跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.171) 您好!臺灣時間:2024/12/09 09:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:劉廣宏
研究生(外文):Kuang-Hung Liu
論文名稱:隱球菌 CRK1與 GAT1 共同調控有性生殖過程
論文名稱(外文):Sexual differentiation is coordinately regulated by Cryptococcus neoformans CRK1 and GAT1
指導教授:沈偉強
指導教授(外文):Wei-Chiang Shen
口試委員:劉瑞芬鄧述諄藍忠昱薛雁冰
口試委員(外文):Ruey-Fen LiouSHU-CHUN TENGChung-Yu LanYen-Ping Hsueh
口試日期:2020-07-29
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:植物病理與微生物學研究所
學門:農業科學學門
學類:植物保護學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:英文
論文頁數:147
中文關鍵詞:隱球菌CRK1GAT1RGM1雙性有性生殖雙核菌絲分化
外文關鍵詞:Cryptococcus neoformansCRK1GAT1RGM1bisexual matingdikaryotic filamentation
DOI:10.6342/NTU202004095
相關次數:
  • 被引用被引用:0
  • 點閱點閱:114
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
隱球菌(Cryptococcus neoformans),屬於擔子菌門,為異宗交配型真菌具有MATa與MAT兩種不同交配型。隱球菌存在兩種不同細胞形態,在營養充足環境下,以酵母細胞無性繁殖,而當氮素源缺乏誘導有性生殖時,兩性細胞融合可產生菌絲形態。隱球菌有性生殖過程中,包括酵母菌絲形態轉換、菌絲延長、擔子柄形成、減數分裂,及產生擔孢子等過程。隱球菌 CRK1 基因,為啤酒酵母菌(Saccharomyces cerevisiae)IME2 與玉米黑穗病菌(Ustilago maydis)crk1之同源基因,具有負向調控隱球菌雙性有性生殖之角色。本研究探討CRK1對隱球菌有性生殖及菌絲發育之影響、Crk1在細胞中的分布,及其在訊息網絡的交互作用。crk1突變株的有性生殖過程,其細胞融合效率及雙核生殖菌絲發育時程,皆顯著提高及加速,並且相較於野生株,其擔子柄(basidium)與擔孢子(basidiospore)的形成皆提早18小時;雖然突變株雙核菌絲的長度明顯的短於野生株,但相關構造皆完整存在。基因表現分析顯示,CRK1調控有性生殖各階段,如 ZNF2, DMC1與CSA1等基因的表現。而有性生殖表型分析結果顯示,NAT2與ZNF2基因的突變,皆造成crk1突變株無法形成雙核生殖菌絲。藉由基因體生物資訊的分析,預測轉錄因子Gat1與 Rgm1可能為 Crk1 下游的標的蛋白質。經由表型與遺傳分析結果顯示,Crk1與Gat1在有性生殖的過程具有重疊功能,形成一迴路調控Mat2,參與生殖菌絲發育進程及形態轉換的調控。總結,隱球菌Crk1為雙核生殖菌絲分化的調控因子,透過調控Gat1負向調控隱球菌的有性生殖。
Cryptococcus neoformans is a heterothallic basidiomycete which contains two mating types, MATa and MATα. C. neoformans grows vegetatively as yeast and filamentous hyphae are produced in the sexual state. Morphological progression of bisexual reproduction in C. neoformans is as follows: yeast to hyphal transition, filament extension, basidium formation, meiosis, and sporulation. C. neoformans Cdk-related kinase 1 (CRK1) is a negative regulator of bisexual mating, also a homologue of Saccharomyces cerevisiae IME2 and Ustilago maydis crk1. In this study, we characterized the effect of CRK1 on mating process and the morphology of dikaryotic filamentation, the localization of Crk1 in yeast cells and hyphal cells, and the genetic interaction in mating regulatory pathways. In the bilateral crk1 mutant cross, the timing of basidium formation was approximately 18 hrs earlier than wild-type cross. Despite shorter filament length than the wild-type, sexual filaments still retained intact structures in the bilateral crk1 mutant cross. Furthermore, gene expression analyses revealed that CRK1 modulated the genes involved in the progression of hyphal elongation, basidium formation, karyogamy and meiosis. Phenotypic results showed that although deletion of C. neoformans CRK1 gene increased the efficiency of bisexual mating, filamentation in the crk1 mutant was blocked the mutation of MAT2 or ZNF2. Moreover, a bioinformatic survey predicted the C. neoformans GATA type transcriptional factor Gat1 and zinc finger transcriptional factor Rgm1 as potential substrates of Crk1 kinase. Our phenotypic and genetic findings suggest that C. neoformans Crk1 and Gat1 shared overlapping functions to form a regulatory circuit which negatively regulated Mat2 to control filamentation progression and transition during bisexual mating. C. neoformans CRK1 functions as a regulator to maintain dikaryotic filament differentiation and coordinates with GAT1, as a negative regulator, to control bisexual mating.
