跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.171) 您好!臺灣時間:2025/01/17 10:02
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張家瑜
研究生(外文):Chia-Yu Chang
論文名稱:γ-胺基丁酸於小鼠壓力調節功效評估及複方機能產品開發
論文名稱(外文):Evaluation of γ-aminobutyric acid in mouse pressure regulation and development of compound functional product
指導教授:吳思節徐源泰徐源泰引用關係
指導教授(外文):Sz-Jie WuYuan-Tay Shyu
口試委員:劉育姍曾文聖
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:園藝暨景觀學系
學門:農業科學學門
學類:園藝學類
論文種類:學術論文
論文出版年:2019
畢業學年度:108
語文別:中文
論文頁數:115
中文關鍵詞:毛豆γ-胺基丁酸高壓加工不可預期慢性壓力模式
外文關鍵詞:green soybeanγ-aminobutyric acidhigh pressure processingunpredictable chronic mild stress
DOI:10.6342/NTU201904082
相關次數:
  • 被引用被引用:0
  • 點閱點閱:3
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究旨在以高壓加工技術 (high pressure processing, HPP) 富化毛豆γ-胺基丁酸 (gamma-aminobutyric acid, GABA) 含量後,探討其抗憂鬱效果、確效功能特性,並開發具抗憂鬱重要機能訴求產品。動物實驗使用C57BL/6J雄性小鼠以不可預期慢性壓力模式 (unpredictable chronic mild stress, UCMS) 誘導憂鬱,餵食混合毛豆之GABA飼料。由尾部懸吊試驗可得知治療組之不動時間顯著比憂鬱組少,並且於開放空間試驗的總移動距、探索站立次數離顯示,攝食GABA飼料之憂鬱小鼠有明顯地探索行為,代表GABA飼料可減緩憂鬱症狀。於誘導第四週後,治療組對糖水偏好程度顯著高於控制組,可有效減緩憂鬱情形。生化指數部分,小鼠之糞便及血清皮質酮含量於誘導憂鬱前,並沒有顯著差異。至第七週,憂鬱組的糞便皮質酮含量上升至104.86 pg⋅mg-1,而預防組 (36.62 pg⋅mg-1)、治療組 (23.98 pg⋅mg-1) 顯著降低糞便皮質酮含量,與控制組 (33.38 pg⋅mg-1) 相當,血清中之皮質酮含量也有一致的趨勢,代表能緩解憂鬱程度。此外,血清中之血清素含量與皮質酮含量呈現相反的趨勢,治療組能維持血清素濃度,避免憂鬱情緒產生。以唾液澱粉酶活性與腦波作為評估GABA毛豆對於人體緩解多功遊戲誘導的壓力之指標。受試者攝取含50 mg GABA的凍乾毛豆仁,消化15分鐘後進行多功遊戲壓力刺激,紀錄其唾液澱粉酶與腦電圖之變化,結果顯示服用富化GABA之毛豆仁可以減緩唾液澱粉酶活性、alpha波上升,具有減輕心理壓力作用。經高壓加工富化GABA之毛豆,可作為調節憂鬱情緒之保健食品原料之開發,富化GABA之毛豆,可分為毛豆莢殼及毛豆仁兩部分。毛豆莢殼與紅藜、枸杞、甜菊,以最適比例混合後打粉,製成GABA舒壓茶包,經貯藏六個月後其總生菌數及大腸桿菌數皆在安全範圍。於凍乾毛豆仁外層裹上巧克力,製成毛豆巧克力,經長期試驗貯藏六個月仍可維持GABA含量,且總生菌數及大腸桿菌數皆符合規定。由研究結果,高壓加工後的毛豆為優良GABA來源,且開發之茶包與巧克力為兼具美味與穩定安全之產品。
The objectives of this project are to enrich the gamma-aminobutyric acid (GABA) content of vegetable soybean by high pressure processing (HPP) to explore its anti-depression effect, confirm functional characteristics, and develop anti-depression functional products. We used C57BL/6J male mice induced depression by unpredictable chronic mild stress (UCMS) which were fed with GABA of vegetable soybean mixed feed. The tail suspension test showed that the immobility time of the GABA feed group was significantly shorter than control groups. It shows that taking GABA feed can significantly reduce depression. By the total distance and number of rearing, it could be learned that mice of taking GABA feed have significantly exploration behavior. Sucrose preference test is one of indicators for determine whether mice are depressed. After inducing 4 weeks, taking GABA feed group was significantly higher than control groups, it can effectively reduce depressive-like symptoms. In the biochemical index, there was no significant difference in the fecal and serum corticosterone content of the mice before the induction of depression (wk3). The fecal corticosterone content in each group remained similar at the fifth week. By the seventh week, the fecal corticosterone content in the UCMS group increased to 104.86 pg⋅mg-1, while the prevention group (36.62 pg⋅mg-1) and the GABA group (23.98 pg⋅mg-1) significantly reduced the fecal corticosterone content. Compared with the control group (33.38 pg⋅mg-1), the corticosterone content in serum also showed a consistent trend, which can alleviate the degree of depression. In addition, the serum serotonin content and corticosterone content showed an opposite trend, consistent with previous studies, when the serotonin concentration decreased, leading to depression, the treatment group can serotonin concentration, to avoid depression. Salivary amylase activity and brain waves were used as indicators to evaluate the stress induced by GABA edamame in the human body to alleviate multi-function games. Subjects ingested lyophilized soybean kernels containing 50 mg of GABA, and after 15 minutes of digestion, they were subjected to multi-function game pressure stimulation, and recorded changes in salivary amylase and EEG. The results showed that taking fermented GABA-containing edamame can slow down saliva starch. Enzyme activity and alpha wave rise, which has the effect of relieving psychological stress. By using high pressure processing increase GABA contents in vegetable soybean, it can be as an ingredient of health food for regulating depression. Enriched GABA of vegetable soybean, it can be divided into two parts: pods and beans. Mixed with vegetable soybean, red quinoa, goji, and stevia in proper ratio, and grind into powder to make tea bag. After storage test tea bag can fit the standard of total plate count and coliform bacteria. Wrapped in chocolate on the outer layer of vegetable soybean, the freeze-dried vegetable soybean provides a crispy taste, and the chocolate provides a rich flavor to make vegetable soybean chocolate. After 6 months long term testing, it can keep GABA contents and safe. As results, vegetable soybeans treated by high pressure processing are excellent source of GABA, and can be made into tea bag and chocolate products which are delicious, stable and safe.
