跳到主要內容

臺灣博碩士論文加值系統

(44.200.27.215) 您好!臺灣時間:2024/04/24 17:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蘇柏如
研究生(外文):Bo-Ru Su
論文名稱:日長對紅龍果萌芽型態之影響
論文名稱(外文):Effect of day-length on budding types in pitaya
指導教授:楊雯如楊雯如引用關係
指導教授(外文):Wen-Ju Yang
口試委員:張栢滄
口試委員(外文):Pai-Tsang Chang
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:園藝暨景觀學系
學門:農業科學學門
學類:園藝學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:51
中文關鍵詞:花芽創始花芽誘導氯砒脲終止長日部分創始型芽體
外文關鍵詞:floral initiationfloral inductionforchlorfenuronshort-day interruptionpartial initiated bud
DOI:10.6342/NTU202000224
相關次數:
  • 被引用被引用:0
  • 點閱點閱:195
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
紅龍果(Hylocereus spp.)為典型長日植物,臨界日長約為12小時,誘導季及非誘導季以春、秋分為界;成熟的當年生枝條在春分後即啟動花芽創始,分生組織中心形成花原體、外圍分化苞片。初次萌花為春分後8週後,此後於誘導季節間呈批次性萌花。枝條進入非誘導季後,芽體外圍苞片雖可持續分化而膨大,但需輔以暗中斷處理方可萌花。然而,已具花原體之未萌芽,氯砒脲(forchlorfenuron, CPPU)的施用可取代暗中斷處理,顯示長日誘導本身並非必須。因此,本研究首先定義未萌芽完成花原體的關鍵時間,即定義紅龍果芽體花芽形成的不歸點,再探討當年生成熟枝條花原體初次形成的時間,以及秋分後這些芽體CPPU催萌反應消退情形。
發育中的芽體可依其膨大程度分成4級,即0-3級芽;其中,3級芽已具有花原體及花瓣。本研究印證3級芽體在移除長日誘導環境後仍可繼續萌花,達到不歸點。當年生成熟枝條於長日誘導6週後,首出現3級芽,顯示由營養芽轉變為生殖芽至少需要誘導6週。芽體受長日誘導越久,CPPU的催萌效果越好,越能萌出具經濟生產能力的花苞。秋分後,三週內已達不歸點的芽體可以CPPU催萌,超過三週即無法再單憑CPPU催花。本研究同時也驗證紅龍果枝條in vivo 及 in vitro試驗的光週反應結果相近。
Pitaya (Hylocereus spp.) is a typical long-day plant with a critical daylength of 12 h, in that spring and autumn equinoxes play as the switches between inductive and non-inductive seasons. The matured current shoot of pitaya may onset floral initiation soon after spring equinox, forming floral primordia in the central zone and bracts in the peripheral zone of meristem. The first flush of flower emerges 8 weeks after spring equinox and continuously emerge several flushes of flower during inductive season. After autumn equinox, entering non-inductive season, the buds keep swelling because the bract differentiating is not ceased; however, night break treatment is required for budding. In the case of a not yet emerged bud with floral primordia, floral bud can be forced by forchlorfenuron (CPPU) instead of night breaking treatment, long daylength induction. Therefore, the aim of this study was first to find the critical stage of a not yet emerged bud and define the determined stage. Secondly, finding the timing that the determined bud first formed in the matured current shoots. Finally, exploring the declining of CPPU response activity of the determined buds after autumn equinox.
The developing buds can be classified into 4 stages, stage 0-3, according to the swelling. In stage 3 buds, the floral primordia are formed and surrounded by some petals. In the present study, we confirm that stage 3 buds are able to emerge floral buds without long daylength environment, which indeed reach determination. In the matured current shoots, stage 3 buds appeared since 6 weeks of long daylength induction indicates that 6 weeks of induction was required for a vegetative primordia developed into a floral primordia. The longer the induction period, the stronger budding activity in response to CPPU and resulted in producing more economic valuable flower buds. After autumn equinox, CPPU response of the determined bud can retain 3 weeks and no response after then. In this study, we also demonstrated that the light induction experiment can be conducted in vitro or in vivo in pitaya.
謝誌………………………………………………………………………i
摘要………………………………………………………………………ii
Abstract…………………………………………………………iii
目錄………………………………………………………………………v
表目錄………………………………………………………………..vii
圖目錄……………………………………………………………….viii
前言……………………………………………………………………….1
第一章、前人研究………………………………………………………… 2
第二章、材料與方法……………………………………………………… 7
第三章、結果
第一節、當年生枝條花芽誘導試驗
1.長日誘導時間對上揚枝條萌芽之影響……………………. 14
2.長日誘導時間對下垂枝條萌芽之影響……………………. 15
3.枝條放置角度對萌芽分布之影響…………………………. 16
第二節、長日誘導消退試驗
1.離體試驗……………………………………………………. 16
2.田間試驗……………………………………………………. 17
第四章、討論
1.紅龍果芽體分化不歸點…………………………………... 18
2.當年生枝條完成花芽誘導…...…………………………… 18
3.長日誘導效果之消退……………………………………... 21
4.枝條方向對萌芽反應之影響………………………………21
5.建立離體枝條試驗方法……………………………………22
第五章、結論……………………………………………………………. 46
參考文獻………………………………………………….……………... 47
朱恩儀. 2018. 春季紅龍果(Hylocereus sp.)新生枝條成熟度與芽體萌發物後期. 國立臺灣大學園藝學研究所碩士論文. 臺北. 台灣.
