跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.84) 您好!臺灣時間:2024/12/06 19:11
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:梁心怡
研究生(外文):Sin-Yi Liang
論文名稱:景觀空間景深對心理與腦區的影響
論文名稱(外文):Influence of Depth Field of Landscapes on Psychological and Brain Response
指導教授:張俊彥
指導教授(外文):Chun-Yen Chang
口試委員:歐聖榮林晏州何立智張伯茹
口試委員(外文):Sheng-Jung OuYann-Jou LinLi-Chih HoPo-Ju Chang
口試日期:2020-06-20
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:園藝暨景觀學系
學門:農業科學學門
學類:園藝學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:95
中文關鍵詞:深度感知空間設計功能性磁振造影(fMRI)情緒
外文關鍵詞:Depth PerceptionSpatial DesignFunctional Magnetic Resonance Image(fMRI)Emotion
DOI:10.6342/NTU202001457
相關次數:
  • 被引用被引用:1
  • 點閱點閱:257
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
Hunter & Askarinejad(2015)提出透過理解場景中物體的大小比例、距離關係,能引起觀賞者更進一步地探索、提升參與的興趣與偏好,並和知覺注意力恢復性呈現高度相關;此外具深度訊息的空間能增強視覺體驗,有助於豐富感知體驗(Verhoef et al., 2016)。然而過去研究近、遠深度多以簡單形狀為刺激物,未深入探討空間環境及不同設計方式的生心理反應,因此本研究以功能性磁振造影(fMRI)和心理問卷探討何種設計手法的景深空間在腦區和心理感受中可提供人們正向的情緒與良好的視覺環境感受。
研究結果顯示,滲透與層次空間能感受愉悅及偏好程度偏高,活化額上迴(Superior Frontal Gyrus)審美判斷腦區及激發創意概念聯想的梭形迴(Fusiform Gyrus)、顳中迴(Middle Temporal Gyrus)、楔前葉(Precuneus)及海馬(Hippocampus)、海馬旁迴(Parahippocampal Gyrus)等,這些腦區活化反應代表接受刺激後,能提升正向情緒感受、審美體驗、創造力思考和空間佈局之辨識;藏與露空間具重複性、不對稱性和複雜性的曲線結構,貼近自然有機的空間線條,與親生命設計(Biophilic Design)主張人類天生就具親近自然的特質相關,故能感受愉悅及偏好程度最高,其腦區反應主要活化高階視覺處理區、頂葉小葉(Superior Parietal Lobule)和枕骨區域參與空間定向;引導與暗示強調空間的組織與導向性,腦區活化楔前葉及頂葉小葉等空間定位區,主要為參與視覺空間注意力和對背側注意力網絡的控制。透過了解景深空間於受測者之生心理反應,本研究可作為未來景觀、建築、都計領域空間規劃設計之選用搭配,提升體驗環境時的正向感受。
Hunter & Askarinejad (2015) had confirmed that by understanding the relationship between the size, proportion and distance of objects in the scenes can arouse the viewers’ interest and participation. It is highly related to preference and restoration, and the space with deep information can enhance the visual experience and perception experience (Verhoef et al., 2016). However, in the past, the depth factors used simple shapes as stimulants, and did not discuss the spatial environment and the psychological responses of different design methods. Therefore, this study used functional magnetic resonance imaging (fMRI) and psychological questionnaires to explore what kind of spatial design could provide people with positive emotion and good environmental feelings.
The results showed that the permeable and hierarchical space are more pleasure and preference, activating the Superior Frontal Gyrus related with aesthetic judgment, and Fusiform Gyrus, Middle Temporal Gyrus, Precuneus, Hippocampus and Parahippocampal Gyrus, which can inspire creative concepts; the hidden and revealed space with repeatable, asymmetry and complexity closed to Biophilic Design, so it has highest degree of pleasure and preference. The brain areas activate the advanced visual processing area, the Superior Parietal Lobule and the Occipital Lobe participating in spatial orientation. The guided and suggested space emphasize the organization and orientation, mainly activating the Precuneus and the Superior Parietal Lobule, participating in visual spatial attention and control of the dorsal attention network, and R-SupraMarginal Gyrus. The results of this study might be applied in the landscape architecture, architecture, and metropolitan field for environmental recovery.