中文摘要 i
英文摘要 iii
目錄 vi
圖目錄 x
表目錄 xii
第一章 前言 1
第二章 文獻回顧 3
第一節 毛豆 3
1. 簡介 3
2. 營養價值 6
3. 產業現況 7
4. 毛豆產業相關產品 8
第二節 Γ-胺基丁酸 12
1. 簡介 12
2. 植物生合成途徑 12
3. 生產方式 13
4. 生理功能 14
第三節 憂鬱症 18
1. 簡介 18
2. 憂鬱症之主要分類 18
3. 憂鬱症之成因 19
4. 憂鬱症動物模式 20
5. 人體之壓力指標 22
第四節 高壓加工技術 24
1. 介紹及原理 24
2. 作用機制與影響 25
3. 高壓加工技術之應用 27
第五節 研究動機與目的 32
第六節 試驗架構 33
第三章 材料與方法 34
第一節 試驗材料 34
第二節 試驗藥品 34
第三節 儀器與設備 35
第四節 試驗處理 37
第五節 HPLC分析GABA含量 37
第六節 抗憂鬱之動物模式 41
1. 實驗流程 41
2. 動物飼養 42
第七節 人體試驗 47
1. 試驗人員篩選 47
2. 唾液澱粉酶測定方法 47
3. 腦波測定方法 47
4. 測定流程 47
5. 數據分析 48
第八節 產品開發 55
1. GABA巧克力製作流程 55
2. GABA茶包製作流程 55
3. 基本成分分析 56
4. 產品貯藏試驗 56
5. 品評調查 57
第九節 統計分析 60
第四章 結果與討論 61
第一節 動物試驗 61
1. 飼養期間體重變化 61
2. 尾部懸吊試驗 61
3. 開放空間試驗 62
4. 糖水偏好程度 63
5. 糞便皮質酮含量測定 64
6. 血清之皮質酮、血清素含量測定 64
第二節 人體試驗 77
1. 唾液澱粉酶測定 77
2. 腦波測定 77
第三節 產品開發 81
1. 基本成分分析 81
2. 貯藏及安定性 84
3. 品評調查 89
第五章 結論 93
參考文獻 95
1.行政院農業委員會高雄區農業改良場. 2019. 小綠金立大功~毛豆產品外銷產值再創新高. <https://www.kdais.gov.tw/theme_data.php?theme=news&sub_
theme=news_releases&id=8919>.
2.吳玉婷、方怡丹. 2013. 台灣綠金-外銷毛豆生產專區概況與輔導成果. 農政與農情 253.
3.吳昭慧、連大進. 1998. 毛豆之營養與效用. 臺南區農業專訊 26:4-7.
4.吴春兰、黄亚辉、赖幸菲、赖榕辉、张敏、赵文霞、赵文芳. 2014. γ-氨基丁酸 (GABA) 毛叶茶品质成分分析. 植物分類與資源學報 411-418.
5.李穎宏. 2002. 毛豆粉末化加工技術之探討. 高雄區農業專訊 16-17.
6.周國隆. 2006. 毛豆新品種『高雄9號(綠晶)』問世. 高雄區農情月刊 101:3-4.
7.周國隆. 2008. 毛豆外銷生力軍-高雄9號(綠晶). 高雄區農技報導 93:3-15.
8.周國隆. 2014. 毛豆黃豆兩用大豆新品種-高雄12號. 高雄區農業專訊 90:10-11.
9.洪紫宸、朱信. 2012. 簡介唾液壓力反應生物指標.中華民國航空醫學暨科學期刊 26:27-34.
10.郝承偉. 2013. 檸檬精油對於小鼠抗憂鬱之效果. 國立臺灣大學食品科技研究所碩士論文. 臺北.
11.马燕、段双梅、赵明. 2016. 富含γ-氨基丁酸食品的研究进展. 氨基酸和生物资源. 38(3):1-6.
12.張惠真. 2001. 黃豆營養與健康. 臺中區農業改良場特刊 49:46.
13.許嫚芯. 2018. 淹水逆境輔以高壓處理對提升毛豆γ-胺基丁酸含量之研究. 國立臺灣大學園藝暨景觀學系碩士論文. 臺北.
14.郭晓娜、朱永义. 2003. 響應面法在發芽糙米研究中的應用. 糧食與飼料工業11:11-12.
15.陳正敏、李穎宏、林怡如. 2013. 毛豆成分與產品開發利用. 農業新知 84:18-19.
16.農委會. 農業統計資料庫. 2019年6月29日,取自:<http://agrstat.coa.gov.tw/sdweb/public/trade/tradereport.aspx>.
17.臺灣農家要覽策劃委員會. 臺灣農家要覽. 1980. 豐年社 臺北市.
18.賴彥廷. 2017. 利用高壓加工技術提升毛豆γ-胺基丁酸含量及其抗憂鬱機能之研究. 國立臺灣大學園藝暨景觀學系碩士論文. 臺北.
