跳到主要內容

臺灣博碩士論文加值系統

(44.192.38.248) 您好!臺灣時間:2022/11/27 05:34
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:劉純安
研究生(外文):Chun-An Liu
論文名稱:環境因子與室內維管對女王鹿角蕨光合作用及生長之影響
論文名稱(外文):Effects of Environmental Factors and Interior Maintainance on Photosynthesis and Growth of Platycerium wandae
指導教授:葉德銘葉德銘引用關係
指導教授(外文):Der-Ming Yeh
口試委員:沈榮壽羅筱鳳李國譚
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:園藝暨景觀學系
學門:農業科學學門
學類:園藝學類
論文種類:學術論文
論文出版年:2019
畢業學年度:108
語文別:中文
論文頁數:136
中文關鍵詞:鹿角蕨光合作用
外文關鍵詞:Platyceriumstaghorn fernPhotosynthesis
DOI:10.6342/NTU202000030
相關次數:
  • 被引用被引用:0
  • 點閱點閱:732
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
女王鹿角蕨(Platycerium wandae Racif.)為體型最大之鹿角蕨,因姿態優美且觀賞期長,若栽培環境適宜,深具庭園或室內綠美化之價值;然而其育苗期長,且目前關於鹿角蕨生理特性之學術研究仍不足,因此本研究分別探討溫度、光度及養液濃度對女王鹿角蕨小苗光合作用及生長之影響,並於模擬室內低光環境下探討最適介質體積含水量、氮濃度及強生氏養液濃度。
將帶有2-3片營養葉之女王鹿角蕨小苗栽培於遮光50%環境,以日/夜溫35/30、30/25、25/20、20/15及15/13℃處理3個月,結果顯示苗期對溫度適應性廣,以25/20℃有利植株生長,其淨光合作用速率、全株乾重及葉面積最大。35/30°C或15/13°C處理之地上部乾重、全株乾重、葉面積及淨光合作用速率低,而細胞間隙CO2濃度高。而35/30°C處理之植株不僅受到非氣孔因素限制,還伴隨著光系統II的損傷,最大螢光值(maximum fluorescence, Fm)及PSII最大光化學量子效率(maximum PSII photochemical quantum efficiency, Fv/Fm)下降。栽培於15/13°C者則遭受寒害,生長受阻。
於日夜溫23/16°C環境,將帶有2-3片營養葉之女王鹿角蕨小苗置於光度37、79或194 μmol•m-2•s-1下,結果顯示,2個月後,各處理之淨光合作用速率、氣孔導度、細胞間隙CO2濃度及蒸散作用速率無顯著差異。以79 μmol•m-2•s-1處理者葉片數、葉面積、地上部乾重、地下部乾重較高,且隨光量子通量(photosynthetic photo flux, PPF)由0上升至2000 μmol•m-2•s-1時,氣孔導度增加,促使淨光合作用速率高達8.18 µmol CO2•m-2•s-1,並於200 μmol•m-2•s-1 PPF達50%最大淨光合作用速率。
具有2-3片平展狀營養葉或具有螺旋狀營養葉之女王鹿角蕨,栽培於溫度25/20℃,以光度100、200或300 μmol•m-2•s-1搭配施用0%、25%、50%或100%強生氏養液處理131天。結果顯示,僅具2-3片平展狀營養葉之女王鹿角蕨以高光300 μmol•m-2•s-1搭配100%強生氏養液處理,淨光合作用速率、氣孔導度、蒸散作用速率、光飽和點及暗呼吸速率高,且有最佳葉片長及葉片寬。高光300 μmol•m-2•s-1搭配未施肥處理者之Fv/Fm下降。葉片數隨光度或養液濃度下降而減少;SPAD-502讀值隨光度下降或養液濃度提高而上升。而具螺旋狀營養葉之女王鹿角蕨光度適應性廣,光合參數主要受養液濃度影響,高光300 μmol•m-2•s-1搭配100%強生氏養液處理,淨光合作用速率及暗呼吸速率高,而細胞間隙CO2低。未施肥之植株置於高光300 μmol•m-2•s-1,其類囊體之非光化學粹熄係數(nonphotochemical quenching, Qn)及天線系統之非光化學粹熄係數(nonphotochemical quenching, NPQ)顯著高於其他處理。葉片長度及SPAD-502讀值,隨養液濃度提高而增加。
模擬室內低光55 μmol•m-2•s-1下,將帶有2-3片營養葉之女王鹿角蕨栽培於25℃環境,以20%介質體積含水量(volumetric water content, VWC)處理、30% VWC處理、70% VWC潮濕處理及20%/70% VWC乾旱復水處理3個月,結果顯示,以20% VWC處理不利植株生長,乾重與葉面積最低,淨光合作用速率因氣孔因素而下降;以30%或70% VWC處理者生長量與光合參數無顯著差異;以20%/70%VWC處理之植株乾重、葉面積、淨光合作用速率與氣孔導度最高,而細胞間隙CO2濃度最低,顯示乾溼交替使植株有效代謝細胞間隙CO2,營養葉快速生長且彎曲成螺旋形。各VWC處理下,光系統II參數及SPAD-502讀值無顯著差異。
模擬室內低光55 μmol•m-2•s-1下,以具有2-3片營養葉之女王鹿角蕨作為參試植株,栽培於27℃環境,每週施用一次含有0、4、8、12、16、20或24 mM N之強生氏營養液。處理6個月後,結果顯示氮肥施用濃度以4-8 mM較適當,光合作用速率、地上部乾重、葉面積及SPAD-502讀值較12-24 mM N處理高;當養液N濃度大於12 mM,光合作用受非氣孔因素限制而下降,根冠比提高,葉片焦枯無觀賞價值;以24 mM N處理者除了受非氣孔因素之影響,Fv/Fm顯著降低,營養葉基部褐化。
模擬室內低光55 μmol•m-2•s-1下,以具有2-3片營養葉之女王鹿角蕨作為參試植株,栽培於27℃環境,每週施用一次0%、25%、50%或100%強生氏完全養液。處理8個月後,結果顯示以25%強生氏養液處理之淨光合作用速率、乾重及葉面積最大;以0%或50%強生氏養液處理,生長量無顯著差異,但50%強生氏養液處理者部分葉片褐化;以100%強生氏養液處理,淨光合作用受氣孔因素限制,葉片壞疽並脫落,使葉片數顯著降低。模擬室內低光環境下,健康之女王鹿角蕨小苗光補償點約為21-23 μmol•m-2•s-1。
綜上所述,僅具營養葉之女王鹿角蕨生長適溫為25/20℃,以高光300 μmol•m-2•s-1栽培,並搭配100%強生氏養液施用,可促進植株生長;當女王鹿角蕨作為室內觀賞植物,生長於低光(55 μmol•m-2•s-1 )環境下,以20%/70% VWC乾溼交替的方式給水,並施用4-8 mM N或25%強生氏養液,有助於植株維持良好觀賞品質。
Platycerium wandae Racif, the largest staghorn fern, has been used extensively in many areas for outdoor and indoor landscaping, with great potential for markets’ demands. However, production time was long and could be hastened by manipulating environmental conditions and nutrient management for young plants growth. The first objective of the study was to determine the effects of temperature, irradiance, and nutrient solution concentration on photosynthesis and growth during production period. The second objective of the study was to determine the effects of volumetric water content (VWC), nutrient nitrogen concentration, and Johnson’s solution concentration on photosynthesis and growth of young plants under interior low light conditions.
