跳到主要內容

臺灣博碩士論文加值系統

(44.200.171.156) 您好!臺灣時間:2023/03/27 09:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張心盈
研究生(外文):Hsin-Ying Chang
論文名稱:阿拉伯芥富亮胺酸重複類受體激酶 SRF6 參與熱反應之功能性研究
論文名稱(外文):Functional Study of Arabidopsis Leucine-Rich Repeat Receptor-Like Kinase STRUBBELIG-RECEPTOR FAMILY 6 (SRF6) in Heat Shock Response
指導教授:靳宗洛靳宗洛引用關係
指導教授(外文):Tsung-Luo Jinn
口試委員:鄭秋萍張英峯李金美曾冬筍葉靖輝
口試委員(外文):Chiu-Ping ChengIng-Feng ChangChin-Mei LeeTong-Seung TsengChing-Hui Yeh
口試日期:2020-07-21
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:植物科學研究所
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:英文
論文頁數:88
中文關鍵詞:類受體激酶阿拉伯芥熱逆境反應耐熱性富亮胺酸重複ER逆境反應
外文關鍵詞:receptor-like kinaseArabidopsisheat stress responsethermotoleranceleucine-rich repeatER-stress response
DOI:10.6342/NTU202004061
相關次數:
  • 被引用被引用:0
  • 點閱點閱:65
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
富亮胺酸重複類受體激酶 (LRR-RLKs) 是植物細胞膜上最大的一群RLKs,但大部分成員之功能尚未知。為了探討RLKs基因在熱逆境反應 (HSR) 的角色,本研究檢測九個阿拉伯芥之RLK的突變株在熱逆境 (HS) 下之性狀,並且進一步分析一個受熱誘導表現的RLK基因STRUBBELIG-RECEPTOR-FAMILY 6 (SRF6) 的功能。SRF6 (At1g53730) 編碼一個LRR-RLK,經由先前的分析發現SRF6可能參與在HSR當中。SRF6為一個座落在細胞膜上的蛋白質,利用β-glucuronidase (GUS) 染色分析,發現SRF6廣泛分佈在植物體各時期的組織中。本篇利用細菌表現SRF6的激酶區段並進行活性分析,結果未顯示出其磷酸化活性。兩個不同程度減低SRF6表現量的T-DNA突變株在後天耐熱性 (SAT) 的檢測結果顯示,其存活率高於阿拉伯芥野生型,而大量表現SRF6的轉殖株之存活率則較低。另外,本篇在熱反應的表型觀察中發現,SRF6可能在植物熱逆境下的根生長恢復扮演重要的功能,且srf6植物之內質網 (ER) 逆境反應基因bZIP28和bZIP60的表現量顯著增加。本研究指出一個在植物根組織中非典型熱反應路徑的存在,且與SRF6以及ER逆境反應相關。
Leucine-Rich Repeat Receptor-like kinases (LRR-RLKs) comprise the largest family of plant RLKs, but most of them are still functionally unknown. To explore the role of RLKs in heat stress response (HSR), we characterized 9 RLK-mutant lines of Arabidopsis under HS condition and focused on functional analysis of a heat-responsive gene: STRUBBELIG-RECEPTOR- FAMILY 6 (SRF6). SRF6 (At1g53730) encodes a putative LRR-RLK and was suggested to play a role in the HSR pathway. Subcellular localization and tissue-specific expression analysis demonstrated that SRF6 is a membrane-bound protein and ubiquitously expressed in plants. This study concluded that the cytoplasmic kinase domain (CKD) of SRF6 is catalytically inactive. The srf6 mutants is less sensitive than wild type when challenged with a short-term acquired thermotolerance (SAT) test. Besides, analysis of the thermo-responsive root elongation phenotypes in srf6 highlighted that SRF6 plays a role in the control of root growth recovery from the HS. Analysis of the endodermis reticulum (ER)-stress-responsive genes showed that the expression levels of bZIP28 and bZIP60 were higher in srf6. The preliminary study indicates that the existence of a non-canonical HSR pathway involving SRF6 and ER-stress response in root growth.