19.Abdou, A.M., S. Higashiguchi, K. Horie, M. Kim, H. Hatta, and H. Yokogoshi. 2006. Relaxation and immunity enhancement effects of γ‐Aminobutyric acid (GABA) administration in humans. Biofactors 26:201-208.
20.Adeghate, E., and A.S. Ponery. 2002. GABA in the endocrine pancreas: cellular localization and function in normal and diabetic rats. Tissue Cell 34:1-6.
21.Ahern, T.J. and A.M. Klibanov. 1985. The mechanisms of irreversible enzyme inactivation at 100C. Science 228:1280-1284.
22.Akiskal, H.S., M.L. Bourgeois, J. Angst, R. Post, H.J. Möller, and R. Hirschfeld. 2000. Re-evaluating the prevalence of and diagnostic composition within the broad clinical spectrum of bipolar disorders. J. Affect. Disorders 59:S5-S30.
23.Al-Sarraf, H. 2002. Transport of 14C-γ-aminobutyric acid into brain, cerebrospinal fluid and choroid plexus in neonatal and adult rats. Dev. Brain Res. 139:121-129.
24.American psychiatric association. 2013. Diagnostic and statistical manual of mental disorders (Fifth Edition). Virginia, USA.
25.Arango, V., M.D. Underwood, and J.J. Mann. 2002. Serotonin brain circuits involved in major depression and suicide. Prog. Brain Res. 136:443-453.
26.Auteri, M., M.G. Zizzo, and R. Serio. 2015. GABA and GABA receptors in the gastrointestinal tract: from motility to inflammation. Pharmacol. Res. 93:11-21.
27.Balasubramaniam, V.M., S.I. Martínez-Monteagudo, and R. Gupta. 2015. Principles and application of high pressure–based technologies in the food industry. Ann. Rev. Food Sci. Technol. 6:435-462.
28.Balci, A.T. and R.A. Wilbey. 1999. High pressure processing of milk‐the first 100 years in the development of a new technology. Int. J. Dairy Technol. 52:149-155.
29.Balny, C. and P. Masson. 1993. Effects of high pressure on proteins. Food Rev. Int. 9:611-628.
30.Barrett, E., R.P. Ross, P.W. O’Toole, G.F. Fitzgerald, and C. Stanton. 2012. γ-Aminobutyric acid production by culturable bacteria from the human intestine. J. Appl. Microbiol. 113:411-417.
31.Battaglioli, G., H. Liu, and D.L. Martin. 2003. Kinetic differences between the isoforms of glutamate decarboxylase: Implications for the regulation of GABA synthesis. J. Neurochem. 86:879-887.
32.Berridge, K.C. 2007. The debate over dopamine’s role in reward: the case for incentive salience. Psychopharmacology 191:391-431.
33.Bettler, B, K. Kaupmann, J. Mosbacher, and M. Gassmann. 2004. Molecular structure and physiological functions of GABA(B) receptors. Physiol. Rev. 84: 835-867.
34.Bravo, J.A., P. Forsythe, M.V. Chew, E. Escaravage, H.M. Savignac, T.G. Dinan. 2011. Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proc. Natl. Acad. Sci. U.S.A. 108:16050-16055.
35.Brightman, M.W. and T.S. Reese. 1969. Junctions between intimately apposed cell membranes in the vertebrate brain. J. Cell Biol. 40:648-677.
36.Campus, M. 2010. High pressure processing of meat, meat products and seafood. Food Eng. Rev. 2:256-273.
37.Cannon, C.M. and R.D. Palmiter. 2003. Reward without dopamine. J. Neurosci. 23:10827-10831.
38.Chakraborty, S., N. Kaushik, P.S. Rao, and H.N. Mishra. 2014. High‐pressure inactivation of enzymes: A review on its recent applications on fruit purees and juices. Compr. Rev. Food Sci. F. Saf. 13:578-596.
39.Charron, C.S., F.L. Allen, R.D. Johnson, V.R. Pantalone, and C.E. Sams. 2005. Correlations of oil and protein with isoflavone concentration in soybean [Glycine max (L.) Merr.]. J. Agr. Food Chem. 53:7128-7135.
40.Chatterton, Jr.R.T., K.M. Vogelsong, Y.C. Lu, A.B. Ellman, and G.A. Hudgens. 1996. Salivary alpha-amylase as a measure of endogenous adrenergic activity. Clin. Physiol. 16:433-48.
41.Cryan, J.F., and S.M. O’mahony. 2011. The microbiome‐gut‐brain axis: from bowel to behavior. Neurogastroent. Motil. 23:187-192.
42.Cryan, J.F., and T.G. Dinan. 2012. Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour. Nat. Rev. Neurosci. 13:701-712.
43.Cryan, J.F., C. Mombereau, and A.Vassout. 2005. The tail suspension test as a model for assessing antidepressant activity: review of pharmacological and genetic studies in mice. Neurosci. Biobehav. Rev. 29:571-625.
44.De Ancos, B., S. Sgroppo, L. Plaza, and M.P. Cano. 2002. Possible nutritional and health-related value promotion in orange juice preserved by high-pressure treatment. J. Sci. Food Agr. 82:790-796.
45.Demazeau, G. and N. Rivalain. 2011. High hydrostatic pressure and biology: a brief history. Appl. Microbiol. Biotechnol. 89:1305-1314.
46.Deng, X.Y., J.S. Xue, H.Y. Li, Z.Q. Ma, Q. Fu, R. Qu, and S.P. Ma. 2015. Geraniol produces antidepressant-like effects in a chronic unpredictable mild stress mice model. Physiol. Behav. 152:264-271.
47.Dranovsky, A. and R. Hen. 2006. Hippocampal neurogenesis: regulation by stress and antidepressants. Biol. Psychiatry 59:1136-1143.