第一章 緒論 1
第一節 研究動機 1
第二節 研究目的 2
第三節 研究範圍與限制 2
第二章 文獻回顧 3
第一節 視覺成像原理與景深線索 3
第二節 視覺腦區反應 5
第三節 景深對觀賞者心理感受之研究 10
第四節 景觀環境於心理及腦區之影響 11
第五節 深度空間之設計手法 13
第六節 環境的心理感受 16
第七節 小結 18
第三章 研究方法 20
第一節 研究架構與假設 20
第二節 研究變項 21
第三節 研究設計 25
第四節 資料收集與分析方法 31
第四章 研究結果 36
第一節 樣本特性分析 36
第二節 行為實驗分析 36
第三節 腦造影實驗分析 41
第五章 討論 53
第六章 結論與建議 59
第一節 結論 59
第二節 後續研究建議 60
參考文獻 63
附錄一 實驗刺激物 72
附錄二 心理感受問卷 75
附錄三 研究倫理委員會審查核可證明 80
附錄四 MRI 實驗安全同意書 81
附錄五 研究參與者知情同意書 83
附錄六 實驗前說明簡報 87
附錄七 重要文獻原文摘要 89
附錄八 論文原創性檢驗結果 94
1.彭一剛(1986)。中國古典園林分析。中國:中國建築工業
2.Amit, E., Mehoudar, E., Trope, Y., & Yovel, G. (2012). Do object-category selective regions in the ventral visual stream represent perceived distance information? Brain and Cognition, 80(2), 201–213. https://doi.org/10.1016/j.bandc.2012.06.006
3.Appleton, J. (1975). The experience of landscape—OpenBibArt. http://www.openbibart.fr/item/display/10068/937492
4.Banaei, M., Hatami, J., Yazdanfar, A., & Gramann, K. (2017). Walking through Architectural Spaces: The Impact of Interior Forms on Human Brain Dynamics. Frontiers in Human Neuroscience, 11. https://doi.org/10.3389/fnhum.2017.00477
5.Billington, J., Furlan, M., & Wann, J. (2013). Cortical responses to congruent and incongruent stereo cues for objects on a collision path with the observer. Displays, 34(2), 114–119. https://doi.org/10.1016/j.displa.2012.10.008
6.Bishop, I. D., & Rohrmann, B. (2003). Subjective responses to simulated and real environments: A comparison. Landscape and Urban Planning, 65(4), 261–277. https://doi.org/10.1016/S0169-2046(03)00070-7
7.Boisgueheneuc F., Levy R., Volle E., Seassau M., Duffau H., Kinkingnehun S., Samson Y., Zhang S., & Dubois B. (2006). Functions of the left superior frontal gyrus in humans: A lesion study. Brain, 129(12), 3315–3328. https://doi.org/10.1093/brain/awl244
8.Bratman, G. N., Hamilton, J. P., & Daily, G. C. (2012). The impacts of nature experience on human cognitive function and mental health. Annals of the New York Academy of Sciences, 1249(1), 118–136. https://doi.org/10.1111/j.1749-6632.2011.06400.x
9.Carter, R. (2014). The Human Brain Book: An Illustrated Guide to its Structure, Function, and disorders: Penguin.
10.Cutting, J. E. (1997). How the eye measures reality and virtual reality. Behavior Research Methods, Instruments, & Computers, 29(1), 27–36. https://doi.org/10.3758/BF03200563
11.Cutting, J., Vishton, P., & Braren, P. (1995). How We Avoid Collisions With Stationary and Moving Obstacles. Psychological Review, 102(4), 627–651. https://doi.org/10.1037/0033-295X.102.4.627
12.Davachi, L., Mitchell, J. P., & Wagner, A. D. (2003). Multiple routes to memory: Distinct medial temporal lobe processes build item and source memories. Proceedings of the National Academy of Sciences, 100(4), 2157–2162. https://doi.org/10.1073/pnas.0337195100
13.Epstein, R. A. (2008). Parahippocampal and retrosplenial contributions to human spatial navigation. Trends in Cognitive Sciences, 12(10), 388–396. https://doi.org/10.1016/j.tics.2008.07.004
14.Finlayson, N. J., Zhang, X., & Golomb, J. D. (2017). Differential patterns of 2D location versus depth decoding along the visual hierarchy. NeuroImage, 147, 507–516. https://doi.org/10.1016/j.neuroimage.2016.12.039
15.Gaebler, M., Biessmann, F., Lamke, J.-P., Müller, K.-R., Walter, H., & Hetzer, S. (2014). Stereoscopic depth increases intersubject correlations of brain networks. NeuroImage, 100, 427–434. https://doi.org/10.1016/j.neuroimage.2014.06.008
16.Howard, I. P., & Rogers, B. J. (2002). Seeing in depth, Vol. 2: Depth perception. University of Toronto Press.