Abstract i
Chinese Abstract iii
Table of Contents v
List of Tables ix
List of Figures x
Chapter 1 Introduction 1
1.1 The sexual life cycle of C. neoformans 1
1.2 The molecular regulation in the sexual development of C. neoformans 1
1.3 Diverse functions of the C. neoformans Crk1 homologues in different fungi 4
1.3.1 The function of Ime2 in Saccharomyces cerevisiae 4
1.3.2 The function of crk1 in Ustilago maydis 7
1.3.3 The function of ime2 in Neurospora crassa 9
1.3.4 The function of Ime2 in Arthrobotrys oligospora 9
Chapter 2 Materials and methods 11
2.1 Strains, media and growth conditions 11
2.2 Construction of C. neoformans mat2, znf2, gpb1crk1 and ras1gpb1 mutant strains 11
2.3 Overexpression of C. neoformans CRK1 in the MAT crk1 mutant 14
2.4 Overexpression of C. neoformans MAT2 gene in the MAT wild-type strain 14
2.5 Genetic manipulation of C. neoformans RGM1 gene 15
2.6 Genetic manipulation of C. neoformans GAT1 gene 16
2.7 Sample preparation for gene expression analyses 19
2.8 Fluorescence microscopy 20
2.9. Generation of the wild-type and crk1/crk1 diploid strains 21
2.10. Generation of the PGPD1::GFP-H2B construct 22
2.11. Construction of fluorescently tagged proteins 23
Chapter 3 Results 24
3.1 Meiotic features in the fruiting structures were intact in the crk1 mutant cross
24
3.2 C. neoformans CRK1 did not affect the expression of early stage mating related genes 25
3.3 C. neoformans Crk1 was localized in the cytoplasm of yeast and hyphal cells 29
3.4 Dikaryotic filamentation was altered but nuclear distribution was normal in the mating structures of C. neoformans bilateral crk1 mutant cross 30
3.5 C. neoformans CRK1 repressed the expression of genes related to cell fusion, filamentation, karyogamy and meiosis in bisexual mating process 32
3.6 The expression of CRK1 was decreased in the bilateral gpb1, ras1 and mat2 mutant cross. 36
3.7 Deletion of C. neoformans ZNF2 gene blocked filamentation of crk1 mutant cross
38
3.8 Gat1 and Rgm1 contains the predicted Crk1 consensus phosphorylation site 39
3.9 Deletion of C. neoformans RGM1 gene resulted in bisexual mating defect 41
3.10 Deletion of GAT1 enhanced pheromone expression and increased aerial hyphae formation 41
3.11 The C. neoformans crk1gat1 mutants phenocopied the crk1 mutant in bisexual mating 44
3.12 The predicted IME2 consensus phosphorylation site contributed negative regulation of Gat1 in bisexual mating 45
3.13 Deletion of GAT1 resulted in partial dikaryotic filamentation under CRK1 overexpressed strain background 48
3.14 C. neoformans CRK1 coordinates with GAT1 to repress bisexual differentiation 50
Chapter 4 Discussion 53
References 63
Tables 84
Figures 91
Appendix 147
List of Tables
Table 1. Cryptococcus neoformans strains used in this study 85
Table 2. Oligonucleotide primers used in this study 87
Table 3. Potential transcription factor targets of C. neoformans Crk1 90
List of Figures
Figure 1. C. neoformans crk1 mutant exhibited no defect in meiotic process and four-nuclei basidia were observed in the bilateral crk1 mutant cross 93
Figure 2. The expression of mating related genes was elevated at the later stage of mating process in the bilateral crk1 mutant cross 95
Figure 3. Subcellular localization of Crk1 in C. neoformans yeast, filament and basidium cells 97
Figure 4. Dikaryotic filamentation of the wild-type and bilateral crk1 mutant crosses during mating process was examined 99
Figure 5. Nuclear distribution in the mating structures of the wild-type and bilateral crk1 mutant crosses during bisexual mating process 102
Figure 6. Morphology of dikaryotic filaments in the wild-type and bilateral crk1 mutant crosses 104
Figure 7. The expression of mating-, hyphal extension- and sporulation-related genes was elevated at 18 hr in the bilateral crk1 mutant cross 106
Figure 8. Sexual differentiation in the crk1 mutant was blocked by the mutation of MAT2 and CRK1 expression was reduced in the bilateral mat2 mutant cross 108
Figure 9. Overexpression of MAT2 increased bisexual filamentation and upregulated CRK1 expression 110
Figure 10. ZNF2 mutation did not affect CRK1 expression, but blocked dikaryotic filamentation in the bilateral crk1 mutant cross 112
Figure 11. Sexual differentiation in the crk1 mutant was blocked by the mutation of GPB1 114
Figure 12. Sexual differentiation in the crk1 mutant was blocked by the mutation of RAS1 116
Figure 13. Dikaryotic filamentation was defective in the bilateral rgm1 mutant cross
118
Figure 14. Dikaryotic filamentation and aerial hyphae formation were enhanced in the bilateral gat1 mutant and GAT1T1164A mutant crosses 120
Figure 15. Same sex mating was defective in the gat1 mutant but not in the GAT1 overexpressed strain 122
Figure 16. The expression of mating- and hyphal extension-related genes was increased in the bilateral gat1 mutant cross 124
Figure 17. The crk1 and crk1gat1 mutants were phenotypically identical in bisexual matin 126
Figure 18. The expression level of mating-related genes were upregulated slightly in the bilateral crk1gat1 mating cross 128
Figure 19. Overexpression of GAT1 did not repress dikaryotic filamentation 130
Figure 20. The transcription level of MF in the GAT1 overexpression strains cross was similar to that in the wild-type cross 132
Figure 21. Dikaryotic filamentation was reduced with overexpression of GAT1 and CRK1
134
Figure 22. Deletion of GAT1 partially recovered sexual filamentation of bilateral CRK1 overexpression strains cross 136
Figure 23. GAT1 negatively regulated MF and MAT2 gene expression during mating process 138
Figure 24. The GAT1T1164D phospho-mimetic active allele dramatically repressed dikaryotic filamentation in the wild-type cross but showed slight effects on mating under crk1 mutant background 140
Figure 25. The expression of mating-related genes was down-regulated by the GAT1 phospho-mimetic allele 142
Figure 26. Overexpression of GAT1 and CRK1 reduced MF expression during bisexual mating 144
Figure 27. C. neoformans Crk1 and Gat1 negatively regulated the expression of Mat2 to coordinately modulate sexual differentiation 146
1. Bolte, M.; Steigemann, P.; Braus, G.H.; Irniger, S. Inhibition of APC-mediated proteolysis by the meiosis-specific protein kinase Ime2. Proc. Natl. Acad. Sci. U S A 2002, 99, 4385-4390.