48.Eisenmenger, M.J. and J.I. Reyes-De-Corcuera. 2009. High pressure enhancement of enzymes: a review. Enzyme Microb. Technol. 45:331-347.
49.Erkan, N., G. Üretener, H. Alpas, A. Selçuk, Ö. Özden, and S. Buzrul. 2011. The effect of different high pressure conditions on the quality and shelf life of cold smoked fish. Inno. Food Sci. Emerg. Technol. 12:104-110.
50.Farooq, R.K., E. Isingrini, A. Tanti, A.M. Le Guisquet, N. Arlicot, F. Minier, S. Leman, S. Chalon, C. Belzung, and V. Camus. 2012. Is unpredictable chronic mild stress (UCMS) a reliable model to study depression-induced neuroinflammation. Behav. Brain Res. 231:130-137.
51.Fava, M., and K.S. Kendler. 2000. Major depressive disorder. Neuron 28:335-341.
52.Fehr, W.R. and C.E. Caviness. 1977. Stages of soybean development. Special Report 87. <https://lib.dr.iastate.edu/specialreports/87>.
53.Ferrini, G., J. Comaposada, J. Arnau, and P. Gou. 2012. Colour modification in a cured meat model dried by Quick-Dry-Slice process® and high pressure processed as a function of NaCl, KCl, K-lactate and water contents. Inno. Food Sci. Emerg. Technol.13:69-74.
54.Food and Drug Administration, U.S. 2005. Estimating the maximum safe starting dose in initial clinical trials for therapeutics in adult healthy volunteers. Food and Drug Administration, Washington, DC. <http://www. fda. gov/cder/guidance>.
55.Frey, H.H., and W. Löscher. 1980. Cetyl GABA: effect on convulsant thresholds in mice and acute toxicity. Neuropharmacology 19:217-220.
56.Gronli, J., R. Murison, B. Bjorvatn, E. Sørensen, C.M. Portas, and R. Ursin. 2004. Chronic mild stress affects sucrose intake and sleep in rats. Behav. Brain Res. 150:139-147.
57.Gronli, J., R. Murison, E. Fiske, B. Bjorvatn, E. Sorensen, C.M. Portas, and R. Ursin. 2005. Effects of chronic mild stress on sexual behavior, locomotor activity and consumption of sucrose and saccharine solutions. Physiol. Behav. 84:571-577.
58.Guo, Y., R. Yang, H. Chen, Y. Song, and Z. Gu. 2012. Accumulation of γ-aminobutyric acid in germinated soybean (Glycine max L.) in relation to glutamate decarboxylase and diamine oxidase activity induced by additives under hypoxia. Eur. Food Res. Technol. 234:679-687.
59.Henderson, N.D., M.G. Turri, J.C. DeFries, and J. Flint. 2004. QTL analysis of multiple behavioral measures of anxiety in mice. Behav. Gene. Behav. genetics 34:267-293.
60.Heremans, K. 1993. The behaviour of proteins under pressure, p. 443-469. In: R. Winter and J. Jonas(eds.). High pressure chemistry, biochemistry and materials science. Springer, Dordrecht.
61.Hite, B.H. 1899. The effect of pressure in the preservation of milk: a preliminary report. West Virginia Agricultural Experiment Station. Bulletins 58. <https://researchrepository.wvu.edu/wv_agricultural_and_forestry_experiment_station_bulletins/58>.
62.Hochachka, P.W. and G.N. Somero. 2002. Biochemical adaptation: mechanism and process in physiological evolution. Oxford University Press, U.K.
63.Hogan, E., A.L. Kelly, and D.W. Sun. 2005. High pressure processing of foods: an overview, p. 3-32. In: D.W. Sun (ed). Emerging technologies for food processing. Academic Press, U.S.A.
64.Hollis, F., and M. Kabbaj. 2014. Social defeat as an animal model for depression. ILAR J. 55:221-232.
65.Huang, P., Z. Dong, W. Huang, C. Zhou, W. Zhong, P. Hu, G. Wen, X. Sun, H. Hua, H. Cao, L. Gao, and Z. Lv. 2017. Voluntary wheel running ameliorates depression-like behaviors and brain blood oxygen level-dependent signals in chronic unpredictable mild stress mice. Behav. Brain Res. 330:17-24.
66.Huang, Q., C. Zhu, C. Liu, F. Xie, K. Zhu, S. Hu. 2013. Gamma‐aminobutyric acid binds to GABAb receptor to inhibit cholangiocarcinoma cells growth via the JAK/STAT3 pathway. Digest. Dis. Sci. 58:734-43.
67.Iñiguez, S.D., L.M. Riggs, S.J. Nieto, G. Dayrit, N.N., Zamora, K.L. Shawhan, B. Cruz, B.L. Warren. 2014. Social defeat stress induces a depression-like phenotype in adolescent male c57BL/6 mice. Stress17:247-255.
68.Ismail, W.W., M. Hanif, S.B. Mohamed, N. Hamzah, and Z.I. Rizman. 2016. Human emotion detection via brain waves study by using electroencephalogram (EEG). Int. J. Adv. Sci. Eng. Inf. Technol. 6:1005-1011.
69.Jacobo-Velázquez, D.A. and C. Hernández-Brenes. 2012. Stability of avocado paste carotenoids as affected by high hydrostatic pressure processing and storage. Inno. Food Sci. Emerg. Technol. 16:121-128.
70.Jaeger, H., K. Reineke, K. Schoessler, and D. Knorr. 2012. Effects of Emerging Processing Technologies on Food Material Properties, p. 222-262. In: B. Bhandari and Y.H. Roos (eds.). Food Materials Science and Engineering. Wiley-Blackwell, New York.
71.Jaenicke, R. 1991. Protein stability and molecular adaptation to extreme conditions, p. 291-304. In: P. Christen and E. Hofmann (eds.). EJB Reviews 1991. Springer, Berlin, Heidelberg.