Platycerium wandae young plants with 2-3 sterile fronds were grown in phytotrons with various day/night temperatures of 35/30, 30/25, 25/20, 20/15, and 15/13℃ for three months. Results showed that plants at 25/20°C had maximum dry weight, frond area, and net photosynthesis. Plants at 15/13°C or 35/30°C had lowest plant dry weight, frond area, and exhibited lower net photosynthesis accompanied with higher intercellular CO2 concentration. Apart from non-stomatal limitation, plants at 35/30°C also exhibited the lowest Fm and Fv/Fm values. Plants at 15/13°C expressed chilling injury symptoms as brown at the base of sterile fronds.
Young plants with 2-3 sterile fronds were grown under 37, 79, and 194 μmol•m-2•s-1 photosynthetic photo flux (PPF) for two months. Results showed that all plants did not differ in net photosynthetic rate, stomatal conductance, intercellular CO2 concentration, and transpiration rate. Frond number, frond area, shoot dry weight, and root dry weight were higher for young plants grown under 79 μmol•m-2•s-1. Plants grown under 79 μmol•m-2•s-1 PPF were exposed with 0 to 2000 μmol•m-2•s-1, and the sampled fronds exhibited increased stomatal conductance and net photosynthetic rate up to 8.18 µmol CO2•m-2•s-1, with 50% maximum net photosynthetic rate at 200 μmol•m-2•s-1 PPF.
Young plants with 2-3 sterile fronds or bending sterile fronds were grown under three irradiances (100, 200, or 300 μmol•m-2•s-1) with four Johnson’s solution (J) concentration (0%, 25%, 50%, or 100%) for 131 d. Results showed that young plants with 2-3 sterile fronds supplied with 100% J and grown under 300 μmol•m-2•s-1 had highest net photosynthetic rate, stomatal conductance, transpiration rate, light saturation point (LSP), dark respiration (Rd), frond length, and frond width. Plants grown under 300 μmol•m-2•s-1 without fertilization had higher Qn, and NPQ, and decreased Fv/Fm. Frond number decreased as irradiance or J decreasing. SPAD-502 value increased as J increased from 0% to 100% or irradiances decreased from 300 to 100 μmol•m-2•s-1. Young plants with bending sterile fronds with 100% J and 300 μmol•m-2•s-1 had highest net photosynthesis, Rd, and lowest intercellular CO2 concentration. Plants grown under 300 μmol•m-2•s-1 without fertilization had highest Qn and NPQ. Frond length and SPAD-502 value increased as J increased from 0% to 100%.
Growth and photosynthesis were measured in young plants under interior low light intensity (55 μmol•m-2•s-1) conditions with 30% volumetric water content (VWC), 70% VWC (moisture), 20% VWC (drought), and 20%/70% (drought/moisture) VWC treatments for three months. Results showed that plants under 20% VWC exhibited poor growth and lowest net photosynthetic rate through stomatal limitation. Plants under 30% VWC and 70% VWC did not differ in growth and photosynthesis. Plants under 20%/70% VWC had the highest dry weight and net photosynthetic rate, and the largest frond area due to the appearance of rapidly bending sterile fronds. Chlorophyll fluorescence measurements and SPAD-502 value did not differ among the four VWC treatments.
Young plants were supplied with J containing various nitrogen (N) concentrations weekly under interior low light (55 μmol•m-2•s-1) conditions for six months. Resulted showed plants at 4-8 mM N had higher net photosynthetic rate, shoot dry weight, frond area, and SPAD-502 value than those at 12-24 mM N. Plants exhibited higher root to shoot ratio and lower net photosynthetic rate through non-stomatal limitation as solution N increased from 12 to 24 mM. Apart from non-stomatal limitation, plants at 24 mM N also had the lowest Fv/Fm values. Plants expressed salt injury symptoms as fronds (12 mM N), and brown at the base of sterile fronds (24 mM N).
Young plants were supplied with four J concentration which were 0%, 25%, 50%, and 100% under interior low light (55 μmol•m-2•s-1) conditions for eight months. Resulted showed that plants supplied with 25% J had the largest dry weight, frond area, and the highest net photosynthetic rate. Plants supplied with 0% J and 50% J did not differ in growth, while frond necrosis appeared with 50% J treatment. Plants supplied with 100% J exhibited lowest frond number and net photosynthetic rate through stomatal limitation. The light compensation point for young plants with 0% J and 25% J treatments were estimated to be 21-23 μmol•m-2•s-1.
In conclusion, Platycerium wandae young plants should be supplied with 100% J and grown under 300 μmol•m-2•s-1 at 25/20°C to promote its growth. When young plants been used as indoor plants grow under low light intensity (55 μmol•m-2•s-1) conditions, they should be treated with 20%/70% VWC (alternating between dry and wet) and fertilized with 4-8 mM N or 25% J to maintain indoor performance.
摘要 i
Abstract iv
目錄 vii
圖目錄 ix
表目錄 xii
前言(Introduction) 1
前人研究(Literature Review) 3
一、鹿角蕨簡介 3
二、影響鹿角蕨光合作用及生長之環境因子 9
三、無機養分對重要觀賞蕨類生長之影響 13
四、光度與無機養分對觀葉植物光合作用及生長之影響 15
五、居家養護觀葉植物之水分及肥培管理 16
六、蕨類植物之光合作用表現 17
材料與方法(Materials and Methods) 29
一、試驗設計 29
試驗一 溫度對女王鹿角蕨小苗光合作用及生長之影響 29
試驗二 光度對女王鹿角蕨小苗光合作用及生長之影響 30
試驗三 光度與無機養分對女王鹿角蕨光合作用及生長之影響 31
試驗四 模擬室內低光環境下介質體積含水量對女王鹿角蕨小苗光合作用及生長之影響 32
試驗五 模擬室內低光環境下氮濃度對女王鹿角蕨小苗光合作用及生長之影響 33
試驗六 模擬室內低光環境下強生氏養液濃度對女王鹿角蕨小苗光合作用及生長之影響 34
二、統計分析 35
結果(Results) 36
一、溫度對女王鹿角蕨小苗光合作用及生長之影響 36
二、光度對女王鹿角蕨小苗光合作用及生長之影響 36
三、光度與無機養分對女王鹿角蕨光合作用及生長之影響 37
四、模擬室內低光環境下介質體積含水量對女王鹿角蕨小苗光合作用及生長之影響 40
五、模擬室內低光環境下氮濃度對女王鹿角蕨小苗光合作用及生長之影響 42
六、模擬室內環境下強生氏養液濃度對女王鹿角蕨小苗光合作用及生長之影響 43
討論(Discussion) 95
一、溫度對女王鹿角蕨小苗光合作用及生長之影響 95
二、光度對女王鹿角蕨小苗光合作用及生長之影響 96
三、光度與無機養分對女王鹿角蕨光合作用及生長之影響 98
四、模擬室內低光環境下介質體積含水量對女王鹿角蕨小苗光合作用及生長之影響 103
五、模擬室內低光環境下氮濃度對女王鹿角蕨小苗光合作用及生長之影響 106
六、模擬室內環境下強生氏養液濃度對女王鹿角蕨小苗光合作用及生長之影響 107
綜合討論與結論(General Discussion and Conclusion) 110
附錄(Appendix) 113
附錄 1. 強生氏營養液配方(摘錄自Epstenin, 1972) 113
附錄 2. 氮濃度試驗之養液配方 114
參考文獻(References) 115
王幸美. 1998. 孢子繁殖與溫度、光度和無機養分對鐵線蕨、密葉鐵線蕨和腎蕨生長之影響. 國立臺灣大學園藝暨景觀學系碩士論文. 臺北.