2.Brefort, T.; Doehlemann, G.; Mendoza-Mendoza, A.; Reissmann, S.; Djamei, A.; Kahmann, R. Ustilago maydis as a Pathogen. Annu. Rev. Phytopathol. 2009, 47, 423-445.
3.Chu, S.; DeRisi, J.; Eisen, M.; Mulholland, J.; Botstein, D.; Brown, P.O.; Herskowitz, I. The transcriptional program of sporulation in budding yeast. Science 1998, 282, 699-705.
4.Dirick, L.; Goetsch, L.; Ammerer, G.; Byers, B. Regulation of meiotic S phase by Ime2 and a Clb5,6-associated kinase in Saccharomyces cerevisiae. Science 1998, 281, 1854-1857.
5.Djamei, A.; Schipper, K.; Rabe, F.; Ghosh, A.; Vincon, V.; Kahnt, J.; Osorio, S.; Tohge, T.; Fernie, A.R.; Feussner, I.; Feussner, K.; Meinicke, P.; Stierhof, Y.D.; Schwarz, H.; Macek, B.; Mann, M.; Kahmann, R. Metabolic priming by a secreted fungal effector. Nature 2011, 478, 395-398.
6.Dodds, P. N.; Rathjen, J.P. Plant immunity: towards an integrated view of plant-pathogen interactions. Nat. Rev. Genet. 2010, 11, 539-548.
7.Doehlemann, G., Reissmann, S., Assmann, D., Fleckenstein, M.Kahmann, R. Two linked genes encoding a secreted effector and a membrane protein are essential for Ustilago maydis-induced tumour formation. Mol. Microbiol. 2011, 81, 751-766.
8.Doehlemann, G.; van der Linde, K.; Assmann, D.; Schwammbach, D.; Hof, A.; Mohanty, A.; Jackson, D.; Kahmann, R.; Pep1, a secreted effector protein of Ustilago maydis, is required for successful invasion of plant cells. PLoS Pathog. 2009, 5, e1000290.
9.Foiani, M.; Nadjar-Boger, E.; Capone, R.; Sagee, S.; Hashimshoni, T.; Kassir, Y. A meiosis-specific protein kinase, Ime2, is required for the correct timing of DNA replication and for spore formation in yeast meiosis. Mol. Gen. Genet. 1996, 253, 278-288.
10. Fu, J.; Mares, C.; Lizcano, A.; Liu, Y.; Wickes, B.L. Insertional mutagenesis combined with an inducible filamentation phenotype reveals a conserved STE50 homologue in Cryptococcus neoformans that is required for monokaryotic fruiting and sexual reproduction. Mol. Microbiol. 2011, 79, 990-1007.
11. Guttmann-Raviv, N.; Martin, S.; Kassir, Y. Ime2, a meiosis-specific kinase in yeast, is required for destabilization of its transcriptional activator, Ime1. Mol. Cell. Biol. 2002, 22, 2047-2056.
12. Hemetsberger, C.; Herrberger, C.; Zechmann, B.; Hillmer, M.; Doehlemann, G. The. Ustilago maydis effector Pep1 suppresses plant immunity by inhibition of host peroxidase activity. PLoS Pathog. 2012, 8, e1002684.
13. Inada, K.; Morimoto, Y.; Arima, T.; Murata, Y.; Kamada, T. The clp1 gene of the. mushroom Coprinus cinereus is essential for A-regulated sexual development. Genetics 2001, 157, 133-140.
14. Jones, J.D.; Dangl, J.L. The plant immune system. Nature 2006, 444, 323-329.
15.Jung, K.W.; Kim, S.Y.; Okagaki, L.H.; Nielsen, K.; Bahn, Y.S. Ste50 adaptor protein governs sexual differentiation of Cryptococcus neoformans via the pheromone-response MAPK signaling pathway. Fungal Genet. Biol. 2011, 48, 154-165.