摘要………………………………………………….…………….…….....1
ABSTRACT…………………………………………...……………….…..2
LIST OF TABLES………………………………………………………….3
LIST OF FIGURES……………………………………………...….……...4
ABBREVIATIONS………………………………………………………...6
INTRODUCTION………………………………………………………….7
Heat stress/shock (HS)………………………………………………………………......8
Heat shock/stress response and heat-mediated regulatory pathways…........9
Receptor-like kinases (RLKs)…………………………………………….……………..13
STRUBBELIG-RECEPTOR FAMILY…………………...…………………………....17
Objectives…………………………………………………...…………………………....20
MATERIALS AND METHODS……………………………………….....22
Plants materials and growth conditions…………………..…………………………....22
DNA/RNA Preparation, cDNA Synthesis and qRT-PCR………………...…………...22
Construction of transgenic SRF6-overexpression lines generation………..…….…...23
Protoplast Preparation and Transient Expression Assay……………………....……..24
Subcellular Localization…………………………………………………………………25
GUS reporter activity staining and cleared tissue for observation……………….…..25
Thermotolerance test……………………………………………………….……………26
In vitro kinase assay……………………………………………………………..….…....27
Coomassie Brilliant Blue and Pro-Q diamond staining……………………………….27
Purification of membrane protein…………………………………………..……….….28
Immunoprecipitation and Western blotting…………………………………..…….....29
Ponceau S staining………………………………………………………………...……..29
Statistical analysis…………………………………………………………..……………30
RESULTS………………………………………………………...……….31
Expression of SRF6 is regulated by HSFA1s and HSFA7b in response to heat
shock…………………………………………….…………………………….…….31
Phenotyping of RLKs- mutant plants by quantitation of the hypocotyl and root
elongation in response to heat stress (HS)………………….…………………….32
SRF6 localized to plasma membrane……………………………...……………………34
Tissue-specific expression of SRF6…………………………………...…………………34
SRF6 encodes an atypical RLK………………………………………………................35
SRF6 is a negative regulator in short-term acquired thermotolerance……………....36
Expression of SRF6 in srf6-2 mutant was not responsive to heat shock………..……37
Overexpression of SRF6 restored the mutated phenotype of srf6……………………37
SRF6 does not play a role in hypocotyl elongation control in response to heat
shock…………………………………………………………………………….......38
SRF6 may play a role in root control in response to heat shock………………..…….38
Expression of the abiotic stress-responsive genes in srf6 mutants in response to heat
shock…………………………………………………………………………….…..39
Phosphorylation of SRF6 was undetectable in response to heat shock………………40
Expression of SRF7 was not responsive to heat shock but higher in SRF6-KO
mutants……………………………………………………………………………...41
DISCUSSION……………………………………………………...……..42
SRF6 is a downstream regulator of HSFA1s and HSFA7b in specific
thermoresponsive mechanism required for proper thermotolerance……….….42
The function of SRF6 in root elongation may relate to ER-stress regulators…….….44
SRF6 is an atypical RLK and may not be phosphorylated by HS……………………45
The expression of SRF7 is not heat-inducible but affected by SRF6 transcriptional
level………………………………………………………………………………….49
TABLES…………………………………………………………………..51
FIGURES………………………………………………...……………….54
SUPPLEMENTARY FIGURES…………………………………………..79
REFERENCES……………………………………………………………81
APPENDIX………………………………………………….……………88
Adams, J.A. (2003). Activation loop phosphorylation and catalysis in protein kinases:  is there functional evidence for the autoinhibitor model? Biochemistry 42, 601-607.
Alcazar, R., Garcia, A.V., Kronholm, I., de Meaux, J., Koornneef, M., Parker, J.E., and Reymond, M. (2010). Natural variation at Strubbelig Receptor Kinase 3 drives immune-triggered incompatibilities between Arabidopsis thaliana accessions. Nat. Genet. 42, 1135-1139.