72.Johnson, S.A., N.M. Fournier, and L.E. Kalynchuk. 2006. Effect of different doses of corticosterone on depression-like behavior and HPA axis responses to a novel stressor. Behav. Brain Res. 168:280-288.
73.Kakee, A., H. Takanaga, T. Terasaki, M. Naito, T. Tsuruo, and Y. Sugiyama. 2001. Efflux of a suppressive neurotransmitter, GABA, across the blood-brain barrier. J. Neurochem. 79:110-118.
74.Kempa, S., J. Krasensky, S. Dal Santo, J. Kopka, and C. Jonak. 2008. A central role of abscisic acid in stress-regulated carbohydrate metabolism. PloS ONE 3(12):e3935. < https://doi.org/10.1371/journal.pone.0003935>.
75.Kim, J.H., Y. Park, K.W. Yu, J.Y. Imm, and H.J. Suh. 2014. Enzyme‐assisted extraction of cactus bioactive molecules under high hydrostatic pressure. J. Sci.f Food Agr. 94:850-856.
76.Knorr, D., V. Heinz, and R. Buckow. 2006. High pressure application for food biopolymers. Biochim. Biophys. Acta 1764:619-631.
77.Knudsen, G.M., H.E. Poulsen, and O.B. Paulson. 1988. Blood–brain barrier permeability in galactosamine-induced hepatic encephalopathy. J. Hepatol. 6:187-192.
78.Krishnan, V., M.H. Han, D.L. Graham, O. Berton, W. Renthal, S.J. Russo, Q. LaPlant, A. Graham, M. Lutter, D.C. Lagace, S. Ghose, R. Reister, P. Tannous, T.A. Green, R.L. Neve, S. Chakravarty, A. Kumar, A.J. Eisch, D.W. Self, F.S. Lee, C.A. Tamminga, D.C. Cooper, H.K. Gershenfeld, and E.J. Nestler. 2007. Molecular adaptations underlying susceptibility and resistance to social defeat in brain reward regions. Cell 131:391-404.
79.Kudryavtseva, N.N., I.V. Bakshtanovskaya, and L.A. Koryakina. 1991. Social model of depression in mice of C57BL/6J strain. Pharmacol. Biochem. Behav. 38:315-320.
80.Kuriyama, K., and P.Y. Sze. 1971. Blood–brain barrier to h3-γ-aminobutyric acid in normal and amino oxyacetic acid-treated animals. Neuropharmacology 10:103-108.
81.Li, H., K. Zhu, H. Zhou, and W. Peng. 2012. Effects of high hydrostatic pressure treatment on allergenicity and structural properties of soybean protein isolate for infant formula. Food Chem. 132:808-814.
82.Liao, W.C., C.Y. Wang, Y.T. Shyu, R.C. Yu, and K.C. Ho. 2013. Influence of preprocessing methods and fermentation of adzuki beans on γ-aminobutyric acid (GABA) accumulation by lactic acid bacteria. J. Funct. Foods 5:1108-1115.
83.Lipinski, C.A. 2000. Drug-like properties and the causes of poor solubility and poor permeability. J. Pharmacol. Toxicol. Methods 44:235-249.
84.Llorens-Martin, M.V., N. Rueda, C. Martinez-Cue, I. Torres-Aleman, J. Florez, and J.L. Trejo. 2007. Both increases in immature dentate neuron number and decreases of immobility time in the forced swim test occurred in parallel after environmental enrichment of mice. Neuroscience 147:631-638.
85.Lo, M.S., M.L. Ng, B.S. Azmy, and B.A. Khalid. 1992. Clinical applications of salivary cortisol measurements. Singap. Med. J. 33:170-3.
86.Logan, A.C., and M. Katzman. 2005. Major depressive disorder: probiotics may be an adjuvant therapy. Med. Hypotheses 64:533-538.
87.Lopez, M.F., T.L. Doremus-Fitzwater, and H.C. Becker. 2011. Chronic social isolation and chronic variable stress during early development induce later elevated ethanol intake in adult C57BL/6J mice. Alcohol 45:355-364.
88.Löscher, W. and H.H. Frey. 1982. Transport of GABA at the blood-CSF interface. J. Neurochem. 38:1072-1079.
89.Macgregor Jr, R.B. 2002. The interactions of nucleic acids at elevated hydrostatic pressure. Biochim. Biophys. Acta 1595:266-276.
90.Makino, J., K. Kato, and F.W. Maes. 1991. Temporal structure of open field behavior in inbred strains of mice. Jap. Psychol. Res. 33:145-152.
91.Mann, J.J. 2005. The medical management of depression. N. Engl. J. Med. 353:1819-1834.
92.Martínez‐Villaluenga, C., Y.H. Kuo, F. Lambein, J. Frías, and C. Vidal‐Valverde. 2006. Kinetics of free protein amino acids, free non‐protein amino acids and trigonelline in soybean (Glycine max L.) and lupin (Lupinus angustifolius L.) sprouts. Eur. Food Res. Technol. 224:177-186.
93.Mathers, C., D.M. Fat, and J.T. Boerma. 2008. Global burden of disease 2004 update. World Health Organization, Switzerland.
94.Matsuo, N., K. Takao, K. Nakanishi, N. Yamasaki, K. Tanda, and Miyakawa, T. 2010. Behavioral profiles of three C57BL/6 substrains. Front. Behav. Neurosci. 4:29.
95.Matsuyama, A., K. Yoshimura, C. Shimizu, Y. Murano, H. Takeuchi, and M. Ishimoto. 2009. Characterization of glutamate decarboxylase mediating γ‐amino butyric acid increase in the early germination stage of soybean (Glycine max [L.] Merr). J. Biosci. Bioeng. 107:538-43.
