|
1.彭一剛(1986)。中國古典園林分析。中國:中國建築工業 2.Amit, E., Mehoudar, E., Trope, Y., & Yovel, G. (2012). Do object-category selective regions in the ventral visual stream represent perceived distance information? Brain and Cognition, 80(2), 201–213. https://doi.org/10.1016/j.bandc.2012.06.006 3.Appleton, J. (1975). The experience of landscape—OpenBibArt. http://www.openbibart.fr/item/display/10068/937492 4.Banaei, M., Hatami, J., Yazdanfar, A., & Gramann, K. (2017). Walking through Architectural Spaces: The Impact of Interior Forms on Human Brain Dynamics. Frontiers in Human Neuroscience, 11. https://doi.org/10.3389/fnhum.2017.00477 5.Billington, J., Furlan, M., & Wann, J. (2013). Cortical responses to congruent and incongruent stereo cues for objects on a collision path with the observer. Displays, 34(2), 114–119. https://doi.org/10.1016/j.displa.2012.10.008 6.Bishop, I. D., & Rohrmann, B. (2003). Subjective responses to simulated and real environments: A comparison. Landscape and Urban Planning, 65(4), 261–277. https://doi.org/10.1016/S0169-2046(03)00070-7 7.Boisgueheneuc F., Levy R., Volle E., Seassau M., Duffau H., Kinkingnehun S., Samson Y., Zhang S., & Dubois B. (2006). Functions of the left superior frontal gyrus in humans: A lesion study. Brain, 129(12), 3315–3328. https://doi.org/10.1093/brain/awl244 8.Bratman, G. N., Hamilton, J. P., & Daily, G. C. (2012). The impacts of nature experience on human cognitive function and mental health. Annals of the New York Academy of Sciences, 1249(1), 118–136. https://doi.org/10.1111/j.1749-6632.2011.06400.x 9.Carter, R. (2014). The Human Brain Book: An Illustrated Guide to its Structure, Function, and disorders: Penguin. 10.Cutting, J. E. (1997). How the eye measures reality and virtual reality. Behavior Research Methods, Instruments, & Computers, 29(1), 27–36. https://doi.org/10.3758/BF03200563 11.Cutting, J., Vishton, P., & Braren, P. (1995). How We Avoid Collisions With Stationary and Moving Obstacles. Psychological Review, 102(4), 627–651. https://doi.org/10.1037/0033-295X.102.4.627 12.Davachi, L., Mitchell, J. P., & Wagner, A. D. (2003). Multiple routes to memory: Distinct medial temporal lobe processes build item and source memories. Proceedings of the National Academy of Sciences, 100(4), 2157–2162. https://doi.org/10.1073/pnas.0337195100 13.Epstein, R. A. (2008). Parahippocampal and retrosplenial contributions to human spatial navigation. Trends in Cognitive Sciences, 12(10), 388–396. https://doi.org/10.1016/j.tics.2008.07.004 14.Finlayson, N. J., Zhang, X., & Golomb, J. D. (2017). Differential patterns of 2D location versus depth decoding along the visual hierarchy. NeuroImage, 147, 507–516. https://doi.org/10.1016/j.neuroimage.2016.12.039 15.Gaebler, M., Biessmann, F., Lamke, J.-P., Müller, K.-R., Walter, H., & Hetzer, S. (2014). Stereoscopic depth increases intersubject correlations of brain networks. NeuroImage, 100, 427–434. https://doi.org/10.1016/j.neuroimage.2014.06.008 16.Howard, I. P., & Rogers, B. J. (2002). Seeing in depth, Vol. 2: Depth perception. University of Toronto Press. 17.Hull, R. B., & Harvey, A. (1989). Explaining the Emotion People Experience in Suburban Parks. Environment and Behavior, 21(3), 323–345. https://doi.org/10.1177/0013916589213005 18.Hunter, M. R., & Askarinejad, A. (2015). Designer’s approach for scene selection in tests of preference and restoration along a continuum of natural to manmade environments. Frontiers in Psychology, 6. https://doi.org/10.3389/fpsyg.2015.01228 19.Iatsun, I., Larabi, M.