江一蘆、楊雯如. 2015. 紅龍果春季短截後之芽體萌發物候期. 臺灣園藝 61:45-54.
江一蘆. 2005. 攀附性仙人掌果品系分類、開花著果習性與修剪. 國立臺灣大學園藝學研究所碩士論文. 臺北. 台灣.
余建美. 2016. 台灣紅龍果產業發展現況. 紅龍果整體產業價值鏈整合技術發表暨產業交流研討會特刊. 行政院農委會臺中區農業改良場. 臺中. 臺灣.
徐逸誠. 2017. 利用CPPU 檢定紅龍果花芽創始的過程. 國立臺灣大學園藝學研究所碩士論文. 臺北. 台灣.
徐萬德. 2004. Hylocereus app. 仙人掌紅龍果之栽培、生育習性及物候調查. 國立臺灣大學園藝學研究所碩士論文. 臺北. 台灣.
許庭瑄、吳俊達. 2015. 紅肉種紅龍果採後生理與處理技術之研究. 台灣紅龍果生產技術改進研討會專刊. 鳳山熱帶園藝試驗分所編印. p.109-119.
陳盟松. 2017. 臺灣紅龍果產期調節技術發展. 臺中農業改良場特刊. p.91-100.
廖苑吟. 2012. 暗期中斷對紅龍果(Hylocereus polyrhizus)芽體分化與萌花之影響. 國立臺灣大學園藝學研究所碩士論文. 臺北. 台灣.
劉碧娟. 2010. 臺灣紅龍果的栽培. 農業試驗所特刊144號. 鳳山園藝試驗所. 高雄. 臺灣.
Abad Farooqi A.H., Y.N. Shukla, S. Sharma, and R.P. Bansal. 1994. Relationship between gibberellin and cytokinin activity and flowering in Rosa damascena Mill. J. Plant Growth Regul. 14: 109-113.
Alvarez-Buylla E.R., M. Benítez, A. Corvera-Poiré, Á. C. Vador, S. Folter A. G. Buen, A. Garay-Arroyo, B. Garcia-Ponce, Fabiola Jaimes-Miranda, R. V. Perez-Ruiz, A. Pineyro-Nelson, and Y.E. Sanchez-Corrales. 2010. Flower development. The Arabidopsis book. The Amercian Society of Plant Biologists.
Ben-Asher J., P.S. Nobel , E. Yossov, and Y. Mizrahi. 2006. Net CO2 uptake rates for Hylocereus undatus and Selenicereus megalanthus under field conditions: Drought influence and a novel method for analyzing temperature dependence. Photosynthetica 44: 181-186.
Blanchard M.G. and E.S. Runkle. 2008. Benzyladenine Promotes Flowering in Doritaenopsis and Phalaenopsis Orchids. J. Plant Growth Regul. 27:141-150
Chandler J.W. 2011. The hormonal regulation of flower development. J. Plant Growth Regul. 30: 242-254.
Chandler J.W. and W. Werr. 2015. Cytokinin-auxin crosstalk in cell type specification. Trends Plant Sci. 20: 291-300.
Chang, P.T., C.C. Hsieh, and Y.L. Jiang. 2016. Responses of ‘Shih Huo Chuan’ pitaya (Hylocereus polyrhizus (Weber)Britt. & Rose) to different degrees of shading nets. Sci. Hortic. 198: 154-162.
Chen, W.S. 1991. Changes in cytokinins before and during early flower bud differentiation in Lychee (Litchi chinensis Sonn.). Plant Phsiol. 96:1203-1206.
Corbesier, L., E. Prinsen, A. Jacqmard, P. Lejeune, H. V. Onckelen, C. PeÂrilleux and G. Bernier. 2003. Cytokinin levels in leaves, leaf exudate and shoot apical meristem of Arabidopsis thaliana during floral transition. J. Exp. Bot. 54:2511-2517.
Denay, G., H. Chahtane, G. Tichtinsky, and F. Parcy. 2017. A flower is born: an update on Arabidopsis floral meristem formation. Plant Biology 35: 15-22.
Hempel, F.D., D.R. Welch and L.J. Feldman. 2000. Floral induction and determination: where is flowering controlled? Trends Plant Sci. 5(1): 17-21
Ito A., H. Hayama, and H. Yoshioka. 2001. The effect of shoot-bending on the amount of diffusible indole-3-acetic acid and its transport in shoots of Japanese pear. Plant Growth Regul. 34: 151-158.