林信雄. 2007. 蘇鐵蕨之物候、孢子繁殖與溫度及養液濃度對生長之影響. 國立臺灣大學園藝暨景觀學系碩士論文. 臺北.
林昭儀. 2006. 遮光、溫度與無機養分對擎天鳳梨‘Cherry’生長之影響. 國立臺灣大學園藝暨景觀學系碩士論文. 臺北.
邱奕璇. 2012. 菊花耐潮濕指標與水分生理. 國立臺灣大學園藝暨景觀學系碩士論文. 臺北.
姚銘輝、盧虎生、朱鈞. 2002. 葉綠素螢光與作物生理反應. 科學農業 50:31-41.
洪嘉樺、葉德銘. 2015. 介質體積含水量對夏秋季花壇植物生長與光合作用之影響. 台灣園藝 61:263-280.
高碧霜. 2011. 蘇鐵蕨之穴盤栽培. 國立臺灣大學園藝暨景觀學系碩士論文. 臺北.
張正桓、陳學文、黃世恩、廖清波、魏聖崇、黃俊杉. 2012. 珍奇蕨類-鹿角蕨形態與分類. 種苗科技專訊77:6-9.
張正桓、陳學文、黃世恩、廖清波、魏聖崇、黃俊杉. 2013. 珍奇蕨類-鹿角蕨繁殖與栽培. 種苗科技專訊 81:8-10.
陳以萱. 2016. 溫度、遮光與無機養分對彩葉鳳梨穴盤苗光合作用與生長之影響. 國立臺灣大學園藝系碩士論文. 臺北.
黃智明. 1994. 名貴觀葉鹿角蕨. 廣東園林. 4:26-27.
黃馨慧、郭瑋玲、馬翊凱、高建元. 2005. 鹿角蕨繁殖與推廣. 國立宜蘭大學農業推廣季刊.
葉德銘. 1987. 波斯頓腎蕨與台灣山蘇花之生長習性及溫度、無機養分和栽培介 質對生長之影響. 國立臺灣大學園藝暨景觀學系碩士論文. 臺北.
葉德銘、李哖. 1988. 溫度對台灣山蘇花生長之影響. 中國園藝 34:303-310.
葉德銘、李哖. 1989a. 無機養分對台灣山蘇花生長之影響. 中國園藝 35:29-37.
葉德銘、李哖. 1989c. 溫度與無機養分對波斯頓腎蕨生長之影響. 中國園藝 35:103-111.
廖建雄. 2014. 十三種蕨類植物於不同光照強度下二氧化碳移除及釋氧能力分析. 國立屏東科技大學農園生產系碩士論文. 屏東.
潘瑞熾. 2008. 植物生理學. 藝軒圖書出版社.
Adams, W.W. and B. Demmig-Adams. 1994. Carotenoid composition and down- regulation of photosystem II in three conifer species during the winter. Physiol. Plant. 92:451-458.
Ainuddin. N.A. and D.A. Nur Najwa. 2009. Growth and physiological responses of Asplenium nidus to water stress. Asian J. Plant Sci. 8:447-450.
Amoroso, C.B. and V.B. Amoroso. 2003. Plantlet production of the Philippine giant staghorn fern (Platycerium grande J. Sm.) through spore culture, p. 491-495. In: S. Chandra, and M. Srivastava (eds.). Pteridology in the New Millennium. Kluwer Acad. Pub., Dordrecht.
Anderson, J.M., D.J. Goodchild, and N.K. Boardman. 1973. Composition of the photosystems and chloroplast structure in extreme shade plants. Biochim. Biophys. Acta. 325:573-585.
Angelopoulos, K., B. Dichio, and C. Xiloyannis. 1996. Inhibition of photosynthesis in olive trees (Olea europaea L.) during water stress and rewatering. J. Expt. Bot. 47:1093-1100.
Ao, J.C., W.H. Su, G.F. Zhang, W. Jiang, and H. Yang. 2010. Photosynthetic responses of an sciophillic fren Polystichum tsus-simense to light intensity increasing. Acta. Bot. Boreal. 30:2265-2271.
Araújo, W.L., A.R. Fernie, A. Nunesnesi. 2011. Control of stomatal aperture: A renaissance of the old guard. Plant Signal. Behav. 6:1305-1311.
Arens, N.C. 1997. Responses of leaf anatomy to light environment in the tree fern Cyathea caracasana (Cyatheaceae) and its application to some ancient seed ferns. Palaios 12:84-94.
Aspiras, R.A. 2010. Sporophyte and gametophyte development of Platycerium coronarium (Koenig) Desv. and P. grande (Fee) C. Presl. (Polypodiaceae) through in vitro propagation. Saudi. J. Biol. Sci. 17:13-22.
Baker, N.R. and E. Rosenqvist. 2004. Applications of chlorophyll fluorescence can improve crop production strategies: An examination of future possibilities. J. Expt. Bot. 55:1607-1621.
Bannister, P. and K.L. Wildish. 1982. Light compensation points and specific leaf areas in some New Zealand ferns. New Zeal. J. Bot. 20:421-424.
Benzing, D.H. 1986. The vegetative basis of vascular epiphytism. Selbyana. 9: 23-43.
Benzing, D.H. 1990. Vascular epiphytes: General Biology and Related Biota. Cambridge University Press. Cambridge. UK. 354.
Beri, A. and S.S. Bir. 1993. Germination of stored spores of Pteris vittata L. Amer. Fern. J. 83:73-78.
Berry, J. and O. Björkman. 1980. Photosynthetic response and adaptation to temperature in higher plants. Annu. Rev. Plant Physiol. 31:491-543.
Bjorkman, O., B. Demmig, and T.J. Andrews. 1988. Mangrove photosynthesis: Response to high-irradiance stress. Funct. Plant Biol. 15:43-61.
Blanca, P.G., M.R. Aniceto, E.M. Silvia, and G.P. Luis Diego. 2010. Gametophyte morphology of Platycerium andinum Baker and Platycerium wandae Racif. Micron 41:806-813.
Boardman, N.K. 1977. Comparative photosynthesis of sun and shade plants. Annu. Rev. Plant Physiol. 28:355-377.