Baniwal, S.K., Chan, K.Y., Scharf, K.D., and Nover, L. (2007). Role of heat stress transcription factor HsfA5 as specific repressor of HsfA4. J. Biol. Chem. 282, 3605-3613.
Bechtold, U., and Field, B. (2018). Molecular mechanisms controlling plant growth during abiotic stress. J. Exp. Bot. 69, 2753-2758.
Becraft, P.W. (2002). Receptor kinase signaling in plant development. Annu. Rev. Cell Dev. Biol. 18, 163-192.
Braun, D.M., and Walker, J.C. (1996). Plant transmembrane receptors: new pieces in the signaling puzzle. Trends Biochem. Sci. 21, 70-73.
Castells, E., Puigdomenech, P., and Casacuberta, J.M. (2006). Regulation of the kinase activity of the MIK GCK-like MAP4K by alternative splicing. Plant Mol. Biol. 61, 747-756.
Charng, Y.Y., Liu, H.C., Liu, N.Y., Chi, W.T., Wang, C.N., Chang, S.H., and Wang, T.T. (2007). A heat-inducible transcription factor, HsfA2, is required for extension of acquired thermotolerance in Arabidopsis. Plant Physiol. 143, 251-262.
Chevalier, D., Batoux, M., Fulton, L., Pfister, K., Yadav, R.K., Schellenberg, M., and Schneitz, K. (2005). STRUBBELIG defines a receptor kinase-mediated signaling pathway regulating organ development in Arabidopsis. Proc. Natl. Acad. Sci. U.S.A. 102, 9074-9079.
Cho, S.K., Larue, C.T., Chevalier, D., Wang, H., Jinn, T.L., Zhang, S., and Walker, J.C. (2008). Regulation of floral organ abscission in Arabidopsis thaliana. Proc. Natl. Acad. Sci. U.S.A. 105, 15629-15634.
Clough, S.J., and Bent, A.F. (1998). Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 16, 735-743.
Clouse, S.D., Langford, M., and McMorris, T.C. (1996). A brassinosteroid-insensitive mutant in Arabidopsis thaliana exhibits multiple defects in growth and development. Plant Physiol. 111, 671-678.
Davletova, S., Rizhsky, L., Liang, H., Shengqiang, Z., Oliver, D.J., Coutu, J., Shulaev, V., Schlauch, K., and Mittler, R. (2005). Cytosolic ascorbate peroxidase 1 is a central component of the reactive oxygen gene network of Arabidopsis. Plant Cell 17, 268-281.
Deng, Y., Humbert, S., Liu, J.X., Srivastava, R., Rothstein, S.J., and Howell, S.H. (2011). Heat induces the splicing by IRE1 of a mRNA encoding a transcription factor involved in the unfolded protein response in Arabidopsis. Proc. Natl. Acad. Sci. U.S.A. 108, 7247-7252.
Eyüboglu, B., Pfister, K., Haberer, G., Chevalier, D., Fuchs, A., Mayer, K.F.X., and Schneitz, K. (2007). Molecular characterisation of the STRUBBELIG-RECEPTOR FAMILY of genes encoding putative leucine-rich repeat receptor-like kinases in Arabidopsis thaliana. BMC Plant Biol. 7, 16.
Fahad, S., Bajwa, A.A., Nazir, U., Anjum, S.A., Farooq, A., Zohaib, A., Sadia, S., Nasim, W., Adkins, S., Saud, S., Ihsan, M.Z., Alharby, H., Wu, C., Wang, D., and Huang, J. (2017). Crop production under drought and heat stress: plant responses and management options. Front. Plant Sci. 8.
Franklin, K.A., Lee, S.H., Patel, D., Kumar, S.V., Spartz, A.K., Gu, C., Ye, S., Yu, P., Breen, G., Cohen, J.D., Wigge, P.A., and Gray, W.M. (2011). PHYTOCHROME-INTERACTING FACTOR 4 (PIF4) regulates auxin biosynthesis at high temperature. Proc. Nat. Acad. Sci. U.S.A. 108, 20231-20235.