17.Hull, R. B., & Harvey, A. (1989). Explaining the Emotion People Experience in Suburban Parks. Environment and Behavior, 21(3), 323–345. https://doi.org/10.1177/0013916589213005
18.Hunter, M. R., & Askarinejad, A. (2015). Designer’s approach for scene selection in tests of preference and restoration along a continuum of natural to manmade environments. Frontiers in Psychology, 6. https://doi.org/10.3389/fpsyg.2015.01228
19.Iatsun, I., Larabi, M.-C., & Fernandez-Maloigne, C. (2015). A visual attention model for stereoscopic 3D images using monocular cues. Signal Processing: Image Communication, 38, 70–83. https://doi.org/10.1016/j.image.2015.05.009
20.Jacobsen, T., Schubotz, R. I., Höfel, L., & Cramon, D. Y. v. (2006). Brain correlates of aesthetic judgment of beauty. NeuroImage, 29(1), 276–285. https://doi.org/10.1016/j.neuroimage.2005.07.010
21.Jansen L., Onat S., & König P. (2009). Influence of disparity on fixation and saccades in free viewing of natural scenes. Journal of Vision, 9(1), 29–29. https://doi.org/10.1167/9.1.29
22.Kaplan, R., & Kaplan, S. (1989). The Experience of Nature: A Psychological Perspective. CUP Archive.
23.Kaplan, S., Kaplan, R., & Wendt, J. S. (1972). Rated preference and complexity for natural and urban visual material. Perception & Psychophysics, 12(4), 354–356. https://doi.org/10.3758/BF03207221
24.Kim, G., & Jeong, G. (2014). Brain activation patterns associated with the human comfortability of residential environments: 3.0-t functional Mri. Neuroreport, 25(12), 915–920. https://doi.org/10.1097/WNR.0000000000000205
25.Kim, T.-H., Jeong, G.-W., Baek, H.-S., Kim, G.-W., Sundaram, T., Kang, H.-K., Lee, S.-W., Kim, H.-J., & Song, J.-K. (2010). Human brain activation in response to visual stimulation with rural and urban scenery pictures: A functional magnetic resonance imaging study. Science of The Total Environment, 408(12), 2600–2607. https://doi.org/10.1016/j.scitotenv.2010.02.025
26.Kunnapas, T. (1968). Distance perception as a function of available visual cues. Journal of Experimental Psychology, 77(4), 523–529. https://doi.org/10.1037/h0026050
27.Laumann, K., Gärling, T., & Stormark, K. M. (2003). Selective attention and heart rate responses to natural and urban environments. Journal of Environmental Psychology, 23(2), 125–134. https://doi.org/10.1016/S0272-4944(02)00110-X
28.Lebreton, P., Raake, A., Barkowsky, M., & Callet, P. L. (2014). Measuring perceived depth in natural images and study of its relation with monocular and binocular depth cues. Stereoscopic Displays and Applications XXV, 9011, 90110C. https://doi.org/10.1117/12.2040055
29.Lim, E.-M., Honjo, T., & Umeki, K. (2006). The validity of VRML images as a stimulus for landscape assessment. Landscape and Urban Planning, 77(1), 80–93. https://doi.org/10.1016/j.landurbplan.2005.01.007
30.Lohr, V. I., & Pearson-Mims, C. H. (2006). Responses to Scenes with Spreading, Rounded, and Conical Tree Forms. Environment and Behavior, 38(5), 667–688. https://doi.org/10.1177/0013916506287355
31.Mahayana, I. T., Tcheang, L., Chen, C.-Y., Juan, C.-H., & Muggleton, N. G. (2014). The Precuneus and Visuospatial Attention in Near and far Space: A Transcranial Magnetic Stimulation Study. Brain Stimulation, 7(5), 673–679. https://doi.org/10.1016/j.brs.2014.06.012
32.Makino, Y., Yokosawa, K., Takeda, Y., & Kumada, T. (2004). Visual search and memory search engage extensive overlapping cerebral cortices: An fMRI study. NeuroImage, 23(2), 525–533. https://doi.org/10.1016/j.neuroimage.2004.06.026
33.Mehrabian, A., & Russell, J. A. (1974). An approach to environmental psychology (pp. xii, 266). The MIT Press.