Bohning, R.H. and C.A. Burnside. 1956. The effect of light intensity on the rate of apparent photosynthesis in leaves of sun and shade plants. Amer. J. Bot. 43:557-561.
Bolhar-Nordenkampf. H., S. Long, N. Baker, G. Oquist, U. Schreiber, and E. Lechner. 1989. Chlorophyll fluorescence as a probe of the photosynthetic competence of leaves in the field: a review of current instrumentation. Funct. Ecol. 3:497-514.
Brodribb, T.J. and G.J. Jordan. 2008. Internal coordination between hydraulics and stomatal control in leaves. Plant Cell Environ. 31:1557-1564.
Brodribb, T.J. and S.A.M. McAdam. 2011. Passive origins of stomatal control in vascular plants. Science 331:582-585.
Brodribb, T.J., S.A.M. McAdam, G.J. Jordan, and T.S. Feild. 2009. Evolution of stomatal responsiveness to CO2 and optimization of water-use efficiency among land plants. New Phytol. 183:839-847.
Brown, S.P. 1990. Staghorn ferns at a glance. Food and agricultural sciences University of Florida.
Burnett, S.E. and M.W. van Iersel. 2008. Morphology and irrigation efficiency of Gaura lindheimeri grown with capacitance sensor-controlled irrigation. HortScience 43:1555-1560.
Cakmak, I. 2008. Role of mineral nutrients in tolerance of crop plants to environmental stress factors. Intl. Symp. Fertigation. 35-48.
Camloh, M. 1999. Spore age and sterilization affects germination and early gametophyte development of Platycerium bifurcatum. Amer. Fern. J. 89:124-132.
Carriqui, M., H.M. Cabrera, M.A. Conesa, R.E. Coopman, C. Douthe, Gago J, A. Galle, J. Galmes, M. Ribas-Carbo, and M. Tomas. 2015. Diffusional limitations explain the lower photosynthetic capacity of ferns as compared with angiosperms in a common garden study. Plant Cell Environ. 38:448-460.
Casson, S. and J.E. Gray. 2008. Influence of environmental factors on stomatal development. New Phytol. 178:9-23.
Cavins, T.J., B.E. Whipker, W.C. Fonteno, B. Harden, I. McCall, and J.L. Gibson. 2000. Monitoring and managing pH and EC using the PourThru extraction method. Hortic. Info. Leaflet 590:1-17.
Chang, J.C. and T.S. Lin. 2007. Gas exchange in litchi under controlled and field conditions. Scientia Hort. 114:268-274.
Chaves, M.M. 1991. Effects of water deficits on carbon assimilation. J. Expt. Bot. 42:1-16.
Chaves, M.M., J.P. Maroco, and J.S. Pereira. 2003. Understanding plant responses to drought-from genes to the whole plant. Funct. Plant Biol. 30: 239-264.
Chen, G.Y., Z.H. Yong, and Y. Liao. 2005. Photosynthetic acclimation in rice leaves to free-air CO2 enrichment related to both ribulose-1,5-bisphosphate carboxylation limitation and ribulose-1,5-bisphosphate regeneration limitation. Plant Cell Physiol. 46:1036-1044.
Crafts-Brandner, S.J. and M.E. Salvucci. 2000. Rubisco activase constrains the photosynthetic potential of leaves at high temperature and CO2. Proc. Natl. Acad. Sci. 97:13430-13435.
Crawford, N.M. and A.D. Glass. 1998. Molecular and physiological aspects of nitrate uptake in plants. Trends Plant Sci. 3:389-395.
Creese, C., S. Oberbauer, P. Rundel, and L. Sack. 2014. Are fern stomatal responses to different stimuli coordinated? Testing responses to light, vapor pressure deficit, and CO2 for diverse species grown under contrasting irradiances. New Phytol. 204:92-104.
Dai, T.E. and T.S. Lin. 1996. Studies on leaf morphology and photosynthetic characteristics at various ages of ''Hak lp'' Litchi. J. Chinese Soc. Hort. Sci. 42:28-49.
Davies, W.J., J.L. Rodriguez, and E.L. Fiscus. 1982. Stomatal behavior and water movement through roots of wheat plants treated with abscisic acid. Plant Cell Environ. 5:485-493.
Doi, M. and K.I. Shimazaki. 2008. The stomata of the fern Adiantum capillus-veneris do not respond to CO2 in the dark and open by photosynthesis in guard cells. Plant Physiol. 147:922-930.
Downton, W.J.S., J.A. Berry, and J.R. Seemann. 1984. Tolerance of photosynthesis to high temperature in desert plants. Plant Physiol. 74:786-790.
Ducruet, J.M., V. Peeva, and M. Havaux. 2007. Chlorophyll thermofluorescence and thermoluminescence as complementary tools for the study of temperature stress in plants. Photosynth. Res. 93:159-171.
Durand, L.Z. and G. Goldstein. 2001. Photosynthesis, photoinhibition, and nitrogen use efficiency in native and invasive tree ferns in Hawaii. Oecologia 126:345-354.
Echer, F.R. and C.A. Rosolem. 2015. Cotton leaf gas exchange responses to irradiance and leaf aging. Biol. Plantarum. 59:366-372.
Elsheery, N.I. and K.F. Cao. 2008. Gas exchange, chlorophyll fluorescence and osmotic adjustment in two mango cultivars under drought stress. Acta Physiol. Plant. 30: 769-777.
Evan, J.R. 1989. Photosynthesis and nitrogen relationships in leaves of C3 plants. Oecologia 78:9-19.
Evans, J.R., R. Kaldenhoff, B. Genty, and I. Terashima. 2009. Resistances along the CO2 diffusion pathway inside leaves. J. Expt. Bot. 60:2235-2248.
Fan, S.T., D.M. Yeh, and T.T. Wang. 2009. Cultivar sensitivity to ethylene during storage and 1-Methylcyclopropene protection of Aglaonema. HortScience 44:202-205.
Farquhar, G.D. and T.D. Sharkey. 1982. Stomatal conductance and photosynthesis. J. Ann. Rev. Plant Physiol. 33:317-345.
Fernandes, J., R.M. Chaloub, and F. Reinert. 2002. Influence of nitrogen supply on the photoprotective response of Neoregelia cruenta under high and low light intensity. Funct. Plant Biol. 29:757-762.
Field, C. 1983. Allocating leaf nitrogen for the maximization of carbon gain: leaf age as a control on the allocation program. Oecologia 56:341-347.
Flexas, J., M. Carriqui, R.E. Coopman, J. Gago, J. Galmes, S. Martorell, F. Morales, A. Diaz-Espejo. 2014. Stomatal and mesophyll conductances to CO2 in different plant groups: underrated factors for predicting leaf photosynthesis responses to climate change? Plant Sci. 226:41-48.
Flexas, J., C. Scoffoni, J. Gago, L. Sack. 2013. Leaf mesophyll conductance and leaf hydraulic conductance: an introduction to their measurement and coordination. J. Expt. Bot. 64:3965-3981.
Friend, D.J.C. 1975. Adaptation and adjustment of photosynthetic characteristics of gametophytes and sporophytes of Hawaiian tree fern (Cibotium glaucum) grown at different light intensities. Photosynthetica 9:157-164.