Gangappa, S.N., and Kumar, S.V. (2017). DET1 and HY5 control PIF4-mediated thermosensory elongation growth through distinct mechanisms. Cell Rep. 18, 344-351.
Germain, H., Houde, J., Gray-Mitsumune, M., Sawasaki, T., Endo, Y., Rivoal, J., and Matton, D.P. (2007). Characterization of ScORK28, a transmembrane functional protein receptor kinase predominantly expressed in ovaries from the wild potato species Solanum chacoense. FEBS Lett. 581, 5137-5142.
Gifford, M.L., Robertson, F.C., Soares, D.C., and Ingram, G.C. (2005). ARABIDOPSIS CRINKLY4 function, internalization, and turnover are dependent on the extracellular crinkly repeat domain. Plant Cell 17, 1154-1166.
Gish, L.A., and Clark, S.E. (2011). The RLK/Pelle family of kinases. Plant J. 66, 117-127.
Gomez-Gomez, L., and Boller, T. (2000). FLS2: an LRR receptor-like kinase involved in the perception of the bacterial elicitor flagellin in Arabidopsis. Mol. Cell 5, 1003-1011.
Guan, D., Yang, F., Xia, X., Shi, Y., Yang, S., Cheng, W., and He, S. (2018). CaHSL1 acts as a positive regulator of pepper thermotolerance under high humidity and is transcriptionally modulated by CaWRKY40. Front. Plant Sci. 9, 1802-1802.
Guy, P.M., Platko, J.V., Cantley, L.C., Cerione, R.A., and Carraway, K.L., 3rd. (1994). Insect cell-expressed p180erbB3 possesses an impaired tyrosine kinase activity. Proc. Nat.l Acad. Sci. U.S.A. 91, 8132-8136.
He, Z., Wang, Z.Y., Li, J., Zhu, Q., Lamb, C., Ronald, P., and Chory, J. (2000). Perception of brassinosteroids by the extracellular domain of the receptor kinase BRI1. Science 288, 2360-2363.
Hsu, S.F., Lai, H.C., and Jinn, T.L. (2010). Cytosol-localized heat shock factor-binding protein, AtHSBP, functions as a negative regulator of heat shock response by translocation to the nucleus and is required for seed development in Arabidopsis. Plant Physiol. 153, 773-784.
Huang, Y.C., Niu, C.Y., Yang, C.R., and Jinn, T.L. (2016). The heat stress factor HSFA6b connects ABA signaling and ABA-mediated heat responses. Plant Physiol. 172, 1182-1199.
Ikeda, M., Mitsuda, N., and Ohme-Takagi, M. (2011). Arabidopsis HsfB1 and HsfB2b act as repressors of the expression of heat-inducible Hsfs but positively regulate the acquired thermotolerance. Plant Physiol. 157, 1243-1254.
Janni, M., Gullì, M., Maestri, E., Marmiroli, M., Valliyodan, B., Nguyen, H.T., and Marmiroli, N. (2020). Molecular and genetic bases of heat stress responses in crop plants and breeding for increased resilience and productivity. J. Exp. Bot. 71, 3780-3802.
Jeandroz, S., and Lamotte, O. (2017). Editorial: plant responses to biotic and abiotic stresses: lessons from cell signaling. Front. Plant Sci. 8.
Jinn, T.L., Stone, J.M., and Walker, J.C. (2000). HAESA, an Arabidopsis leucine-rich repeat receptor kinase, controls floral organ abscission. Genes Dev. 14, 108-117.
Jung, J.H., Domijan, M., Klose, C., Biswas, S., Ezer, D., Gao, M., Khattak, A.K., Box, M.S., Charoensawan, V., Cortijo, S., Kumar, M., Grant, A., Locke, J.C., Schafer, E., Jaeger, K.E., and Wigge, P.A. (2016). Phytochromes function as thermosensors in Arabidopsis. Science 354, 886-889.