16.Kale, S.D.; Tyler, B.M. Entry of oomycete and fungal effectors into plant and animal host cells. Cell Microbiol. 2011, 13, 1839-1848.
17. McClelland, C.M.; Chang, Y.C.; Varma, A.; Kwon-Chung, K.J. Uniqueness of the mating system in Cryptococcus neoformans. Trends Microbiol. 2004, 12, 208-212.
18.Mueller, A.N.; Ziemann, S.; Treitschke, S.; Assmann, D.; Doehlemann, G. Compatibility in the Ustilago maydis-maize interaction requires inhibition of host cysteine proteases by the fungal effector Pit2. PLoS Pathog. 2013, 9, e1003177.
19.Peters, J.M. The anaphase promoting complex/cyclosome: a machine designed to destroy. Nat. Rev. Mol. Cell. Biol. 2006, 7, 644-656.
20.Pierce, M.; Benjamin, K.R.; Montano, S.P.; Georgiadis, M.M.; Winter, E.; Vershon, A.K. Sum1 and Ndt80 proteins compete for binding to middle sporulation element sequences that control meiotic gene expression. Mol. Cell. Biol. 2003, 23, 4814-4825.
21.Rafiqi, M.; Ellis, J.G.; Ludowici, V.A.; Hardham, A.R.; Dodds, P.N. Challenges and progress towards understanding the role of effectors in plant-fungal interactions. Curr. Opin. Plant Biol. 2012, 15, 477-482.
22.Sawarynski, K.E.; Kaplun, A.; Tzivion, G.; Brush, G.S. Distinct activities of the related protein kinases Cdk1 and Ime2. Biochim. Biophys. Acta. 2007, 1773, 450-456.
23.Schindler, K.; Benjamin, K.R.; Martin, A.; Boglioli, A.; Herskowitz, I.; Winter, E. The Cdk-activating kinase Cak1p promotes meiotic S phase through Ime2p. Mol. Cell. Biol. 2003, 23, 8718-8728.
24.Schwob, E.; Bohm, T.; Mendenhall, M.D.; Nasmyth, K. The B-type cyclin kinase inhibitor p40SIC1 controls the G1 to S transition in S. cerevisiae. Cell 1994, 79, 233-244.
25.Sedgwick, C.; Rawluk, M.; Decesare, J.; Raithatha, S.; Wohlschlegel, J.; Semchuk, P.; Ellison, M.; Yates, J. 3rd.; Stuart, D. Saccharomyces cerevisiae Ime2 phosphorylates Sic1 at multiple PXS/T sites but is insufficient to trigger Sic1 degradation. Biochem. J. 2006, 399, 151-160.
26.Sopko, R.; Raithatha, S.; Stuart, D. Phosphorylation and maximal activity of Saccharomyces cerevisiae meiosis-specific transcription factor Ndt80 is dependent on Ime2. Mol. Cell. Biol. 2002, 22, 7024-7040.
27.Stuart, D.; Wittenberg, C. CLB5 and CLB6 are required for premeiotic DNA replication and activation of the meiotic S/M checkpoint. Genes Dev. 1998, 12, 2698-2710.
28.Valent, B.; Khang, C.H. Recent advances in rice blast effector research. Curr. Opin. Plant Biol. 2010, 13, 434-441.
29.Vallim, M.A.; Nichols, C.B.; Fernandes, L.; Cramer, K.L.; Alspaugh, J.A. A Rac homolog functions downstream of Ras1 to control hyphal differentiation and high-temperature growth in the pathogenic fungus Cryptococcus neoformans. Eukaryot. Cell. 2005, 4, 1066-1078.
30.Xie, J.; Pierce, M.; Gailus-Durner, V.; Wagner, M.; Winter, E.; Vershon, A.K. Sum1 and Hst1 repress middle sporulation-specific gene expression during mitosis in Saccharomyces cerevisiae. EMBO J. 1999, 18, 6448-6454.
31.Xie, M.; Bai, N.; Yang, J.; Jiang, K.; Zhou, D.; Zhao, Y.; Li, D.; Niu, X.; Zhang, K.Q.; Yang, J. Protein Kinase Ime2 Is Required for Mycelial Growth, Conidiation, Osmoregulation, and Pathogenicity in Nematode-Trapping Fungus Arthrobotrys oligospora. Front Microbiol. 2019, 10, 3065.
32.Yan, Z.; Hull, C.M.; Sun, S.; Heitman, J.; Xu, J. The mating type-specific homeodomain genes SXI1 alpha and SXI2a coordinately control uniparental mitochondrial inheritance in Cryptococcus neoformans. Curr. Genet. 2007, 51, 187-195.
33.Yan, Z.; Xu, J. Mitochondria are inherited from the MATa parent in crosses of the basidiomycete fungus Cryptococcus neoformans. Genetics 2003, 163, 1315-1325.
34.Yang, J.; Wang, L.; Ji, X.; Feng, Y.; Li, X.; Zou, C.; Xu, J.; Ren, Y.; Mi, Q.; Wu, J.; Liu, S.; Liu, Y.; Huang, X.; Wang, H.; Niu, X.; Li, J.; Liang, L.; Luo, Y.; Ji, K.; Zhou, W.; Yu, Z.; Li, G.; Liu, Y.; Li, L.; Qiao, M.; Feng, L.; Zhang, K.Q. Genomic and proteomic analyses of the fungus Arthrobotrys oligospora provide insights into nematode-trap formation. PLoS Pathog. 2011, 7, e1002179.