Froux, F., M. Ducrey, D. Epron, and E. Dreyer. 2004. Seasonal variations and acclimation potential of the thermostability of photochemistry in four Mediterranean conifers. Anna. For. Sci. 61:235-241.
Galmes, J., M.V. Kapralov, O. Copolovici, C. Hermida-Carrera, and U. Niinemets. 2015. Temperature responses of the Rubisco maximum carboxylase activity across domains of life: phylogenetic signals, trade-offs, and importance for carbon gain. Photosynth. Res. 123:183-201.
Gilliam, C.H., C.E. Evans, and R.L. Shumack. 1983. Foliar sampling of Boston fern. J. Amer. Soc. Hort. Sci. 108:90-93.
Gilliam, C.H., D.J. Crockett, R.L. Shumack, and C.E. Evans. 1982. Fertilization of ‘Roosevelt’ fern. HortScience 17:349-350.
Gilliam, C.H., R.L. Shumack, and C.E. Evans. 1983. The effects of slow-release fertilizers on the growth and post-production performance of boston fern. HortScience 18:442-444.
Griffith, J.L.P. 2006. Tropical foliage plants: A grower’s guide 2nd. Ball Pub., Illinois, US.
Hagar, W.G. and J.A. Freeberg. 1980. Photosynthetic rates of sporophytes and gametophytes of the fem, Todea barbara. Plant Physiol. 65:584-586.
Han, J.M., W.F. Zhang, D.L. Xiong, J. Flexas, and Y.L. Zhang. 2017. Mesophyll conductance and its limiting factors in plant leaves. Chinese J. Plant Ecol. 41: 914-924.
Han, W., F. Liao, and P. He. 2003. The photosynthetic response of Phoebe boumei to doubled CO2 concentration in air. J. Cent. South Univ. 23:62-65.
Haworth, M., C. Elliott-Kingston, J.C. McElwain. 2011. Stomatal control as a driver of plant evolution. J. Expt. Bot. 62:2419-2423.
He, X.J., Z.C. Yu, S.Y. Zheng, J.S. Lin, and Z.M. Lin. 2018. Effect of shading on photosynthetic physiological characteristics of Davallia mariesii. J. Trop. Subtrop. Bot. 26:141-149.
Hew, C.S. and Y.S. Wong. 1974. Photosynthesis and respiration of ferns in relation to their habitat. Amer. Fern J. 64:40-48.
Hietz, P. and O. Briones. 2001. Photosynthesis chlorophyll fluorescence and within-canopy distribution of epiphytic ferns in a Mexican cloud forest. Plant Biol. 3:279-287.
Holtum, J.A.M. and K. Winter. 1999. Degrees of crassulacean acid metabolism in tropical epiphytic and lithophytic ferns. Aust. J. Plant Physiol. 26: 749-757.
Hoshizaki, B.J. 1972. Morphology and phylogeny of Platcerium species. Biotropica 4: 93-117.
Hoshizaki, B.J. 1975. A staghorn fern (Platycerium) hybrid. Amer. Fern. J. 65:99-101.
Hoshizaki, B.J. and R.C. Moran. 2001. Fern grower’s manual (revised and expanded edition). Timber Press, U.S.A.
Hsiao, T.C. and E. Acevedo. 1974. Plant responses to water deficits, water-use efficiency and drought resistance. Agr. Meteorol. 14:59-84.
Hsu, C.C., T.C. Lin, W.L. Chiou, S.H. Lin, K.C. Lin, and C.E. Martin. 2006. Canopy CO2 concentrations and crassulacean acid metabolism in Hoya carnosa in a subtropical rain forest in Taiwan: Consideration of CO2 availability and the evolution of CAM in epiphytes. Photosynthetica 44: 130-135.
Jiang, Y., S. Zhang, and Q. Zhang. 2005. Effects of elevated CO2 concentration on photo-physiological characteristics of tea plant. J. Tea Sci. 25:43-48.
Joiner, J.N., C.A. Conover, and R.T. Poole. 1981. Nutrition and fertilization, p. 229-268. In: J.N. Joiner(ed.). Foliage plant production. Prentice-Hall, Ins., Englewood Cliffs, N.J.
Jones, J. B. 2012. Plant nutrition and soil fertility manual. Second ed., CRC Press, USA.
Joseph, A.M.H. and K. Winter. 1999. Degrees of crassulacean acid metabolism in tropical epiphytic and lithophytic ferns. Aust. J. Plant Physiol. 26:749-757.
Juhrbandt, J., C. Leuschner, and D. Hölscher. 2004. The relationship between maximal stomatal conductance and leaf traits in eight Southeast Asian early successional tree species. For. Ecol. Magt. 202:245-256.
Kattge, J. and W. Knorr. 2007. Temperature acclimation in a biochemical model of photosynthesis: a reanalysis of data from 36 species. Plant Cell Environ. 30:1176-1190.
Keto, L.E., J.T. Christopher, and J.A.M. Holtum. 1995. Platycerium bifurcatum ssp. veitchii: an Australian lithophytic elkhorn fern of the wet-dry tropics. In ‘Photosynthesis: From light to biosphere’.
Klamkowski, K. and W. Treder. 2008. Response to drought stress of three strawberry cultivars grown under greenhouse condition. J. Fruit Orna. Plant Res. 16:179-188.
Klein. T. 2014. The variability of stomatal sensitivity to leaf water potential across tree species indicates a continuum between isohydric and anisohydric behaviours. Funct. Ecol. 28:1313-1320.
Kluge, M., P.N. Avadhani, and C.J. Goh. 1989. Gas exchange and water relations in epiphytic tropical ferns. Springer. Berlin. Heidelberg.
Kramer, D.M., J.A. Cruz, and A. Kanazawa. 2003. Balancing the central roles of the thylakoid proton gradient. Trends Plant Sci. 8:27-32.
Kreier, H.P. and H. Schneider. 2006. Phylogeny and biogeography of the staghorn fern genus Platycerium (Polypodiaceae, Polypodiidae). Amer. Fern. J. 93:217-225.
Larcher, W. 2003. Physiological plant ecology: Ecophysiology and stress physiology of functional groups. Springer Intl. Pub., New York.
Larum, D. 2018. Staghorn fern cold hardiness: How cold tolerant are staghorn ferns. Food and agricultural sciences University of Florida.
Law, R.D. and S.J. Crafts-Brandner. 1999. Inhibition and acclimation of photosynthesis to heat stress is closely correlated with activation of ribulose-1,5-bisphosphate carboxylase/oxygenase. Plant Physiol. 120:173-182.
Lerman, J.C. and J. Troughton. 1975. Carbon isotope discrimination by photosynthesis: Implications for the bio-and geosciences. Proceedings of the second international conference on stable isotopes. United States Energy Research and Development Administration. Illinois.
Li, Y., L. Liu, and Q. Ye. Effects of elevated CO2 on the growth and photosynthesis of Anthurium andraeanum. J. Trop. Subtrop. Bot. 13:343-346.