34.Nag, S., Berman, D., & Golomb, J. D. (2019). Category-selective areas in human visual cortex exhibit preferences for stimulus depth. NeuroImage, 196, 289–301. https://doi.org/10.1016/j.neuroimage.2019.04.025
35.Naganuma, T., Nose, I., Inoue, K., Takemoto, A., Katsuyama, N., & Taira, M. (2005). Information processing of geometrical features of a surface based on binocular disparity cues: An fMRI study. Neuroscience Research, 51(2), 147–155. https://doi.org/10.1016/j.neures.2004.10.009
36.Nelson, T., Johnson, T., Strong, M., & Rudakewich, G. (2001). PERCEPTION OF TREE CANOPY. Journal of Environmental Psychology, 21(3), 315–324. https://doi.org/10.1006/jevp.2001.0223
37.Orians, G. H., & Heerwagen, J. H. (1992). Evolved responses to landscapes. In The adapted mind: Evolutionary psychology and the generation of culture (pp. 555–579). Oxford University Press.
38.Preston, T. J., Li, S., Kourtzi, Z., & Welchman, A. E. (2008). Multivoxel Pattern Selectivity for Perceptually Relevant Binocular Disparities in the Human Brain. Journal of Neuroscience, 28(44), 11315–11327. https://doi.org/10.1523/JNEUROSCI.2728-08.2008
39.Ren, J., Huang, F., Zhou, Y., Zhuang, L., Xu, J., Gao, C., Qin, S., & Luo, J. (2020). The function of the hippocampus and middle temporal gyrus in forming new associations and concepts during the processing of novelty and usefulness features in creative designs. NeuroImage, 214, 116751. https://doi.org/10.1016/j.neuroimage.2020.116751
40.Rogers, B. J., & Collett, T. S. (1989). The appearance of surfaces specified by motion parallax and binocular disparity. The Quarterly Journal of Experimental Psychology. A, Human Experimental Psychology, 41(4), 697–717. https://doi.org/10.1080/14640748908402390
41.Rogers, Brian J., & Collett, T. S. (1989). The Appearance of Surfaces Specified by Motion Parallax and Binocular Disparity. The Quarterly Journal of Experimental Psychology Section A, 41(4), 697–717. https://doi.org/10.1080/14640748908402390
42.Rokers, B., Cormack, L. K., & Huk, A. C. (2009). Disparity- and velocity-based signals for three-dimensional motion perception in human MT+. Nature Neuroscience, 12(8), 1050–1055. https://doi.org/10.1038/nn.2343
43.Russell, J. A. (2003). Core affect and the psychological construction of emotion. Psychological Review, 110(1), 145–172. https://doi.org/10.1037/0033-295x.110.1.145
44.Russell, J. A., & Pratt, G. (1980). A description of the affective quality attributed to environments. Journal of Personality and Social Psychology, 38(2), 311–322. https://doi.org/10.1037/0022-3514.38.2.311
45.Ryan, C. O., Browning, W. D., Clancy, J. O., Andrews, S. L., & Kallianpurkar, N. B. (2014). BIOPHILIC DESIGN PATTERNS: Emerging Nature-Based Parameters for Health and Well-Being in the Built Environment. International Journal of Architectural Research: ArchNet-IJAR, 8(2), 62–76. https://doi.org/10.26687/archnet-ijar.v8i2.436
46.Schirpke, U., Tasser, E., & Tappeiner, U. (2013). Predicting scenic beauty of mountain regions. Landscape and Urban Planning, 111, 1–12. https://doi.org/10.1016/j.landurbplan.2012.11.010
47.Seiyama, A., Yamada, K., Osaki, K., Nakai, R., Matsumoto, J., & Yoshimura, A. (2018). Neural Bases on Cognitive Aspect of Landscape Evaluation: A Study Using Functional Magnetic Resonance Imaging. Journal of Neurology and Neuroscience, 9(4). https://doi.org/10.21767/2171-6625.1000263
48.Séverac Cauquil, A., Trotter, Y., & Taylor, M. J. (2005). At what stage of neural processing do perspective depth cues make a difference? Experimental Brain Research, 170(4), 457. https://doi.org/10.1007/s00221-005-0229-1