Katso, R.M., Russell, R.B., and Ganesan, T.S. (1999). Functional analysis of H-Ryk, an atypical member of the receptor tyrosine kinase family. Mol. Cell Biol. 19, 6427-6440.
Kim, J.-S., Yamaguchi-Shinozaki, K., and Shinozaki, K. (2018). ER-anchored transcription factors bZIP17 and bZIP28 regulate root elongation. Plant Physiol. 176, 2221-2230.
Kohorn, B.D., Hoon, D., Minkoff, B.B., Sussman, M.R., and Kohorn, S.L. (2016). Rapid oligo-galacturonide induced changes in protein phosphorylation in Arabidopsis. Mol. Cell. Proteomics 15, 1351-1359.
Kotak, S., Larkindale, J., Lee, U., von Koskull-Doring, P., Vierling, E., and Scharf, K.D. (2007). Complexity of the heat stress response in plants. Curr. Opin. Plant Biol. 10, 310-316.
Kwak, S.-H., Shen, R., and Schiefelbein, J. (2005). Positional Signaling Mediated by a Receptor-like Kinase in Arabidopsis. Science 307, 1111.
Kwak, S.-H., Woo, S., Lee, M.M., and Schiefelbein, J. (2014). Distinct signaling mechanisms in multiple developmental pathways by the SCRAMBLED receptor of Arabidopsis. Plant Physiol. 166, 976-987.
Lamers, J., van der Meer, T., and Testerink, C. (2020). How plants sense and respond to stressful environments. Plant Physiol.
Lehti-Shiu, M.D., Zou, C., Hanada, K., and Shiu, S.H. (2009). Evolutionary history and stress regulation of plant receptor-like kinase/pelle genes. Plant Physiol. 150, 12-26.
Li, B., Gao, K., Ren, H., and Tang, W. (2018). Molecular mechanisms governing plant responses to high temperatures. J. Integr. Plant Biol. 60, 757-779.
Li, J., Wen, J., Lease, K.A., Doke, J.T., Tax, F.E., and Walker, J.C. (2002). BAK1, an Arabidopsis LRR receptor-like protein kinase, interacts with BRI1 and modulates brassinosteroid signaling. Cell 110, 213-222.
Lindquist, S., and Craig, E.A. (1988). The heat-shock proteins. Annu. Rev. Genet. 22, 631-677.
Liu, H.C., and Charng, Y.Y. (2012). Acquired thermotolerance independent of heat shock factor A1 (HsfA1), the master regulator of the heat stress response. Plant Signal Behav. 7, 547-550.
Liu, H.C., Liao, H.T., and Charng, Y.Y. (2011). The role of class A1 heat shock factors (HSFA1s) in response to heat and other stresses in Arabidopsis. Plant Cell Environ. 34, 738-751.
Lorrain, S., Allen, T., Duek, P.D., Whitelam, G.C., and Fankhauser, C. (2008). Phytochrome-mediated inhibition of shade avoidance involves degradation of growth-promoting bHLH transcription factors. Plant J. 53, 312-323.
Meier, S., Ruzvidzo, O., Morse, M., Donaldson, L., Kwezi, L., and Gehring, C. (2010). The Arabidopsis Wall Associated Kinase-Like 10 Gene Encodes a Functional Guanylyl Cyclase and Is Co-Expressed with Pathogen Defense Related Genes. PLoS One 5, e8904.
Mittler, R., Finka, A., and Goloubinoff, P. (2012). How do plants feel the heat? Trends Biochem. Sci. 37, 118-125.
Mossie, K., Jallal, B., Alves, F., Sures, I., Plowman, G.D., and Ullrich, A. (1995). Colon carcinoma kinase-4 defines a new subclass of the receptor tyrosine kinase family. Oncogene 11, 2179-2184.
Nelson, B.K., Cai, X., and Nebenführ, A. (2007). A multicolored set of in vivo organelle markers for co-localization studies in Arabidopsis and other plants. Plant J. 51, 1126-1136.