Li, Y., Y.X. Gao, X.M. Xu, Q.R. Shen, and S.W. Guo. 2009. Light-saturated photosynthetic rate in high-nitrogen rice (Oryza sativa L.) leaves is related to chloroplastic CO2 concentration. J. Expt. Bot. 60:2351-2360.
Liao, Y.K. and C.T. Cheng. 2018. Using homogenized green globular body in tissue culture propagation of Platycerium willinckii T. Moore and Platycerium grande J. Sm. Crop Environ. Bioinfor. 15:169-183.
Liao, Y.K. and Y.H. Wu. 2011. In vitro propagation of Platycerium bifurcatum (Cav.) C. Chr. via green globular body initiation. Bot. Stud. 52:455-463.
Lieth, H. 1960. Über den lichtkompensationspunkt der Landpflanzen. Planta 54:530-554.
Lombardini, L. 2006. Ecophysiology of plants in dry environments. Springer. Dordrecht. The Netherlands.
Long, S.P., S. Humphries, and P.G. Falkowski. 1994. Photoinhibition of photosynthesis in nature. Anna. Rev. Plant Physiol. Plant Mol. Biol. 45:633-662.
Lu, C., Q. Zhang, and L. Feng. 1997. Effects of doubled CO2 concentration on the content of photosynthetic pigments and PSII functions of jointing and grouting in setaria italica. Acta. Bot. Sci. 39:874-878.
Ludlow, C.J. and F.T. Wolf. 1975. Photosynthesis and respiration rates of ferns. Amer. Fern J. 65:43-48.
Luo, X., S. Wang, G. Zhang, C. Wang, H. Yang, and X. Liao. 2013. Effects of calcium concentration on photosynthesis characteristics of two fern plants. J. Ecol. Environ. Sci. 22:258-262.
Madore, M.A. and W.J. Lucas. 1995. Carbon partitioning and source-sink interaction in plants. Plant Physiol. 13:287.
Maeda, O. 1970. On the dry matter productivity of two ferns, Osmunda cinnamomea and Dryopteris crassirhizoma, in relation to their geographical distribution in Japan. Jpn. J. Bot. 20:237-267.
Manaker, G.H. 1981. Interior plantscapes installation, maintenance, and management. Prentice-Hall. Pub., New Jersey, US.
Marousky, K.F. 1983. Premature wilt of leatherleaf fern with different pinnae maturities from various growing environment. Proc. Fla. State Hort. Soc. 96:270-272.
Marschner, H. and I. Cakmak. 1989. High light intensity enhances chlorosis and necrosis in leaves of zinc, potassium, and magnesium deficient bean (Phaseolus vulgaris) plants. J. Plant Physiol. 134:308-315.
Matysiak, B. and J. Nowak. 1994. Carbon dioxide and light effect on photosynthesis, transpiration and ex vitro growth of Homalomena ‘‘Emerald gem’’ plantlets. Scientia Hort. 57:353-358.
Maxwell, K, and G.N. Johnson. 2000. Chlorophyll fluorescence: A practical guide. J. Expt. Bot. 51:659-668.
Mcadam, S.A. and T.J. Brodribb. 2016. Linking turgor with ABA biosynthesis: implications for stomatal responses to vapour pressure deficit across land plants. Plant Physiol. 171:2008-2016.
McAdam, S.A., F.C. Sussmilch, and T.J. Brodribb. 2015. Stomatal responses to vapour pressure deficit are regulated by high speed gene expression in angiosperms. Plant Cell Environ. 39:485-491.
McAdam, S.A.M. and T.J. Brodribb. 2012a. Stomatal innovation and the rise of seed plants. Ecol. Lett. 15:1-8.
McAdam, S.A.M. and T.J. Brodribb. 2013. Ancestral stomatal control results in a canalization of fern and lycophyte adaptation to drought. New Phytol. 18:429-441.
Mcmillen, G.G. and J.H. Mcclendon. 1983. Dependence of photosynthetic rates of leaf density thickness in deciduous woody plant grown in sun and shade. Plant Physiol. 72:674-678.
Meinzer, F.C., D.M. Johnson, B. Lachenbruch, K.A. McCulloh, and D.R. Woodruff. 2009. Xylem hydraulic safety margins in woody plants: Coordination of stomatal control of xylem tension with hydraulic capacitance. Funct. Ecol. 23:922-930
Mengal, K. and E.A. Kirkby. 2001. Principles of plant nutrition. 5th ed. Kluwer Academic Publishers, MA., U.S.
Mortensen, L.M. and H.R. Gislerod. 1989. Effect of CO2, air humidity, and nutrient solution concentration on growth and transpiration of Begonia x hiemalis Fotsch. Gartenbauwissenschaft. 54:184-189.
Müller, P., X.P. Li, and K.K. Niyogi. 2001. Non-photochemical quenching. A response to excess light energy. Plant Physiol. 125:1558-1566.
Munné-Bosch, S. 2005. The role of α-tocopherol in plant stress tolerance. J. Plant Physiol. 162:743-748.
Nasrulhaq-Boyce, A. and M.A. Haji Mohamed. 1987. Photosynthetic and respiratory characteristics of Malayan sun and shade ferns. New Phytol. 105:81-88.
Nemali, K.S. and M.W.V. Iersel. 2004. Light intensity and fertilizer concentration: I. Estimating optimal fertilizer concentrations from water-use efficiency of wax begonia. HortScience 39:1287-1292.
Newton, L. E. 1973. Hygroscopic movements in Platycerium leaves. Ann. Bot. 37:209-210.
Niglas, A. M. Alber, K. Suur, A.K. Jasińska, P. Kupper, and A. Sellin. 2015. Does increased air humidity affect stomatal morphology and functioning in hybrid aspen? Botany 93:243-250.
Niinemets, Ü. 2007. Photosynthesis and resource distribution through plant canopies. Plant Cell Environ. 30:1052-1071.
Niinemets, Ü., J. Flexas, and J. Penuelas. 2011. Evergreens favored by higher responsiveness to increased CO2. Trends Ecol. Evol. 26:136-142.
Niu, G., D.S. Rodriguez, and Y.T. Wang. 2006. Impact of drought and temperature on growth and leaf gas exchange of six bedding plant species under greenhouse conditions. HortScience 41:1408-1411.
Niyogi, K.K. 2000. Safety valves for photosynthesis. Curr. Opin. Plant Biol. 3:455-460.
Nobel, P. S. 1977. Internal leaf area and cellular CO2 resistance: photosynthetic implications of variations with growth conditions and plant species. Physiol. Plant. 40:137-144.
Nobel, P.S. 1978. Microhabitat, water relations and photosynthesis of a desert fern, Notholaena parryi. Oecologia 31:293-310.
Nobel, P.S. 1983. Biophysical plant physiology and ecology. W.H. Freeman. San Francisco, USA.
Nobel, P.S., H.W. Calkin, and A.C. Gibson. 1984. Influences of PAR, temperature and water vapor concentration on gas exchange by ferns. Physiol. Plant. 62:527-534.
Nowak, J., S. Sroka, and B. Matysiak. 2002. Effects of light level, CO2 enrichment, and concentration of nutrient solution on growth, leaf nutrient content, and chlorophyll fluorescence of boston fern microcuttings. J. Plant Nutr. 25:2161-2171.