-C., & Fernandez-Maloigne, C. (2015). A visual attention model for stereoscopic 3D images using monocular cues. Signal Processing: Image Communication, 38, 70–83. https://doi.org/10.1016/j.image.2015.05.009 20.Jacobsen, T., Schubotz, R. I., Höfel, L., & Cramon, D. Y. v. (2006). Brain correlates of aesthetic judgment of beauty. NeuroImage, 29(1), 276–285. https://doi.org/10.1016/j.neuroimage.2005.07.010 21.Jansen L., Onat S., & König P. (2009). Influence of disparity on fixation and saccades in free viewing of natural scenes. Journal of Vision, 9(1), 29–29. https://doi.org/10.1167/9.1.29 22.Kaplan, R., & Kaplan, S. (1989). The Experience of Nature: A Psychological Perspective. CUP Archive. 23.Kaplan, S., Kaplan, R., & Wendt, J. S. (1972). Rated preference and complexity for natural and urban visual material. Perception & Psychophysics, 12(4), 354–356. https://doi.org/10.3758/BF03207221 24.Kim, G., & Jeong, G. (2014). Brain activation patterns associated with the human comfortability of residential environments: 3.0-t functional Mri. Neuroreport, 25(12), 915–920. https://doi.org/10.1097/WNR.0000000000000205 25.Kim, T.-H., Jeong, G.-W., Baek, H.-S., Kim, G.-W., Sundaram, T., Kang, H.-K., Lee, S.-W., Kim, H.-J., & Song, J.-K. (2010). Human brain activation in response to visual stimulation with rural and urban scenery pictures: A functional magnetic resonance imaging study. Science of The Total Environment, 408(12), 2600–2607. https://doi.org/10.1016/j.scitotenv.2010.02.025 26.Kunnapas, T. (1968). Distance perception as a function of available visual cues. Journal of Experimental Psychology, 77(4), 523–529. https://doi.org/10.1037/h0026050 27.Laumann, K., Gärling, T., & Stormark, K. M. (2003). Selective attention and heart rate responses to natural and urban environments. Journal of Environmental Psychology, 23(2), 125–134. https://doi.org/10.1016/S0272-4944(02)00110-X 28.Lebreton, P., Raake, A., Barkowsky, M., & Callet, P. L. (2014). Measuring perceived depth in natural images and study of its relation with monocular and binocular depth cues. Stereoscopic Displays and Applications XXV, 9011, 90110C. https://doi.org/10.1117/12.2040055 29.Lim, E.-M., Honjo, T., & Umeki, K. (2006). The validity of VRML images as a stimulus for landscape assessment. Landscape and Urban Planning, 77(1), 80–93. https://doi.org/10.1016/j.landurbplan.2005.01.007 30.Lohr, V. I., & Pearson-Mims, C. H. (2006). Responses to Scenes with Spreading, Rounded, and Conical Tree Forms. Environment and Behavior, 38(5), 667–688. https://doi.org/10.1177/0013916506287355 31.Mahayana, I. T., Tcheang, L., Chen, C.-Y., Juan, C.-H., & Muggleton, N. G. (2014). The Precuneus and Visuospatial Attention in Near and far Space: A Transcranial Magnetic Stimulation Study. Brain Stimulation, 7(5), 673–679. https://doi.org/10.1016/j.brs.2014.06.012 32.Makino, Y., Yokosawa, K., Takeda, Y., & Kumada, T. (2004). Visual search and memory search engage extensive overlapping cerebral cortices: An fMRI study. NeuroImage, 23(2), 525–533. https://doi.org/10.1016/j.neuroimage.2004.06.026 33.Mehrabian, A., & Russell, J. A. (1974). An approach to environmental psychology (pp. xii, 266). The MIT Press. 