35.Hull, C. M.; Heitman, J. Genetics of Cryptococcus neoformans. Annu. Rev. Genet. 2002, 36, 557-615.
36.Idnurm, A.; Bahn, Y. S.; Nielsen, K.; Lin, X.; Fraser, J. A.; Heitman, J. Deciphering the model pathogenic fungus Cryptococcus neoformans. Nat. Rev. Microbiol. 2005, 3, 753-764.
37.Kwon-Chung, K. J.; Bennett, J. E. High prevalence of Cryptococcus neoformans var. gattii in tropical and subtropical regions. Zentralbl. Bakteriol. Mikrobiol. Hyg. A 1984, 257, 213-218.
38.Kozubowski, L.; Heitman, J. Profiling a killer, the development of Cryptococcus neoformans. FEMS Microbiol. Rev. 2012, 36, 78-94.
39.Kruzel, E. K.; Giles, S. S.; Hull, C. M. Analysis of Cryptococcus neoformans sexual development reveals rewiring of the pheromone-response network by a change in transcription factor identity. Genetics 2012, 191, 435-449.
40.Perfect, J. R.; Wong, B.; Chang, Y. C.; Kwon-Chung, K. J.; Williamson, P. R. Cryptococcus neoformans: virulence and host defences. Med. Mycol. 1998, 36 Suppl 1, 79-86.
41.Zhao, Y.; Lin, J.; Fan, Y.; Lin, X. Life cycle of Cryptococcus neoformans. Annu. Rev. Microbiol. 2019, 73, 17-42
42.Hsueh, Y. P.; Shen, W. C. A homolog of Ste6, the a-factor transporter in Saccharomyces cerevisiae, is required for mating but not for monokaryotic fruiting in Cryptococcus neoformans. Eukaryot. Cell 2005, 4, 147-155.
43.Hsueh, Y. P.; Xue, C.; Heitman, J. G protein signaling governing cell fate decisions involves opposing Gα subunits in Cryptococcus neoformans. Mol. Biol. Cell 2007, 18, 3237-3249.
44.Nichols, C. B.; Fraser, J. A.; Heitman, J. PAK kinases Ste20 and Pak1 govern cell polarity at different stages of mating in Cryptococcus neoformans. Mol. Biol. Cell 2004, 15, 4476-4489.
45.Shen, W. C.; Davidson, R. C.; Cox, G. M.; Heitman, J. Pheromones stimulate mating and differentiation via paracrine and autocrine signaling in Cryptococcus neoformans. Eukaryot. Cell 2002, 1, 366-377.
46.Wang, P.; Perfect, J. R.; Heitman, J. The G-protein beta subunit GPB1 is required for mating and haploid fruiting in Cryptococcus neoformans. Mol. Cell. Biol. 2000, 20, 352-362.
47.Clarke, D. L.; Woodlee, G. L.; McClelland, C. M.; Seymour, T. S.; Wickes, B. L. The Cryptococcus neoformans STE11α gene is similar to other fungal mitogen-activated protein kinase kinase kinase (MAPKKK) genes but is mating type specific. Mol. Microbiol. 2001, 40, 200-213.
48.Davidson, R. C.; Nichols, C. B.; Cox, G. M.; Perfect, J. R.; Heitman, J. A MAP kinase cascade composed of cell type specific and non-specific elements controls mating and differentiation of the fungal pathogen Cryptococcus neoformans. Mol. Microbiol. 2003, 49, 469-485.
49.Feretzaki, M.; Heitman, J. Genetic circuits that govern bisexual and unisexual reproduction in Cryptococcus neoformans. PLoS Genet. 2013, 9, e1003688.
50.Kruzel, E. K.; Giles, S. S.; Hull, C. M. Analysis of Cryptococcus neoformans sexual development reveals rewiring of the pheromone-response network by a change in transcription factor identity. Genetics 2012, 191, 435-449.
51.Lin, X.; Jackson, J. C.; Feretzaki, M.; Xue, C.; Heitman, J. Transcription factors Mat2 and Znf2 operate cellular circuits orchestrating opposite- and same-sex mating in Cryptococcus neoformans. PLoS Genet. 2010, 6, e1000953.
52.Hull, C. M.; Boily, M. J.; Heitman, J. Sex-specific homeodomain proteins Sxi1α and Sxi2a coordinately regulate sexual development in Cryptococcus neoformans. Eukaryot. Cell 2005, 4, 526-535.
53.Ekena, J. L.; Stanton, B. C.; Schiebe-Owens, J. A.; Hull, C. M. Sexual development in Cryptococcus neoformans requires CLP1, a target of the homeodomain transcription factors Sxi1α and Sxi2a. Eukaryot. Cell 2008, 7, 49-57.
54.Wang, L.; Zhai, B.; Lin, X. The link between morphotype transition and virulence in Cryptococcus neoformans. PLoS Pathog. 2012, 8, e1002765.
55.Kaur, J. N.; Panepinto, J. C. Morphotype-specific effector functions of Cryptococcus neoformans PUM1. Sci. Rep. 2016, 6, 23638.