Oliwa, J. and A. Skoczowski. 2019. Different response of photosynthesis apparatus to high-light stress in sporotrophophyll and nest leaves of Platycerium bifurcatim. Photosynthetica 57:147-159.
Oliwa, J., A. Kornas, and A. Skoczowski. 2016. Morphogenesis of sporotrophophyll leaves in Platycerium bifurcatum depends on the red/far-red ratio in the light spectrum. Acta. Physiol. Plant. 38: 247.
Oliwa, J., A. Kornas, and A. Skoczowski. 2017. A low ratio of red/far-red in the light spectrum accelerates senescence in nest leaves of Platycerium bifurcatum. Acta. Biol. Cracoviensia Series Bot. 59: 17-30.
Oyetunji, O.J., I.J. Ekanayake, and O. Osonubi. 2007. Chlorophyll fluorescence analysis for assessing water deficit and Arbuscular Mycorrhizal Fungi (AMF) inoculation in Cassava ( Manihot esculenta Crantz). Adv. Biol. Res. 1:108-117.
Pantrucek, J. and R.F. Sage. 1996. Acclimation of stomatal conductance to a CO2 enriched atmosphere and elevated temperature in Chenopodium album. Aust. J. Plant. Physiol. 78:619-622.
Pass, R.G. and D.E. Hartley. 1979. Net photosynthesis of three foliage plants under low irradiance levels. J. Amer. Soc. Hortic. Sci. 104:745-748.
Percival, G.C. 2005. The use of chlorophyll fluorescence to identify chemical and environmental stress in leaf tissue of three oak (Quercus) species. J. Arboric. 31:215-227.
Pimsuwan, S., P. Hongthong, P. Krangpanich, and C. Suwanpinta. 2016. The effect of fertilizer on growth of staghorn fern at seedling stage. Intl. J. Geo. 11:2879-2882.
Pimsuwan, S., Y. Wongsrisakulkaew, N. Jumradjit, P. Thumsuk, and S. Mulmanee. 2017. The effect of watering frequencies and slow-released-fertilizer levels on the growth of Platycerium coronarium in young sporophyte phase. Intl. J. Geomate. 13:24-28.
Pimsuwan1, S., P. Hongthong1, P. Krangpanich1, and C. Suwanpinta. 2016. The effect of fertilizer on growth of staghorn fern at seedling stage. Intl. J. Geo. 11:2879-2882.
Poole, R.T. and C.A. Conover. 1982. Fertilization of Birds’-nest fern, Asplenium nidus L. Proc. Trop. Reg. Amer. Soc. Hort. Sci. 25:81-87.
Prange, R.K. and D.P. Ormrod. 1982. Effects of ammonium and nitrate nutrition on the ostrich fern (Matteuccia struthiopteris). Can. J. Plant Sci. 62:195-201.
Price, M.G. 1990. Platycerium update. Amer. Fern. J. 80:53-69.
Qin, Y.Y., X.M. Gan, X.X. Jiang, J.W. Li, F. Wei, and S.C. Liang. 2009. Dynamics in leaf stomatal conductance of Spartina alterniflora in mangrove habitats. Chinese J. Ecol. 28:1991-1995.
Raven, J.A. 1985. Physiology and biochemistry of pteridophytes. Proc. Roy. Soc. Edinb. 86:37-44.
Rut, G., J. Krupa, and A. Rzepka. 2002. Effects of simulated osmotic drought on intensity of gaseous exchange in gametophytes of the fern Platycerium bifurcatum. 5th Intl. Sci. Hort. Conf. 75-78.
Rut, G., J. Krupa, and A. Rzepka. 2003. The influence of simulated osmotic drought on functioning of the photosynthetic appratus in gametophytes of the epiphytic fern Platycerium bifurcatum. Pol. J. Nat. Sci. 1:114-115.
Rut. G., J. Krupa, and A. Rzepka. 2001. The intensity of photosynthesis and respiration of sporophyll leaves in the epiphytic fern Platycerium bifurcatum under water stress conditions. Acta. Physiol. Plant. (Suppl. “Ecophysiological aspects of plant responses to stress factors”). 23:88.
Rut. G., J. Krupa, Z. Miszalski, A. Rzepka, and I. Slesak. 2008. Crassulacean acid metabolism in the epiphytic fern Platycerium bifurcatum. Photosynthetica 46:156-160.
Ruzana Adibah, M.S. and A.N. Ainuddin. 2011. Epiphytic plants responses to light and water stress. Asia. J. Plant Sci. 10:97-107.
Sangdanuch, P. 2016. Platycerium. Amarin printing Pub., Thailand.
Sanusi, R.A.M., A.A. Nuruddin, and H.A. Hamid. 2011. Leaf chlorophyll fluorescence and gas exchange response to different light levels in Platycerium bifurcatum. Amer. J. Agri. Biol. Sci. 6:214-220.
Sarvikas, P., M. Hakala, E. Patsikka, T. Tyystjarvi, and E. Tyystjarvi. 2006. Action spectrum of photoinhibition in leaves of wild type and npql-2 and npql4-1 mutants of Arabidopsis thaliana. Plant Cell Physiol. 47:391-400.
Sawada, S., M. Kuninaka, K. Watanabe. 2001. The mechanism to suppress photosynthesis through end-product inhibition in single-rooted soybean leaves during acclimation to CO2 enrichment. Plant Cell Physiol. 42:1093-1102.
Schreiber, U. and J.A. Berry. 1977. Heat-induced changes of chlorophyll fluorescence in intact leaves correlated with damage of photosynthetic apparatus. Planta. 136: 233-238.
Schubert, S. and F. Yan. 1997. Nitrate and ammonium nutrition of plants: Effects on acid/base balance and adaptation of root cell plasmalemma H+-ATPase. J. Plant Nutr. Soil Sci. 160:275-281.
Shen, X.L., W.Y. Wang, and X.Y. Yu. 2008. Varieties and cultivation of Platycerium wallichii. China Flower. Hort. 12:29-33.
Si, H.T., T.H. Yu, X.Y. Guan, G.F. Jiang, and K.F. Cao. 2017. Stomatal responses to environmental factors and its coordination with hydraulic functions in plants of mangrove forests. Plant Physiol. J. 53:487-496.
Snider, J.L., J.S. Choinski, and R.R. Wise. 2009. Juvenile Rhus glabra leaves have higher temperatures and lower gas exchange rates than mature leaves when compared in the field during periods of high irradiance. J. Plant Physiol. 166:686-696.
Somersalo, S. and G.H. Krause. 1990. Reversible photoinhibition of unhardened and cold-acclimated spinach leaves at chilling temperatures. Planta 180:181-187.
Soukup, J. and F. Ohme. 1984. The finest ferns. Florists’ Rev. Mar. 22:22-25.
Sparling, J.H. 1967. Assimilation rates of some woodland herbs in Ontario. Bot. Gaz. 128:160-168.
Stancato, G.C., P. Mazzafera, and M.S. Buckeridge. 2001. Effect of a drought period on the mobilization of non-structural carbohydrates, photosynthetic efficiency and water status in an epiphytic orchid. Plant Physiol. Biochem. 39: 1009-1016.