Niittyla, T., Fuglsang, A.T., Palmgren, M.G., Frommer, W.B., and Schulze, W.X. (2007). Temporal analysis of sucrose-induced phosphorylation changes in plasma membrane proteins of Arabidopsis. Mol. Cell. Proteomics 6, 1711-1726.
Nishizawa-Yokoi, A., Nosaka, R., Hayashi, H., Tainaka, H., Maruta, T., Tamoi, M., Ikeda, M., Ohme-Takagi, M., Yoshimura, K., Yabuta, Y., and Shigeoka, S. (2011). HsfA1d and HsfA1e involved in the transcriptional regulation of HsfA2 function as key regulators for the Hsf signaling network in response to environmental stress. Plant Cell Physiol. 52, 933-945.
Nurnberger, T., and Kemmerling, B. (2006). Receptor protein kinases-pattern recognition receptors in plant immunity. Trends Plant Sci. 11, 519-522.
Osakabe, Y., Yamaguchi-Shinozaki, K., Shinozaki, K., and Tran, L.S. (2013). Sensing the environment: key roles of membrane-localized kinases in plant perception and response to abiotic stress. J. Exp. Bot. 64, 445-458.
Ou, Y., Lu, X., Zi, Q., Xun, Q., Zhang, J., Wu, Y., Shi, H., Wei, Z., Zhao, B., Zhang, X., He, K., Gou, X., Li, C., and Li, J. (2016). RGF1 INSENSITIVE 1 to 5, a group of LRR receptor-like kinases, are essential for the perception of root meristem growth factor 1 in Arabidopsis thaliana. Cell Res. 26, 686-698.
Park, Y.J., Lee, H.J., Ha, J.H., Kim, J.Y., and Park, C.M. (2017). COP1 conveys warm temperature information to hypocotyl thermomorphogenesis. New Phytol. 215, 269-280.
Qiu, Y., Li, M., Kim, R.J.-A., Moore, C.M., and Chen, M. (2019). Daytime temperature is sensed by phytochrome B in Arabidopsis through a transcriptional activator HEMERA. Nat. Commun. 10, 140.
Queitsch, C., Hong, S.W., Vierling, E., and Lindquist, S. (2000). Heat shock protein 101 plays a crucial role in thermotolerance in Arabidopsis. Plant Cell 12, 479-492.
Rejeb, I.B., Pastor, V., and Mauch-Mani, B. (2014). Plant responses to simultaneous biotic and abiotic stress: molecular mechanisms. PLANTS-BASEL 3, 458-475.
Saijo, Y., and Loo, E.P.-i. (2020). Plant immunity in signal integration between biotic and abiotic stress responses. New Phytol. 225, 87-104.
Scharf, K.D., Berberich, T., Ebersberger, I., and Nover, L. (2012). The plant heat stress transcription factor (Hsf) family: structure, function and evolution. Biochim. Biophys. Acta. 1819, 104-119.
Schneitz, K., Hülskamp, M., and Pruitt, R.E. (1995). Wild-type ovule development in Arabidopsis thaliana: a light microscope study of cleared whole-mount tissue. Plant J. 7, 731-749.
Schramm, F., Larkindale, J., Kiehlmann, E., Ganguli, A., Englich, G., Vierling, E., and von Koskull-Doring, P. (2008). A cascade of transcription factor DREB2A and heat stress transcription factor HsfA3 regulates the heat stress response of Arabidopsis. Plant J. 53, 264-274.
Shiu, S.H., and Bleecker, A.B. (2001). Receptor-like kinases from Arabidopsis form a monophyletic gene family related to animal receptor kinases. Proc. Natl. Acad. Sci. U.S.A. 98, 10763-10768.
Shiu, S.H., and Bleecker, A.B. (2003). Expansion of the receptor-like kinase/Pelle gene family and receptor-like proteins in Arabidopsis. Plant Physiol. 132, 530-543.