34.Nag, S., Berman, D., & Golomb, J. D. (2019). Category-selective areas in human visual cortex exhibit preferences for stimulus depth. NeuroImage, 196, 289–301. https://doi.org/10.1016/j.neuroimage.2019.04.025 35.Naganuma, T., Nose, I., Inoue, K., Takemoto, A., Katsuyama, N., & Taira, M. (2005). Information processing of geometrical features of a surface based on binocular disparity cues: An fMRI study. Neuroscience Research, 51(2), 147–155. https://doi.org/10.1016/j.neures.2004.10.009 36.Nelson, T., Johnson, T., Strong, M., & Rudakewich, G. (2001). PERCEPTION OF TREE CANOPY. Journal of Environmental Psychology, 21(3), 315–324. https://doi.org/10.1006/jevp.2001.0223 37.Orians, G. H., & Heerwagen, J. H. (1992). Evolved responses to landscapes. In The adapted mind: Evolutionary psychology and the generation of culture (pp. 555–579). Oxford University Press. 38.Preston, T. J., Li, S., Kourtzi, Z., & Welchman, A. E. (2008). Multivoxel Pattern Selectivity for Perceptually Relevant Binocular Disparities in the Human Brain. Journal of Neuroscience, 28(44), 11315–11327. https://doi.org/10.1523/JNEUROSCI.2728-08.2008 39.Ren, J., Huang, F., Zhou, Y., Zhuang, L., Xu, J., Gao, C., Qin, S., & Luo, J. (2020). The function of the hippocampus and middle temporal gyrus in forming new associations and concepts during the processing of novelty and usefulness features in creative designs. NeuroImage, 214, 116751. https://doi.org/10.1016/j.neuroimage.2020.116751 40.Rogers, B. J., & Collett, T. S. (1989). The appearance of surfaces specified by motion parallax and binocular disparity. The Quarterly Journal of Experimental Psychology. A, Human Experimental Psychology, 41(4), 697–717. https://doi.org/10.1080/14640748908402390 41.Rogers, Brian J., & Collett, T. S. (1989). The Appearance of Surfaces Specified by Motion Parallax and Binocular Disparity. The Quarterly Journal of Experimental Psychology Section A, 41(4), 697–717. https://doi.org/10.1080/14640748908402390 42.Rokers, B., Cormack, L. K., & Huk, A. C. (2009). Disparity- and velocity-based signals for three-dimensional motion perception in human MT+. Nature Neuroscience, 12(8), 1050–1055. https://doi.org/10.1038/nn.2343 43.Russell, J. A. (2003). Core affect and the psychological construction of emotion. Psychological Review, 110(1), 145–172. https://doi.org/10.1037/0033-295x.110.1.145 44.Russell, J. A., & Pratt, G. (1980). A description of the affective quality attributed to environments. Journal of Personality and Social Psychology, 38(2), 311–322. https://doi.org/10.1037/0022-3514.38.2.311 45.Ryan, C. O., Browning, W. D., Clancy, J. O., Andrews, S. L., & Kallianpurkar, N. B. (2014). BIOPHILIC DESIGN PATTERNS: Emerging Nature-Based Parameters for Health and Well-Being in the Built Environment. International Journal of Architectural Research: ArchNet-IJAR, 8(2), 62–76. https://doi.org/10.26687/archnet-ijar.v8i2.436 46.Schirpke, U., Tasser, E., & Tappeiner, U. (2013). Predicting scenic beauty of mountain regions. Landscape and Urban Planning, 111, 1–12. https://doi.org/10.1016/j.landurbplan.2012.11.010 47.Seiyama, A., Yamada, K., Osaki, K., Nakai, R., Matsumoto, J., & Yoshimura, A. (2018). Neural Bases on Cognitive Aspect of Landscape Evaluation: A Study Using Functional Magnetic Resonance Imaging. Journal of Neurology and Neuroscience, 9(4). https://doi.org/10.21767/2171-6625.1000263 48.Séverac Cauquil, A., Trotter, Y., & Taylor, M. J. (2005). At what stage of neural processing do perspective depth cues make a difference? Experimental Brain Research, 170(4), 457. https://doi.org/10.1007/s00221-005-0229-1 49.Shao, F., Fei, Y., Fu, R., Jiang, G., & Ho, Y.