56.Wang, L.; Tian, X.; Gyawali, R.; Upadhyay, S.; Foyle, D.; Wang, G.; Cai, J. J.; Lin, X. Morphotype transition and sexual reproduction are genetically associated in a ubiquitous environmental pathogen. PLoS Pathog. 2014, 10, e1004185.
57.Lin, J.; Zhao, Y.; Ferraro, A. R.; Yang, E.; Lewis, Z. A.; Lin, X. Transcription factor Znf2 coordinates with the chromatin remodeling SWI/SNF complex to regulate cryptococcal cellular differentiation. Commun. Biol. 2019, 2, 412
58.Lee, S. C.; Heitman, J. Function of Cryptococcus neoformans KAR7 (SEC66) in karyogamy during unisexual and opposite-sex mating. Eukaryot. Cell 2012, 11, 783-794.
59.Fu. C.; Heitman, J. PRM1 and KAR5 function in cell-cell fusion and karyogamy to drive distinct bisexual and unisexual cycles in the Cryptococcus pathogenic species complex. PLoS Genet. 2017, 13, e1007113.
60.Liu, L.; He. G. J.; Chen, L.; Zheng, J.; Chen, Y.; Shen, L.; Tian, X.; Li, E.; Yang, E.; Liao, G.; Wang, L. Genetic basis for coordination of meiosis and sexual structure maturation in Cryptococcus neoformans. eLife 2018, 7.
61.Idnurm, A.; Heitman, J. Light controls growth and development via a conserved pathway in the fungal kingdom. PLoS Biol. 2005, 3, e95.
62.Lu, Y. K.; Sun, K. H.; Shen, W. C. Blue light negatively regulates the sexual filamentation via the Cwc1 and Cwc2 proteins in Cryptococcus neoformans. Mol. Microbiol. 2005, 56, 480-491.
63.Yeh, Y. L.; Lin, Y. S.; Su, B. J.; Shen, W. C. A screening for suppressor mutants reveals components involved in the blue light-inhibited sexual filamentation in Cryptococcus neoformans. Fungal Genet. Biol. 2009, 46, 42-54.
64.Liu, K. H.; Shen, W. C. Mating differentiation in Cryptococcus neoformans is negatively regulated by the Crk1 protein kinase. Fungal Genet. Biol. 2011, 48, 225-240.
65.Smith, H. E.; Mitchell, A. P. A transcriptional cascade governs entry into meiosis in Saccharomyces cerevisiae. Mol. Cell. Biol. 1989, 9, 2142-2152.
66.Honigberg, S. M.; Purnapatre, K. Signal pathway integration in the switch from the mitotic cell cycle to meiosis in yeast. J. Cell Sci. 2003, 116, 2137-2147.
67.Kassir, Y.; Adir, N.; Boger-Nadjar, E.; Raviv, N. G.; Rubin-Bejerano, I.; Sagee, S.; Shenhar, G. Transcriptional regulation of meiosis in budding yeast. Int. Rev. Cytol. 2003, 224, 111-171.
68.Clifford, D. M.; Marinco, S. M.; Brush, G. S. The meiosis-specific protein kinase Ime2 directs phosphorylation of replication protein A. J. Biol. Chem. 2004, 279, 6163-6170.
69.Clifford, D. M.; Stark, K. E.; Gardner, K. E.; Hoffmann-Benning, S.; Brush, G. S. Mechanistic insight into the Cdc28-related protein kinase Ime2 through analysis of replication protein A phosphorylation. Cell Cycle 2005, 4, 1826-1833.
70.Holt, L. J.; Hutti, J. E.; Cantley, L. C.; Morgan, D. O. Evolution of Ime2 phosphorylation sites on Cdk1 substrates provides a mechanism to limit the effects of the phosphatase Cdc14 in meiosis. Mol. Cell 2007, 25, 689-702.
71.Howard, C. J.; Hanson-Smith, V.; Kennedy, K. J.; Miller, C. J.; Lou, H. J.; Johnson, A. D.; Turk, B. E.; Holt, L. J. Ancestral resurrection reveals evolutionary mechanisms of kinase plasticity. eLife 2014, 3.
72.Moore, M.; Shin, M. E.; Bruning, A.; Schindler, K.; Vershon, A.; Winter, E. Arg-Pro-X-Ser/Thr is a consensus phosphoacceptor sequence for the meiosis-specific Ime2 protein kinase in Saccharomyces cerevisiae. Biochemistry 2007, 46, 271-278.
73.Sawarynski, K. E.; Kaplun, A.; Tzivion, G.; Brush, G. S. Distinct activities of the related protein kinases Cdk1 and Ime2. Biochim. Biophys. Acta. 2007, 1773, 450-456.
74.Sedgwick, C.; Rawluk, M.; Decesare, J.; Raithatha, S.; Wohlschlegel, J.; Semchuk, P.; Ellison, M.; Yates, J., 3rd; Stuart, D. Saccharomyces cerevisiae Ime2 phosphorylates Sic1 at multiple PXS/T sites but is insufficient to trigger Sic1 degradation. Biochem. J. 2006, 399, 151-160.