49.Shao, F., Fei, Y., Fu, R., Jiang, G., & Ho, Y.-S. (2019). Simultaneous object size and depth adjustment for stereoscopic 3D images. Information Sciences, 481, 280–291. https://doi.org/10.1016/j.ins.2018.12.077
50.Shimojo, S., & Nakayama, K. (1994). Interocularly unpaired zones escape local binocular matching. Vision Research, 34(14), 1875–1881. https://doi.org/10.1016/0042-6989(94)90311-5
51.Staats, H., Kieviet, A., & Hartig, T. (2003). Where to recover from attentional fatigue: An expectancy-value analysis of environmental preference. Journal of Environmental Psychology, 23(2), 147–157. https://doi.org/10.1016/S0272-4944(02)00112-3
52.Svobodova, K., Vojar, J., Sklenicka, P., & Filova, L. (2017). Presentation Matters: Causes of Differences in Preferences for Agricultural Landscapes Displayed via Photographs and Videos: Space and Culture. https://doi.org/10.1177/1206331217744186
53.Tang, I.-C., Tsai, Y.-P., Lin, Y.-J., Chen, J.-H., Hsieh, C.-H., Hung, S.-H., Sullivan, W. C., Tang, H.-F., & Chang, C.-Y. (2017). Using functional Magnetic Resonance Imaging (fMRI) to analyze brain region activity when viewing landscapes. Landscape and Urban Planning, 162, 137–144. https://doi.org/10.1016/j.landurbplan.2017.02.007
54.Tomao, A., Secondi, L., Carrus, G., Corona, P., Portoghesi, L., & Agrimi, M. (2018). Restorative urban forests: Exploring the relationships between forest stand structure, perceived restorativeness and benefits gained by visitors to coastal Pinus pinea forests. Ecological Indicators, 90, 594–605. https://doi.org/10.1016/j.ecolind.2018.03.051
55.Ulrich, R. S. (1983). Aesthetic and Affective Response to Natural Environment. In I. Altman & J. F. Wohlwill (Eds.), Behavior and the Natural Environment (pp. 85–125). Springer US. https://doi.org/10.1007/978-1-4613-3539-9_4
56.Velarde, M. D., Fry, G., & Tveit, M. (2007). Health effects of viewing landscapes – Landscape types in environmental psychology. Urban Forestry & Urban Greening, 6(4), 199–212. https://doi.org/10.1016/j.ufug.2007.07.001
57.Verhoef, B.-E., Vogels, R., & Janssen, P. (2016). Binocular depth processing in the ventral visual pathway. Philosophical Transactions of the Royal Society B: Biological Sciences, 371(1697). https://doi.org/10.1098/rstb.2015.0259
58.Vogt, B. A., Finch, D. M., & Olson, C. R. (1992). Functional Heterogeneity in Cingulate Cortex: The Anterior Executive and Posterior Evaluative Regions. Cerebral Cortex, 2(6), 435–443. https://doi.org/10.1093/cercor/2.6.435-a
59.Wang, F., Yang, W., Zhang, L., Gundran, A., Zhu, X., Liu, J., Li, X., Bao, S., & Gao, S. (2016). Brain activation difference evoked by different binocular disparities of stereograms: An fMRI study. Physica Medica, 32(10), 1308–1313. https://doi.org/10.1016/j.ejmp.2016.07.007
60.Weidner, R., Pollmann, S., Müller, H. J., & Von Cramon, D. Y. (2002). Top-down controlled visual dimension weighting: An event-related fMRI study. Cerebral Cortex, 12(3), 318–328. Scopus.
61.Weiner, K. S., Natu, V. S., & Grill-Spector, K. (2018). On object selectivity and the anatomy of the human fusiform gyrus. NeuroImage, 173, 604–609. https://doi.org/10.1016/j.neuroimage.2018.02.040
62.Wismeijer D. A., Erkelens C. J., Ee R., & Wexler M. (2010). Depth cue combination in spontaneous eye movements. Journal of Vision, 10(6), 25–25. https://doi.org/10.1167/10.6.25
63.Zhang, W., He, X., Lai, S., Wan, J., Lai, S., Zhao, X., & Li, D. (2017). Neural substrates of embodied natural beauty and social endowed beauty: An fMRI study. Scientific Reports, 7. https://doi.org/10.1038/s41598-017-07608-8
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top