Stancato, G.C., P. Mazzafera, and M.S. Buckeridge. 2002. Effects of light stress on the growth of the epiphytic orchid Cattleya forbesii lindl. X Laelia tenebrosa rolfe. Rev. Bras. Bot. 25: 229-235.
Stitt, M. 1991. Rising CO2-levels and their potential significance for carbon flow in photosynthetic cells. Plant Cell Environ. 14:741-762.
Stuntz, S. and G. Zotz. 2001. Photosynthesis in vascular epiphytes: a survey of 27 species of diverse taxonomic origin. Flora 196:132-141.
Taiz, L. and E. Zeiger. 2006. Plant physiology. Sinauer Associates, Inc., Sunderland, MA. U.S.A.
Terashima, I., Y.T. Hanba, D. Tholen, U. Niinemets. 2011. Leaf functional anatomy in relation to photosynthesis. Plant Physiol. 155:108-116.
Tewari, R.K., P. Kumar, and P.N. Sharma. 2006. Magnesium deficiency induced oxidative stress and antioxidant responses in mulberry plants. Scientia Hort. 108:7-14.
Thompson, W.A., L.K. Huang, and P.E. Kriedemann. 1992. Photosynthetic response to light and nutrients in sun-tolerant and shade-tolerant rainforest tress. II. Leaf gas exchange and component processes of photosynthesis. Aust. J. Plant Physiol. 19:19-42.
Tingey, D.T., R.C. Evans, E.H. Bates, and M.L. Gumpertz. 1987. Isoprene emmissions and photosynthesis in three ferns – The influence of light and temperature. Physiol. Plant. 69:609-616.
Tosens, T., K. Nishida, J. Gago, R.E. Coopman, H.M. Cabrera, M. Carriqui, L. Laanisto, L. Morales, M. Nadal, R. Rojas, E. Talts, M. Tomas, Y. Hanba, U. Niinemets, and J. Flexas. 2016. The photosynthetic capacity in 35 ferns and fern allies: mesophyll CO2 diffusion as a key trait. New Phytol. 209:1576-1590.
Upadhyaya, H., S.K. Panda, and B.K. Dutta. 2008. Variation of physiological and antioxidative responses in tea cultivars subjected to elevated water stress followed by rehydration recovery. Acta Physiol. Plant. 30: 457-468.
Volkova, L., L.T. Bennett, and M. Tausz. 2011. Diurnal and seasonal variations in photosynthetic and morphological traits of the tree ferns Dicksonia antarctica (Dicksoniaceae) and Cyathea australis (Cyatheaceae) in wet sclerophyll forests of Australia. Environ. Expt. Bot. 70:11-19.
Volkova, L., M. Tausz, L.T. Bennett, and E. Dreyer. 2009. Interactive effects of high irradiance and moderate heat on photosynthesis, pigments, and tocopherol in the tree-fern Dicksonia antarctica. Funct. Plant Biol. 36:1046-1056.
Wang, Q.Y. 2006. Cultivation and management of Platycerium wallichii. Northern Hort. 1:97.
Warren, C.R. 2004. The photosynthetic limitation posed by internal conductance to CO2 movement is increased by nutrient supply. J. Expt. Bot. 55:2313-2321.
Wei, C., Z. Lin, and G. Kong. 1996. Effect of elevated carbon dioxide concentration on photosynthesis of seedlings of two woody species in a subtropical forest. Acta. Bot. Sci. 38:123-130.
Winter, K., B.J. Wallace, G.C. Stocker, and Z. Roksandic. 1983. Crassulacean acid metabolism in Australian vascular epiphytes and some related species. Oecologia 57: 129–141.
Wittenberghe, S.V., S. Adriaenssens, J. Staelens, K. Verheyen, and R. Samson. 2012. Variability of stomatal conductance, leaf anatomy, and seasonal leaf wettability of young and adult European beech leaves along a vertical canopy gradient. Trees 26:1427-1438.
Wittmann, C., G. Aschan, and H. Pfanz. Leaf and twig photosynthesis of young beech (Fagus sylvatica) and aspen (Populus tremula) trees grown under different light regime. Basic. Appl. Ecol. 2:145-154.
Xoconostle-Cazares, B., F.A. Ramirez-Ortega, L. Flores-Elenes, and R. Ruiz-Medrano. 2010. Drought tolerance in crop plants. Amer. J. Plant Physiol. 5: 241-256.
Xu, D.Q. 2002. Photosynthetic efficiency. Shanghai Sci. Tech. Pub., SHH, China.
Xu, X.H., X.Y. Weng, and Y. Yang. 2007. Effect of phosphorus deficiency on the photosynthetic characteristics of rice plants. Russ. J. Plant. Physl. 54:741-748.
Xu, Z., G. Zhou, and H. Shimizu. 2010. Plant responses to drought and rewatering. Plant Signal. Behav. 5:649-654.
Yeh, D.M. and H.M. Wang. 2000. Effects of irradiance on growth, net photosynthesis and indoor performance of the shade-adapted plant, maidenhair fern. J. Hort. Sci. 75:293-298.
Yelle, S., R.C.J. Beeson, M.J. Trude. 1989. Acclimation of two tomato species to high atmospheric CO2. Plant Physiol. 90:1465-1472.
Zhang, Q., C. Lu, and L. Liu. 1997. Effects of doubled CO2 concentration on light energy absorption and excitation energy distribution between PSII and PSI in chloroplasts of weeping willow and eucommia. Acta. Bot. Sci. 39:845-848.
Zhang, Q., J.W. Chen, B.G. Li, and K.F. Cao. 2009. The effect of drought on photosynthesis in two epiphytic and two terrestrial tropical fern species. Photosynthetica 47:128-132.
Zhang, Z., Z. OU, S.Z. Li, Z.Y. Yang, and L.L. Deng. 2018. Resources investigation and conservation of Platycerium wallichii. Heilongjiang Agri. Sci. 7:89-92.
Zhao, T.H., M.Y. Wang, W.W. Zhang, and X. Zhang. 2006. Effects of elevated atmospheric CO2 concentration on plant photosynthesis. J. Ecol. Environ. 15:1096-1100.
Zhou, Y., H.M. Lam, and J. Zhang. 2007. Inhibition of photosynthesis and energy dissipation induced by water and high light stresses in rice. J. Expt. Bot. 58:1207-1217.
Zhou, Y., S. Han, and J. Zhang. 2001. The effects of elevated CO2 concentration on net photosynthesis and water use efficiency of leaves of Fraxinus mandshurica seedling. J. North. Forest. Uni. 29:29-31.
Zotz, G. and P. Hietz. 2001. The physiological ecology of vascular epiphytes: Current knowledge, open questions. J. Expt. Bot. 52:2067-2078.
Zsófi, Z., G. Váradi, B. Bálo, M. Marschall, Z. Nagy, and S. Dulai. 2009. Heat acclimation of grapevine leaf photosynthesis: mezo- and macroclimatic aspects. Funct. Plant Biol. 36:310-322.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top