., Wu, J.H., Shyur, L.F., Kuo, Y.H. and Chang, S.T. (2002) Antioxidant activity of abietane-type diterpenes from heartwood of Taiwania cryptomerioides Hayata. Holzforschung, 56, 487–492.
Wang, X. and Ran, J. (2014) Molecular phylogenetics and evolution evolution and biogeography of gymnosperms. Mol. Phylogenet. Evol., 75, 24–40.
Warren, R.L., Keeling, C.I., Yuen, M.M.S., et al. (2015) Improved white spruce (Picea glauca) genome assemblies and annotation of large gene families of conifer terpenoid and phenolic defense metabolism. Plant J., 83, 189–212.
Waterhouse, A., Bertoni, M., Bienert, S., et al. (2018) SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res., 46, W296–W303.
Warren, R.L., Keeling, C.I., Yuen, M.M.S., et al. (2015) Improved white spruce (Picea glauca) genome assemblies and annotation of large gene families of conifer terpenoid and phenolic defense metabolism. Plant J., 83, 189–212.
Wegrzyn, J.L., Liechty, J.D., Stevens, K.A., et al. (2014) Unique features of the loblolly pine (Pinus taeda L.) megagenome revealed through sequence annotation. Genetics, 196, 891–909.
Wen, C.C., Kuo, Y.H., Jan, J.T., et al. (2007) specific plant terpenoids and lignoids possess potent antiviral activities against severe acute respiratory syndrome coronavirus. J. Med. Chem., 50, 4087–4095.
Whitehill, J.G.A., Yuen, M.M.S., Henderson, H., Madilao, L., Kshatriya, K., Bryan, J., Jaquish, B. and Bohlmann, J. (2019) Functions of stone cells and oleoresin terpenes in the conifer defense syndrome. New Phytol., 221, 1503–1517.
Wilderman, P.R. and Peters, R.J. (2007) A single residue switch converts abietadiene synthase into a pimaradiene specific cyclase. J. Am. Chem. Soc., 129, 15736–15737.
Wildung, M.R. and Croteau, R. (1996) Communication a cDNA clone for taxadiene synthase , the diterpene cyclase that catalyzes the committed step of taxol biosynthesis. J. Biol. Chem. 271, 9201–9204.
Wu, S., Schalk, M., Clark, A., Miles, R.B., Coates, R. and Chappell, J. (2006) Redirection of cytosolic or plastidic isoprenoid precursors elevates terpene production in plants. Nat. Biotechnol., 24, 1441–1447.
Xu, J., Van Herwijnen, Z.O., Dräger, D.B., Sui, C., Haring, M.A. and Schuurink, R.C. (2018) SlMYC1 regulates type VI glandular trichome formation and terpene biosynthesis in tomato glandular cells. Plant cell, 30, 2988–3005.
Xu, M., Wilderman, P.R., Morrone, D., Xu, J., Roy, A., Margis-Pinheiro, M., Upadhyaya, N.M., Coates, R.M. and Peters, R.J. (2007) Functional characterization of the rice kaurene synthase-like gene family. Phytochemistry, 68, 312–26.
Xu, M., Wilderman, P.R. and Peters, R.J. (2007) Following evolution’s lead to a single residue switch for diterpene synthase product outcome. Proc. Natl. Acad. Sci. U. S. A., 104, 7397–7401.
Yamaguchi, S., Sun, T.P., Kawaide, H. and Kamiya, Y. (1998) The GA2 Locus of Arabidopsis thaliana encodes ent-kaurene synthase of gibberellin biosynthesis. Plant Physiol., 116, 1271–1278.
Yang, X., Zhao, H.T., Wang, J., Meng, Q., Zhang, H., Yao, L., Zhang, Y.C., Dong, A.J., Ma, Y. and Wang, Z.Y. (2010) Chemical composition and antioxidant activity of essential oil of pine cones of Pinus armandii from the Southwest region of China. J. Med. Plants Res., 4, 1668–1672.
Yazar, K., Johnsson, S., Lind, M., Boman, A. and Lidén, C. (2011) Preservatives and fragrances in selected consumer-available cosmetics and detergents. Contact Dermatitis, 64, 265–272.
Yoshikuni, Y., Ferrin, T.E. and Keasling, J.D. (2006) Designed divergent evolution of enzyme function. Nature, 440, 1078–1082.