75.Shin, M. E.; Skokotas, A.; Winter, E. The Cdk1 and Ime2 protein kinases trigger exit from meiotic prophase in Saccharomyces cerevisiae by inhibiting the Sum1 transcriptional repressor. Mol. Cell. Biol. 2010, 30, 2996-3003.
76.Sopko, R.; Raithatha, S.; Stuart, D. Phosphorylation and maximal activity of Saccharomyces cerevisiae meiosis-specific transcription factor Ndt80 is dependent on Ime2. Mol. Cell. Biol. 2002, 22, 7024-7040.
77.Hutchison, E. A.; Glass, N. L. Meiotic regulators Ndt80 and ime2 have different roles in Saccharomyces and Neurospora. Genetics 2010, 185, 1271-1282.
78.Hutchison, E. A.; Bueche, J. A.; Glass, N. L. Diversification of a protein kinase cascade: IME-2 is involved in nonself recognition and programmed cell death in Neurospora crassa. Genetics 2012, 192, 467-482.
79.Bielska, E.; Higuchi, Y.; Schuster, M.; Steinberg, N.; Kilaru, S.; Talbot, N. J.; Steinberg, G. Long-distance endosome trafficking drives fungal effector production during plant infection. Nat. Commun. 2014, 5, 5097.
80.Garrido, E.; Pérez-Martín, J. The crk1 gene encodes an Ime2-related protein that is required for morphogenesis in the plant pathogen Ustilago maydis. Mol. Microbiol. 2003, 47, 729-743.
81.Garrido, E.; Voß, U.; Müller, P.; Castillo-Lluva, S.; Kahmann, R.; Pérez-Martín, J. The induction of sexual development and virulence in the smut fungus Ustilago maydis depends on Crk1, a novel MAPK protein. Genes Dev. 2004, 18, 3117-3130.
82.Higuchi, Y. Initial fungal effector production is mediated by early endosome motility. Commun. Integr. Biol. 2015, 8, e1025187.
83.Sartorel, E.; Pérez-Martín, J. The distinct interaction between cell cycle regulation and the widely conserved morphogenesis-related (MOR) pathway in the fungus Ustilago maydis determines morphology. J. Cell Sci. 2012, 125, 4597-4608.
84.Alspaugh, J. A.; Perfect, J. R.; Heitman, J. Cryptococcus neoformans mating and virulence are regulated by the G-protein alpha subunit GPA1 and cAMP. Genes Dev. 1997, 11, 3206-3217.
85.Fraser, J. A.; Subaran, R. L.; Nichols, C. B.; Heitman, J. Recapitulation of the sexual cycle of the primary fungal pathogen Cryptococcus neoformans var. gattii: implications for an outbreak on Vancouver Island, Canada. Eukaryot. Cell 2003, 2, 1036-1045.
86.Kim, M. S.; Kim, S. Y.; Jung, K. W.; Bahn, Y. S. Targeted gene disruption in Cryptococcus neoformans using double-joint PCR with split dominant selectable markers. Methods Mol. Biol. 2012, 845, 67-84.
87.Liu, K. H.; Yeh, Y. L.; Shen, W. C. Fast preparation of fungal DNA for PCR screening. J. Microbiol. Methods 2011, 85, 170-172.
88.Won, M.; Hoe, K. L.; Cho, Y. S.; Song, K. B.; Yoo, H. S. DNA-induced conformational change of Gaf1, a novel GATA factor in Schizosaccharomyces pombe. Biochem. Cell Biol. 1999, 77, 127-132.
89.Kim, L.; Hoe, K. L.; Yu, Y. M.; Yeon, J. H.; Maeng, P. J. The fission yeast GATA factor, Gaf1, modulates sexual development via direct down-regulation of ste11+ expression in response to nitrogen starvation. PLoS One 2012, 7, e42409.
90.Kmetzsch, L.; Staats, C. C.; Simon, E.; Fonseca, F. L.; Oliveira, D. L.; Joffe, L. S.; Rodrigues, J.; Lourenco, R. F.; Gomes, S. L.; Nimrichter, L.; Rodrigues, M. L.; Schrank, A.; Vainstein, M. H. The GATA-type transcriptional activator Gat1 regulates nitrogen uptake and metabolism in the human pathogen Cryptococcus neoformans. Fungal Genet. Biol. 2011, 48, 192-199.
91.Lee, I. R.; Chow, E. W.; Morrow, C. A.; Djordjevic, J. T.; Fraser, J. A. Nitrogen metabolite repression of metabolism and virulence in the human fungal pathogen Cryptococcus neoformans. Genetics 2011, 188, 309-323.
92.Jung, K. W.; Yang, D. H.; Maeng, S.; Lee, K. T.; So, Y. S.; Hong, J.; Choi, J.; Byun, H. J.; Kim, H.; Bang, S.; Song, M. H.; Lee, J. W.; Kim, M. S.; Kim, S. Y.; Ji, J. H.; Park, G.; Kwon, H.; Cha, S.; Meyers, G. L.; Wang, L. L.; Jang, J.; Janbon, G.; Adedoyin, G.; Kim, T.; Averette, A. K.; Heitman, J.; Cheong, E.; Lee, Y. H.; Lee, Y. W.; Bahn, Y. S. Systematic functional profiling of transcription factor networks in Cryptococcus neoformans. Nat. Commun. 2015, 6, 6757.