96.Messaoudi, M., N. Violle, J.F. Bisson, D. Desor, H. Javelot, and C. Rougeot. 2011. Beneficial psychological effects of a probiotic formulation (Lactobacillus helveticus R0052 and Bifidobacterium longum R0175) in healthy human volunteers. Gut Microbes 2:256-261.
97.Monfort, S., S. Ramos, N. Meneses, D. Knorr, J. Raso, and I. Álvare. 2012. Design and evaluation of a high hydrostatic pressure combined process for pasteurization of liquid whole egg. Inno. Food Sci. Emerg. Technol. 14:1-10.
98.Monteiro, S., S. Roque, D. de Sá-Calçada, N. Sousa, M. Correia-Neves, and J.J. Cerqueira. 2015. An efficient chronic unpredictable stress protocol to induce stress-related responses in C57BL/6 mice. Front. Psychiatry 6:6.
99.Montri, D.N., K.M. Kelley, and E.S. Sánchez. 2006. Consumer interest in fresh, in-shell edamame and acceptance of edamame-based patties. HortScience 41:1616-1622.
100.Mozhaev, V.V., K. Heremans, J. Frank, P. Masson, and C. Balny. 1994. Exploiting the effects of high hydrostatic pressure in biotechnological applications. Trends Biotech. 12:493-501.
101.Mutlu, O., G. Ulak, A. Laugeray, and C. Belzung. 2009. Effects of neuronal and inducible NOS inhibitor 1-[2-(trifluoromethyl) phenyl] imidazole (TRIM) in unpredictable chronic mild stress procedure in mice. Pharmacol. Biochem. Behav. 92:82-87.
102.Nakamura, H., T. Takishima, T. Kometani, and H. Yokogosh. 2009. Psychological stress-reducing effect of chocolate enriched with γ-aminobutyric acid (GABA) in humans: assessment of stress using heart rate variability and salivary chromogranin A. Int. J. Food Sci. Nutr. 60:106-113.
103.Nestler, E.J., M. Barrot, R.J. DiLeone, A.J. Eisch, S.J. Gold, and L.M. Monteggia. 2002. Neurobiol Depression Neuron. 34:13-25.
104.Nikmaram, N., B. Dar, S. Roohinejad, M. Koubaa, F.J. Barba, R. Greiner, S.K. Johnson. 2017. Recent advances in aminobutyric acid (GABA) properties in pulses: an overview. J. Sci. Food Agric. 97:2681-2689.
105.Northrop, D.B. 2002. Effects of high pressure on enzymatic activity. Biochim. Biophys. Acta 1595:71-79.
106.Oey, I. 2016. Effects of high pressure on enzymes, p.391-431 In: V.M. Balasubramaniam, G.V. Barbosa‐Cánovas and H.L.M. Lelieveld (eds.). High pressure processing of food. Springer, New York.
107.Oey, I., M. Lille, A. Van Loey, and M. Hendrickx. 2008. Effect of high-pressure processing on colour, texture and flavour of fruit-and vegetable-based food products: a review. Trends Food Sci. Technol. 19:320-328.
108.Okada T., T. Sugishita, T. Murakami, H. Murai, T. Saikusa, T. Horino, A. Onoda, O. Kajmoto, R. Takahashi, T. Takahashi. 2000. Effect of the defatted rice germ enriched with GABA for sleeplessness depression, autonomic disorder by oral administration. J. Jap. Soc. Food Sci. Technol. 47:596-603.
109.Papp, M., P. Willner, and R. Muscat. 1991. An animal model of anhedonia: attenuation of sucrose consumption and place preference conditioning by chronic unpredictable mild stress. Psychopharmacology 104:255-259.
110.Pardridge, W.M. 2005. The blood-brain barrier: bottleneck in brain drug development. NeuroRx. 2:3-14.
111.Pardridge, W.M. 2007. Blood-brain barrier delivery. Drug Discov. Today 12:54-61.
112.Peñas, E., R. Gomez, J. Frias, M.L. Baeza, and C. Vidal-Valverde. 2011. High hydrostatic pressure effects on immunoreactivity and nutritional quality of soybean products. Food Chem. 125:423-429.
113.Petroff, O.A. 2002. Book review: GABA and glutamate in the human brain. Neuroscientist 8:562-573.
114.Poojary, M.M., N. Dellarosa, S. Roohinejad, M. Koubaa, U. Tylewicz, F. Gómez‐Galindo, J.A. Saraiva, M.D. Rosa, and F.J. Barba. 2017. Influence of innovative processing on γ‐aminobutyric acid (GABA) contents in plant food materials. Compr. Rev. Food Sci. F. Saf. 16:895-905.
115.Porsolt, R.D., A. Bertin, N. Blavet, M. Deniel, and M.L. Jalfre. 1979. Immobility induced by forced swimming in rats: effects of agents which modify central catecholamine and serotonin activity. Eur. J. Pharmacol. 57:201-210.
116.Pothion, S., J.C. Bizot, F. Trovero, and C. Belzung. 2004. Strain differences in sucrose preference and in the consequences of unpredictable chronic mild stress. Behav. Brain Res. 155:135-146.
117.Pucilowski, O., D.H. Overstreet, A.H. Rezvani, and D.S. Janowsky. 1993. Chronic mild stress-induced anhedonia: greater effect in a genetic rat model of depression. Physiol. Behav. 54:1215-1220.
118.Purves, D., G.J. Augustine, D. Fitzpatrick, W.C. Hall, A.S. LaMantia, J.O. McNamara. 2004. Neuroscience, 3rd Edn. Massachusetts, Sinauer Associates.