-S. (2019). Simultaneous object size and depth adjustment for stereoscopic 3D images. Information Sciences, 481, 280–291. https://doi.org/10.1016/j.ins.2018.12.077 50.Shimojo, S., & Nakayama, K. (1994). Interocularly unpaired zones escape local binocular matching. Vision Research, 34(14), 1875–1881. https://doi.org/10.1016/0042-6989(94)90311-5 51.Staats, H., Kieviet, A., & Hartig, T. (2003). Where to recover from attentional fatigue: An expectancy-value analysis of environmental preference. Journal of Environmental Psychology, 23(2), 147–157. https://doi.org/10.1016/S0272-4944(02)00112-3 52.Svobodova, K., Vojar, J., Sklenicka, P., & Filova, L. (2017). Presentation Matters: Causes of Differences in Preferences for Agricultural Landscapes Displayed via Photographs and Videos: Space and Culture. https://doi.org/10.1177/1206331217744186 53.Tang, I.-C., Tsai, Y.-P., Lin, Y.-J., Chen, J.-H., Hsieh, C.-H., Hung, S.-H., Sullivan, W. C., Tang, H.-F., & Chang, C.-Y. (2017). Using functional Magnetic Resonance Imaging (fMRI) to analyze brain region activity when viewing landscapes. Landscape and Urban Planning, 162, 137–144. https://doi.org/10.1016/j.landurbplan.2017.02.007 54.Tomao, A., Secondi, L., Carrus, G., Corona, P., Portoghesi, L., & Agrimi, M. (2018). Restorative urban forests: Exploring the relationships between forest stand structure, perceived restorativeness and benefits gained by visitors to coastal Pinus pinea forests. Ecological Indicators, 90, 594–605. https://doi.org/10.1016/j.ecolind.2018.03.051 55.Ulrich, R. S. (1983). Aesthetic and Affective Response to Natural Environment. In I. Altman & J. F. Wohlwill (Eds.), Behavior and the Natural Environment (pp. 85–125). Springer US. https://doi.org/10.1007/978-1-4613-3539-9_4 56.Velarde, M. D., Fry, G., & Tveit, M. (2007). Health effects of viewing landscapes – Landscape types in environmental psychology. Urban Forestry & Urban Greening, 6(4), 199–212. https://doi.org/10.1016/j.ufug.2007.07.001 57.Verhoef, B.-E., Vogels, R., & Janssen, P. (2016). Binocular depth processing in the ventral visual pathway. Philosophical Transactions of the Royal Society B: Biological Sciences, 371(1697). https://doi.org/10.1098/rstb.2015.0259 58.Vogt, B. A., Finch, D. M., & Olson, C. R. (1992). Functional Heterogeneity in Cingulate Cortex: The Anterior Executive and Posterior Evaluative Regions. Cerebral Cortex, 2(6), 435–443. https://doi.org/10.1093/cercor/2.6.435-a 59.Wang, F., Yang, W., Zhang, L., Gundran, A., Zhu, X., Liu, J., Li, X., Bao, S., & Gao, S. (2016). Brain activation difference evoked by different binocular disparities of stereograms: An fMRI study. Physica Medica, 32(10), 1308–1313. https://doi.org/10.1016/j.ejmp.2016.07.007 60.Weidner, R., Pollmann, S., Müller, H. J., & Von Cramon, D. Y. (2002). Top-down controlled visual dimension weighting: An event-related fMRI study. Cerebral Cortex, 12(3), 318–328. Scopus. 61.Weiner, K. S., Natu, V. S., & Grill-Spector, K. (2018). On object selectivity and the anatomy of the human fusiform gyrus. NeuroImage, 173, 604–609. https://doi.org/10.1016/j.neuroimage.2018.02.040 62.Wismeijer D. A., Erkelens C. J., Ee R., & Wexler M. (2010). Depth cue combination in spontaneous eye movements. Journal of Vision, 10(6), 25–25. https://doi.org/10.1167/10.6.25 63.Zhang, W., He, X., Lai, S., Wan, J., Lai, S., Zhao, X., & Li, D. (2017). Neural substrates of embodied natural beauty and social endowed beauty: An fMRI study. Scientific Reports, 7. https://doi.org/10.1038/s41598-017-07608-8
|