Sierke, S.L., Cheng, K., Kim, H.H., and Koland, J.G. (1997). Biochemical characterization of the protein tyrosine kinase homology domain of the ErbB3 (HER3) receptor protein. Biochem. J. 322 ( Pt 3), 757-763.
Somssich, M., Je, B.I., Simon, R., and Jackson, D. (2016). CLAVATA-WUSCHEL signaling in the shoot meristem. Development (Cambridge, U. K.) 143, 3238.
Swain, S., Singh, N., and Nandi, A.K. (2015). Identification of plant defence regulators through transcriptional profiling of Arabidopsis thaliana cdd1 mutant. J. Biosci. 40, 137-146.
Taylor, I., Seitz, K., Bennewitz, S., and Walker, J.C. (2013). A simple in vitro method to measure autophosphorylation of protein kinases. Plant Methods 9, 22.
Tubiello, F.N., Soussana, J.F., and Howden, S.M. (2007). Crop and pasture response to climate change. Proc. Natl. Acad. Sci. U.S.A. 104, 19686-19690.
Vaddepalli, P., Fulton, L., Batoux, M., Yadav, R.K., and Schneitz, K. (2011). Structure-function analysis of STRUBBELIG, an Arabidopsis atypical receptor-like kinase involved in tissue morphogenesis. PLoS One 6, e19730-e19730.
Vu, L.D., Gevaert, K., and De Smet, I. (2019). Feeling the heat: searching for plant thermosensors. Trends Plant Sci. 24, 210-219.
Walker, J.C., and Zhang, R. (1990). Relationship of a putative receptor protein kinase from maize to the S-locus glycoproteins of Brassica. Nature 345, 743-746.
Wang, H., Niu, H., Liang, M., Zhai, Y., Huang, W., Ding, Q., Du, Y., and Lu, M. (2019). A wall-associated kinase gene CaWAKL20 from pepper negatively modulates plant thermotolerance by reducing the expression of ABA-responsive genes. Front. Plant Sci. 10, 591.
Wang, H., Chen, Y., Wu, X., Long, Z., Sun, C., Wang, H., Wang, S., Birch, P.R.J., and Tian, Z. (2018). A potato STRUBBELIG-RECEPTOR FAMILY member, StLRPK1, associates with StSERK3A/BAK1 and activates immunity. J. Exp. Bot. 69, 5573-5586.
Wu, X.N., Sanchez Rodriguez, C., Pertl-Obermeyer, H., Obermeyer, G., and Schulze, W.X. (2013). Sucrose-induced receptor kinase SIRK1 regulates a plasma membrane aquaporin in Arabidopsis. Mol. Cell. Proteomics 12, 2856-2873.
Yadav, R.K., Fulton, L., Batoux, M., and Schneitz, K. (2008). The Arabidopsis receptor-like kinase STRUBBELIG mediates inter-cell-layer signaling during floral development. Dev. Biol. 323, 261-270.
Yoo, S.-D., Cho, Y.-H., and Sheen, J. (2007). Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nat. Protoc. 2, 1565-1572.
Yoshida, T., Sakuma, Y., Todaka, D., Maruyama, K., Qin, F., Mizoi, J., Kidokoro, S., Fujita, Y., Shinozaki, K., and Yamaguchi-Shinozaki, K. (2008). Functional analysis of an Arabidopsis heat-shock transcription factor HsfA3 in the transcriptional cascade downstream of the DREB2A stress-regulatory system. Biochem. Biophys. Res. Commun. 368, 515-521.
Zang, D., Wang, J., Zhang, X., Liu, Z., and Wang, Y. (2019). Arabidopsis heat shock transcription factor HSFA7b positively mediates salt stress tolerance by binding to an E-box-like motif to regulate gene expression. J. Exp. Bot. 70, 5355-5374.
Zhang, X., Zhou, L., Qin, Y., Chen, Y., Liu, X., Wang, M., Mao, J., Zhang, J., He, Z., Liu, L., and Li, J. (2018). A tmperature-sensitive misfolded bri1-301 receptor requires its kinase activity to promote growth. Plant physiol. 178, 1704-1719.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