Ito A., H. Yaegaki, H. Hayama, S. Kusaba, I. Yamaguchi, and H. Yoshioka. 1999. Bending shoots stimulus flowering and influences hormone levels in lateral buds of Japanese pear. HortScience 34: 1224-1228.
Jiang Y.L., Y.Y. Liao, M.T. Lin, and W.J. Yang. 2016. Bud development in response to night-breaking treatment in the noninductive period in red pitaya (Hylocereus sp.). HortScience 51:690-696.
Jiang Y.L., Y.Y. Liao, T.S. Lin, and C.L. Lee. 2012. The photoperiod-regulated bud formation of red pitaya (Hylocereus sp.). HortScience 47:1063-1067.
Jiang, B.B., S.M. Chen, H.B. Miao, Sh.M. Zhang, F.D. Chen, W.M. Fang. 2010. Changes of edogenous hormone levels during short-day inductive floral initiation and inflorescence differentiation of Chrysanthemum morifolium ‘Jingyun’. Int. J. Plant. Prod. 4:149-157.
Khaimov A. and Y. Mizrahi. 2006. Effects of day-length, radiation, flower thinning and growth regulators on flowering of the vine cacti Hylocereus undatus and Selenicereus megalanthus. J. Hort. Sci. Biotech. 81:465-470.
Khaimov-Armoza, A., O. Novák, M. Strnad, and Y. Mizrahi. 2012. The role of endogenous cytokinins and environmental factors in flowering in the vine cactus Hylocereus undatus. Isr. J. Plant Sci. 60:371-383.
Kiba, T., K. Takei, M. Kojima, and H. Sakakibara. 2013. Side-chain modification cytokinins controls shoot growth in Arabidopsis. Dev. Cell 27: 452-461.
Kopečný, D., P. Briozzo, H. Popelková, M. Šebela, R. Končitíková, L. Spíchal, J. Nisler, C. Madzak, I. Frébort, M. Laloue, and N. Houba-Hérin. 2010. Phenyl- and benzylurea cytokinins as competitive inhibitors of cytokinin oxidase/dehydrogenase: A structural study. Biochimie 92:1052-1062.
Kwiatkowsaka, D. 2008. Flowering and apical meristem growth dynamics. J. Exp. Bot. 59: 187-201.
Liu F.Y. and Y.S. Chang. 2011. Effects of shoot bending on ACC content, ethylene production growth and flowering of bougainvillea. Plant Growth Regul. 63: 37-44.
Mauseth J.D. 2006. Structure-Function Relationships in Highly Modified Shoots of Cactaceae. Ann. Bot. 98: 901-926.
Mizrahi Y., A. Nerd, and P.S. Nobel. 1997. Cacti as crops. Hort. Rev. 18: 291-319.
Mizrahi Y., E. Raveh, E. Yossov, A. Nerd, and J. Ben-Asher. 2007. New fruit crops with high water use efficiency. Issues in new crops and new uses. p.216-222.
Morgan P.W. and H.W. Gausman. 1966. Effects of ethylene on auxin transport. Plant Physiol. 41: 45-52.
Pautler, M., W. Tanaka, H.Y. Hirano, and D. Jackson. 2012. Grass meristem I: shoot apical meristem maintenance axillary meristem determinacy and the floral transition. Plant Cell Physiol. 54: 302-312.
Sakakibara, H. 2006. Cytokinins: activity, biosynthesis, and translocation. Annu. Rev.Plant Biol. 57:431-449.
Sanyal D. _ and F. Bangerth. 1998. Stress induced ethylene evolution and its possible relationship to auxin-transport, cytokinin levels, and flower bud induction in shoots of apple seedlings and bearing apple trees. Plant Growth Regul. 24: 127-134.
Schaller G.E., A. Bishopp, and J. J. Kieberc. 2015. The Yin-Yang of Hormones: Cytokinin and Auxin Interactions in Plant Development. Plant Cell 27: 44-62.
Su Y.H., Y.B. Liu, and X.S. Zhang. 2011. Auxin-cytokinin interaction regulates meristem development. Mol. Plant 4: 616-625.
Taiz L., E. Zeiger, I.M. Moller, and A. Murphy. 2015. The control of flowering and floral development, p. 592-623. In: Plant physiology and Development. 6th ed. Sinauer Associates. Sunderland, U.S.A.
Vanstraelen, M. and E. Benková. 2012. Hormonal interactions in the regulation of plant development. Annu. Rev. Cell Dev. Biol. 28: 463-487.
Werner, T. and T. Schmülling. 2009. Cytokinin action in plant development. Plant Biology 12: 527-538.
Wilkie, J.D., M. Seldgley, and T. Olesen. 2008. Regulation of floral initiaition in horticultural trees. J. Exp. Bot. 59: 3215-3228.
Yamori W., K. Hikosaka, and D.A. Way. 2014. Temperature response of photosynthesis in C3, C4, and CAM plants: temperature acclimation and temperature adaptation. Photosynth. Res. 119: 101-117.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top