Yoshikuni, Y., Martin, V.J.J., Ferrin, T.E. and Keasling, J.D. (2006) Engineering cotton (+)-δ-cadinene synthase to an altered function: Germacrene D-4-ol synthase. Chem. Biol., 13, 91–98.
Yu, Z.X., Wang, L.J., Zhao, B., Shan, C.M., Zhang, Y.H.H.H., Chen, D.F.F. and Chen, X.Y.Y. (2015) progressive regulation of sesquiterpene biosynthesis in Arabidopsis and Patchouli (Pogostemon cablin) by the miR156-targeted spl transcription factors. Mol. Plant, 8, 98–110.
Zerbe, P. and Bohlmann, J. (2014) Bioproducts, biofuels, and perfumes: conifer terpene synthases and their potential for metabolic engineering. In: R. Jetter (ed.) Phytochemicals-Biosynthesis, Function and Application. Recent advances in phyto chemistry, Vol. 44, Springer, Chem, pp. 85–107.
Zerbe, P. and Bohlmann, J. (2015) Plant diterpene synthases: Exploring modularity and metabolic diversity for bioengineering. Trends Biotechnol., 33, 419–428.
Zerbe, P., Chiang, A. and Bohlmann, J. (2012) Mutational analysis of white spruce (Picea glauca) ent-kaurene synthase (PgKS) reveals common and distinct mechanisms of conifer diterpene synthases of general and specialized metabolism. Phytochemistry, 74, 30–39.
Zerbe, P., Chiang, A., Dullat, H., O’Neil-Johnson, M., Starks, C., Hamberger, B. and Bohlmann, J. (2014) Diterpene synthases of the biosynthetic system of medicinally active diterpenoids in Marrubium vulgare. Plant J., 79, 914–927.
Zerbe, P., Chiang, A., Yuen, M., Hamberger, Björn, Hamberger, Britta, Draper, J.A., Britton, R. and Bohlmann, J. (2012) Bifunctional cis-abienol synthase from Abies balsamea discovered by transcriptome sequencing and its implications for diterpenoid fragrance production. J. Biol. Chem., 287, 12121–12131.
Zerbe, P., Hamberger, B., Yuen, M.M.S., Chiang, A., Sandhu, H.K., Madilao, L.L., Nguyen, A., Hamberger, B., Bach, S.S. and Bohlmann, J. (2013) Gene discovery of modular diterpene metabolism in nonmodel systems. Plant Physiol., 162, 1073–1091.
Zerbe, P., Rodriguez, S.M., Mafu, S., Chiang, A., Sandhu, H.K., O’Neil-Johnson, M., Starks, C.M. and Bohlmann, J. (2015) Exploring diterpene metabolism in non-model species: transcriptome-enabled discovery and functional characterization of labda-7,13E -dienyl diphosphate synthase from Grindelia robusta. Plant J., 83, 783–793.
Zi, J. and Peters, R.J. (2013) Characterization of CYP76AH4 clarifies phenolic diterpenoid biosynthesis in the Lamiaceae. Org. Biomol. Chem., 11, 7650–7652.
Zi, J., Mafu, S. and Peters, R.J. (2014) To gibberellins and beyond! Surveying the evolution of (di)terpenoid metabolism. Annu. Rev. Plant Biol., 65, 259–286.
Zinkel, D.F. and Clarke, W.B. (1985) Resin acids of Pinus resinosa needles. Phytochemistry. 24, 1267‒1271.
Zulak, K.G. and Bohlmann, J. (2010) Terpenoid biosynthesis and specialized vascular cells of conifer defense. J. Integr. Plant Biol., 52, 86–97.
Zulak, K.G., Dullat, H.K., Keeling, C.I., Lippert, D. and Bohlmann, J. (2010) Immunofluorescence localization of levopimaradiene/abietadiene synthase in methyl jasmonate treated stems of Sitka spruce (Picea sitchensis) shows activation ofditerpenoid biosynthesis in cortical and developing traumatic resin ducts. Phytochemistry, 71, 1695–1699.
Zulak, K.G., Lippert, D.N., Kuzyk, M.A., Domanski, D., Chou, T., Borchers, C.H. and Bohlmann, J. (2009) Targeted proteomics using selected reaction monitoring reveals the induction of specific terpene synthases in a multi-level study of methyl jasmonate-treated Norway spruce (Picea abies). Plant J., 60, 1015–1030.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