119.Rao, P.S., S. Chakraborty, N. Kaushik, B. Paul Kaur, and N.R. Swami Hulle. 2014. High Hydrostatic Pressure Processing of Food Materials, p. 151-186. In: J. K. Sahu (ed). Introduction to Advanced Food Process Engineering. CRC Press, London, U.K.
120.Reggiani, R, C.A. Cantu, I. Brambilla, and A. Bertani. 1988. Accumulation and interconversion of amino acids in rice roots under anoxia. Plant Cell Physiol. 29:981-7.
121.Renault, H., V. Roussel, A. El Amrani, M. Arzel, D. Renault, A. Bouchereau, and C. Deleu. 2010. The Arabidopsis pop2-1 mutant reveals the involvement of GABA transaminase in salt stress tolerance. BMC Plant Biol. 10:20.
122.Roberts, E. and K. Kuriyama. 1968. Biochemical-physiology correlations in studies of the γ-aminobutyric acid system. Brain Res. 8:1-35.
123.Roberts, E., I.P. Lowe, L. Guth, and B. Jelinek. 1958. Distribution of y-aminobutyric acid and other amino acids in nervous tissues of various species. J. Exp. Zool. 138, 313-325.
124.Roohinejad, S., A. Omidizadeh, H. Mirhosseini, B. Rasti, N. Saari, S. Mustafa, R. Mohd Yusof, A. Shobirin Meor Hussin, A. Hamid, and MY. Abd Manap. 2009. Effect of hypocholesterolemic properties of brown rice varieties containing different gamma aminobutyric acid (GABA) levels on Sprague‐Dawley male rats. J. Food Agric. Environ. 7:197-203.
125.Royer, C.A. 1995. Application of pressure to biochemical equilibria: The other thermodynamic variable, p. 357-377. In: Methods in enzymology. Academic Press.
126.San Martin, M.F., G.V. Barbosa-Cánovas, and B.G. Swanson. 2002. Food processing by high hydrostatic pressure. Crit. Rev. Food Sci. Nutr. 42:627-645.
127.Sánchez-López, Á.M., A. Bahaji, N. De Diego, M. Baslam, J. Li, F.J. Muñoz, G. Almagro, P. García-Gómez, K. Ameztoy, and A. Ricarte-Bermejo. 2016. Arabidopsis responds to alternata volatiles by triggering plastid phosphoglucose isomerase-independent mechanisms. Plant Physiol. 172:1989-2001.
128.Sanders, C.E., T.M. Field, M. Diego, and M. Kaplan. 2000. The relationship of Internet use to depression and social isolation among adolescents. Adolescence 35:237-237.
129.Sasaki S., T. Yokozawa, E.J. Cho, S. Oowada, and M. Kim. 2006. Protective role of γ-aminobutyric acid against chronic renal failure in rats. J. Pharm. Pharmacol. 58:1515-1525.
130.Seligman, M.E. and S.F. Maier. 1967. Failure to escape traumatic shock. J. Exp. Psychol. 74:1-9.
131.Seo, M.J., Y.D. Nam, S.L. Park, S.Y. Lee, S.H. Yi, and S.I. Lim. 2013. γ -aminobutyric acid production in skim milk co-fermented with Lactobacillus brevis 877G and Lactobacillus sakei 795. Food Sci. Biotechnol. 22:751-755.
132.Shelp, B.J., A.W. Bown, and M.D. McLean. 1999. Metabolism and functions of gamma- aminobutyric acid. Trends Plant Sci. 4:446-452.
133.Shimada, M, T. Hasegawa, C. Nishimura, H. Kan, T. Kanno, T. Nakamura, and T. Matsubayashi. 2009. Anti‐hypertensive effect of gamma‐aminobutyric acid (GABA)‐rich chlorella on high‐normal blood pressure and borderline hypertension in placebo‐controlled double blind study. Clin. Exp. Hypertens. 31:342-54.
134.Shyamaladevi, N., A.R. Jayakumar, R. Sujatha, V. Paul, and E.H. Subramanian. 2002. Evidence that nitric oxide production increases γ-amino butyric acid permeability of blood–brain barrier. Brain Res. Bull. 57, 231-236.
135.Steru, L., R. Chermat, B. Thierry, and P. Simon. 1985. The tail suspension test: a new method for screening antidepressants in mice. Psychopharmacology 85:367-370.
136.Strekalova, T. and H. Steinbusch. 2009. Factors of Reproducibility of Anhedonia Induction in a Chronic Stress Depression Model in Mice, p. 153-176. In: T. D. Gould (ed). Mood and Anxiety Related Phenotypes in Mice. Humana Press, Totowa, N.J.
137.Sulaiman, N., N.H.A. Hamid, Z.H. Murat, and M.N. Taib. 2009. Initial investigation of human physical stress level using brainwaves. IEEE SCOReD. p. 230-233.
138.Sun, B.S. 2004. Research of some physiological active substance by fermentation of Monascus spp. MS thesis. Zhejiang Industry Univ. China.
139.Suwanmanon, K. and P.C. Hsieh. 2014. Effect of γ‐aminobutyric acid and nattokinase‐enriched fermented beans on the blood pressure of spontaneously hypertensive and normotensive Wistar-Kyoto rats. J. Food Drug Anal. 22:485-91.
140.Takanaga, H., S. Ohtsuki, K. Hosoya, and T. Terasaki, 2001. GAT2/BGT-1 as a system responsible for the transport of γ-aminobutyric acid at the Mouse Blood–Brain Barrier. J. Cereb. Blood Flow Metab. 21:1232-1239.
141.Taksande, B.G., D.S. Faldu, M.P. Dixit, J.N. Sakaria, M.M. Aglawe, M.J. Umekar, and N.R. Kotagale. 2013. Agmatine attenuates chronic unpredictable mild stress induced behavioral alteration in mice. Eur. J. Pharmac. 720:115-120.