93.Bayram, O.; Sari, F.; Braus, G. H.; Irniger, S. The protein kinase ImeB is required for light-mediated inhibition of sexual development and for mycotoxin production in Aspergillus nidulans. Mol. Microbiol. 2009, 71, 1278-1295.
94.Chen, F.; Chen, X. Z.; Su, X. Y.; Qin, L. N.; Huang, Z. B.; Tao, Y.; Dong, Z. Y. An Ime2-like mitogen-activated protein kinase is involved in cellulase expression in the filamentous fungus Trichoderma reesei. Biotechnol. Lett. 2015, 37, 2055-2062.
95.Katz, M. E.; Cooper, S. Extreme Diversity in the Regulation of Ndt80-Like Transcription Factors in Fungi. G3 (Bethesda) 2015, 5, 2783-2792.
96.Staudt, M. W.; Kruzel, E. K.; Shimizu, K.; Hull, C. M. Characterizing the role of the microtubule binding protein Bim1 in Cryptococcus neoformans. Fungal Genet. Biol. 2010, 47, 310-317.
97.Haase, S. B.; Wittenberg, C. Topology and control of the cell-cycle-regulated transcriptional circuitry. Genetics 2014, 196, 65-90.
98.Tobe, B. T.; Kitazono, A. A.; Garcia, J. S.; Gerber, R. A.; Bevis, B. J.; Choy, J. S.; Chasman, D.; Kron, S. J. Morphogenesis signaling components influence cell cycle regulation by cyclin dependent kinase. Cell Div. 2009, 4, 12.
99.Novak, B.; Csikasz-Nagy, A.; Gyorffy, B.; Chen, K.; Tyson, J. J. Mathematical model of the fission yeast cell cycle with checkpoint controls at the G1/S, G2/M and metaphase/anaphase transitions. Biophys. Chem. 1998, 72, 185-200.
100.Kellogg, D. R. Wee1-dependent mechanisms required for coordination of cell growth and cell division. J. Cell Sci. 2003, 116, 4883-4890.
101.Qiu, L.; Wang, J. J.; Ying, S. H.; Feng, M. G. Wee1 and Cdc25 control morphogenesis, virulence and multistress tolerance of Beauveria bassiana by balancing cell cycle-required cyclin-dependent kinase 1 activity. Environ. Microbiol. 2015, 17, 1119-1133.
102.Sgarlata, C.; Pérez-Martín, J. Inhibitory phosphorylation of a mitotic cyclin-dependent kinase regulates the morphogenesis, cell size and virulence of the smut fungus Ustilago maydis. J. Cell Sci. 2005, 118, 3607-3622.
103.Bueno, A.; Richardson, H.; Reed, S. I.; Russell, P. A fission yeast B-type cyclin functioning early in the cell cycle. Cell 1991, 66, 149-159.
104.Sveiczer, A.; Csikasz-Nagy, A.; Gyorffy, B.; Tyson, J. J.; Novak, B. Modeling the fission yeast cell cycle: quantized cycle times in wee1- cdc25∆ mutant cells. Proc. Natl. Acad. Sci. U S A 2000, 97, 7865-7870.
105.Garcia-Muse, T.; Steinberg, G.; Pérez-Martín, J. Characterization of B-type cyclins in the smut fungus Ustilago maydis: roles in morphogenesis and pathogenicity. J. Cell Sci. 2004, 117, 487-506.
106.Guttmann-Raviv, N.; Martin, S.; Kassir, Y. Ime2, a meiosis-specific kinase in yeast, is required for destabilization of its transcriptional activator, Ime1. Mol. Cell. Biol. 2002, 22, 2047-2056.
107.Mitchell, A. P.; Driscoll, S. E.; Smith, H. E. Positive control of sporulation-specific genes by the IME1 and IME2 products in Saccharomyces cerevisiae. Mol. Cell. Biol. 1990, 10, 2104-2110.
108.Smith, H. E.; Su, S. S.; Neigeborn, L.; Driscoll, S. E.; Mitchell, A. P. Role of IME1 expression in regulation of meiosis in Saccharomyces cerevisiae. Mol. Cell. Biol. 1990, 10, 6103-6113.
109.Hoe, K. L.; Won, M. S.; Chung, K. S.; Park, S. K.; Kim, D. U.; Jang, Y. J.; Yoo, O. J.; Yoo, H. S. Molecular cloning of gaf1, a Schizosaccharomyces pombe GATA factor, which can function as a transcriptional activator. Gene 1998, 215, 319-328.
110.Kwon-Chung, K. J.; Edman, J. C.; Wickes, B. L. Genetic association of mating types and virulence in Cryptococcus neoformans. Infect. Immun. 1992, 60, 602-605.
111.Moore, T. D.; Edman, J. C. The alpha-mating type locus of Cryptococcus neoformans contains a peptide pheromone gene. Mol. Cell. Biol. 1993, 13, 1962-1970.
112.Hwang, L. H.; Seth, E.; Gilmore, S.A.; Sil, A. SRE1 regulates iron-dependent and –independent pathways in the fungal pathogen Histoplasma capsulatum. Eukaryotic cell 2012, 11, 16-25.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top