142.Treit, D. and J. Menard. 1997. Dissociations among the anxiolytic effects of septal, hippocampal, and amygdaloid lesions. Behav. Neurosci. 111:653.
143.Tsou, C.L. 1986. Location of the active sites of some enzymes in limited and flexible molecular regions. Trends Biochem. Sci. 11:427-429.
144.Tujioka K., M. Ohsumi, K. Horie, M. Kim, K. Hayase, and H. Yokogoshi. 2009. Dietary gamma-aminobutyric acid affects the brain protein synthesis rate in ovariectomized female rats. J. Nutr. Sci. Vitaminol. 55:75-80.
145.Turri, M.G., N.D. Henderson, J.C. DeFries, and J. Flint. 2001. Quantitative trait locus mapping in laboratory mice derived from a replicated selection experiment for open-field activity. Genetics 158:1217-1226.
146.Ueno, S., T. Shigematsu, T. Watanabe, K. Nakajima, M. Murakami, M. Hayashi, and T. Fujii. 2009. Generation of free amino acids and γ-aminobutyric acid in water-soaked soybean by high-hydrostatic pressure processing. J. Agr. Food Chem. 58:1208-1213.
147.Van den Berg, R.W., H. Hoogland, H. Lelieveld, and L. Van Schepdael. 2001. High pressure equipment designs for food processing applications, p. 297-313. In: M.E.G. Hendrickx and D. Knorr (eds.). Ultra high pressure treatments of foods. Springer, New York, U.S.A.
148.Van Gelder, N.M., and K.A.C Elliott. 1958. Disposition of γ-aminobutyric acid administered to mammals. J. Neurochem. 3:139-143.
149.Varela-Santos, E., A. Ochoa-Martinez, G. Tabilo-Munizaga, J.E. Reyes, M. Pérez-Won, V. Briones-Labarca, and J. Morales-Castro. 2012. Effect of high hydrostatic pressure (HHP) processing on physicochemical properties, bioactive compounds and shelf-life of pomegranate juice. Inno. Food Sci. Emerg. Technol. 13:13-22.
150.Velasquez, M.T., and S.J. Bhathena. 2007. Role of dietary soy protein in obesity. Int. J. Med. Sci. 4:72.
151.West, A.P. 1990. Neurobehavioral studies of forced swimming: the role of learning and memory in the forced swim test. Prog. Neuro-Psychoph.14:863-877.
152.Willner, P. 1997. Validity, reliability and utility of the chronic mild stress model of depression: a 10-year review and evaluation. Psychopharmacology 134:319-329.
153.Willner, P., A. Towell, D. Sampson, S. Sophokleous, and R. Muscat. 1987. Reduction of sucrose preference by chronic unpredictable mild stress, and its restoration by a tricyclic antidepressant. Psychopharmacology 93:358-364.
154.Winter, R. and C. Jeworrek. 2009. Effect of pressure on membranes. Soft Matter 5:3157-3173.
155.Wong C.G., T. Bottiglieri, O.C. Snead. 2003. GABA, gamma-hydroxybutyric acid, and neurological disease. Ann. Neurol. 54(6):3-12.
156.Xi, J., D. Shen, S. Zhao, B. Lu, Y. Li, and R. Zhang. 2009. Characterization of polyphenols from green tea leaves using a high hydrostatic pressure extraction. Int. J. Pharm. 382:139-143.
157.Xia, Q., L. Wang, C. Xu, J. Mei, and Y. Li. 2017. Effects of germination and high hydrostatic pressure processing on mineral elements, amino acids and antioxidants in vitro bioaccessibility, as well as starch digestibility in brown rice (oryza sativa l.). Food Chem. 214:533-542.
158.Yalcin, I., C. Belzung, and A. Surget. 2008. Mouse strain differences in the unpredictable chronic mild stress: a four-antidepressant survey. Behav. Brain Res. 193:140-143.
159.Yang, R.X., W.Z. Li, C.Q. Zhu, and Q. Zhang. 2009. Effects of ultra-high hydrostatic pressure on foaming and physical-chemistry properties of egg white. J. Biomed. Sci. Eng. 2:617.
160.Yordanov, D. and G. Angelova. 2010. High pressure processing for foods preserving. Biotech. Biotech. Equip. 24:1940-1945.
161.Young, V.R. 1991. Soy protein in relation to human protein and amino acid nutrition. J. Am. Diet. Assoc. 91:828-835.
162.Yu, T., M. Guo, J. Garza, S. Rendon, X.L. Sun, W. Zhang, and X.Y. Lu. 2011. Cognitive and neural correlates of depression-like behaviour in socially defeated mice: an animal model of depression with cognitive dysfunction. Int. J. Neuropsy. 14:303-317.
163.Zhang, H., H.Y. Yao, and F. Chen. 2006. Accumulation of γ-aminobutyric acid in rice germ using protease. Biosci. Biotech. Bioch. 70:1160-1165.
164.Zhang, J., N. Wang, H. Kuang, and R. Wang. 2014. An improved method to calculate phase locking value based on Hilbert–Huang transform and its application. Neural Comput. Appl. 24:125-132.
165.Zhang, Q., J. Xiang, L. Zhang, X. Zhu, J. Evers, W. Werf, and L. Duan. 2014. Optimizing soaking and germination conditions to improve gamma‐aminobutyric acid content in japonica and indica germinated brown rice. J. Funct. Foods 10:283-291.
166.Zhu, S., J. Wang, Y. Zhang, V. Li, J. Kong, J. He, and X.M. Li. 2014. Unpredictable chronic mild stress induces anxiety and depression-like behaviors and inactivates AMP-activated protein kinase in mice. Brain Res. 1576:81-90.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top