跳到主要內容

臺灣博碩士論文加值系統

(44.221.73.157) 您好!臺灣時間:2024/06/17 23:06
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:薛十方
研究生(外文):Shih-Fang Hsueh
論文名稱:鎳與尿素對水耕‘桃園四號’草苺生長與氮利用之影響
論文名稱(外文):Effects of Nickel and Urea on Growth and Nitrogen Utilization of Hydroponic Grown Strawberry (Fragaria ×ananassa cv. Taoyuan No.4)
指導教授:陳右人陳右人引用關係
指導教授(外文):Iou-Zen Chen
口試委員:阮素芬林書妍李金龍林慧玲
口試委員(外文):Su-Feng RoanShu-Yen LinChin-Lung LeeHuey-Ling Lin
口試日期:2019-07-12
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:園藝暨景觀學系
學門:農業科學學門
學類:園藝學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:125
中文關鍵詞:尿素銨態氮硝酸態氮營養要素草苺
外文關鍵詞:nickelureaammoniumnitratemineral nutrientsFragaria ×ananassa
DOI:10.6342/NTU202001465
相關次數:
  • 被引用被引用:0
  • 點閱點閱:238
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
草苺 (Fragaria ×ananassa) 為台灣冬春季具高經濟價值之作物,由於傳統露地栽培模式體力需求高、易受土壤病蟲害影響,近年來離地介質及水耕栽培數量逐漸上升。水耕栽培中,精準供應植物所需之養分十分重要,其中,氮元素參與作物代謝,與產量關聯密切。植物根部可吸收之氮型態主要有硝酸態氮 (NO3-N)、銨態氮 (NH4-N) 及尿素三種;其中,尿素不僅為植物本身之代謝產物,亦為價格低廉之氮肥,是常用的高含氮量肥料。鎳是尿素水解酶活性部位的金屬離子,為代謝尿素所必須。然而商業栽培常用水耕液配方未添加鎳,可能是造成水耕氮源仍以無機氮為主之原因。因此,本研究目的為開發含尿素與鎳之水耕液配方,並以‘桃園四號’草苺探討鎳與氮素吸收之關聯。
本研究共分為五個試驗,使用生長整齊之‘桃園四號’草苺走莖繁殖苗,洗淨根部後,定植於臺灣大學園藝系簡易型溫室內具打氣設備之浮板式水耕系統。試驗一於22%尿素為氮源之養液中添加令水耕液含0, 0.03, 0.06, 0.12, 0.24, 0.36 mgL-1鎳離子之硫酸鎳,調查五個月內之營養生長、產量、果實品質。試驗二添加令水耕液含0, 0.25, 0.5, 1, 2, 4, 8 mgL-1 鎳離子之硫酸鎳,調查鎳毒害發生時間、症狀,並進行營養要素分析;試驗三於總氮濃度7 mM之養液中,以含氮0, 0.5, 1, 1.5, 2, 2.5 mM之尿素取代部分氮源,調查營養生長、葉片尿素、硝酸態氮、銨態氮及總游離胺基酸之含量,並進行營養要素分析;試驗四以0, 2 mM尿素為氮源 (總氮為7 mM),添加0, 0.125, 2 mgL-1鎳離子、試驗五以0, 2, 5 mM尿素為氮源 (總氮為14 mM),添加0, 0.125 mgL-1 鎳,試驗四與五皆調查7日內水耕液中尿素、硝酸態氮、銨態氮之變化,並進行營養要素分析。
‘桃園四號’草苺栽培於含22.2% 尿素為氮源之養液中,添加0.12-0.24 mgL-1鎳離子,能顯著提升產量與著果率,水耕液中鎳離子含量大於1 mgL-1時,根部生長開始受抑制,添加大於 2 mgL-1鎳出現新葉脈間黃化、疑似缺鐵之現象,添加8 mgL-1鎳使葉片出現壞疽、根系褐化死亡。鎳毒害造成之症狀與缺鐵相似,然而症狀發生部位鐵含量並未降低,且伴隨根部鐵之累積,由試驗結果可推測,此毒害症狀應為鎳鐵競爭作用位置,使鐵離子失去原本之功能所導致。
草苺對尿素之耐受性高,甚至可能為喜尿素之植物,其原因可能與尿素、銨態氮代謝主要位置為根部有關, ‘桃園四號’草苺於經調整之1/2 Hoagland養液、2 mM尿素處理下,有最高之新生部位乾重,且添加0.125 mgL-1鎳,顯著提升尿素吸收;於經調整之Full Hoagland養液,添加 5 mM尿素,亦無毒害症狀發生,僅生長量下降。水耕液中尿素增加造成根部鎳含量上升、地上部鎳含量下降,此結果可能為鎳留在根部供應尿素分解之使用所造成。
草苺對銨與尿素耐受性皆高,栽培於含尿素養液之優點為成本較低,且可降低養液電導度,缺點則為銨吸收較慢之季節,養液pH值上升速度快,然而此缺點可由改變硝銨比來改善。綜合試驗結果,水耕‘桃園四號’草苺若欲使用含尿素之養液,建議栽培於1/2 Hoagland之養液濃度,以2 mM尿素為氮源,並添加0.125 mg L-1鎳。
Strawberry (Fragaria ×ananassa) is a high value crop planted in winter and spring of Taiwan. The traditional cultivate system is open-field, high-hill system. Due to high labor demand and soil diseases, soilless and hydroponic cultivation has increased in recent years. In hydroponic, it is important to supply nutrients accurately, while nitrogen is a critical element because it involves in numerous of metabolisms and is closely related to yield. Plants can uptake nitrate (NO3-N), ammonium (NH4-N) and urea as nitrogen source. Among them, urea is not only a metabolite of plant, but also a low-cost nitrogen fertilizer. In plants, urea is metabolized by urease, which is activated by nickel. However, common hydroponic solution protocols do not contain nickel, and the nitrogen sources are mainly nitrate and ammonium. Therefore, the purpose of this research is to develop a hydroponic solution protocol containing urea and nickel, and to clarify the relation between nickel and nitrogen absorption with 'Taoyuan No. 4' strawberry.
The research was divided into five experiments. In each parts, well-grown 'Taoyuan No. 4' strawberry seedlings (propagated form runner) was planted in deep flow technic (DFT) with air pump in green house of National Taiwan University, department of Horticulture and Landscape. In the 1st experiment, 0, 0.03, 0.06, 0.12, 0.24, 0.36 mgL-1 nickel was added to the nutrient solution containing 22% urea as nitrogen source. Vegetative growth, yield and fruit quality were investigated within five months. In 2nd experiment, 0, 0.25, 0.5, 1, 2, 4, 8 mgL-1 nickel were added in solution. Time and symptoms of nickel toxic were recorded, while mineral elements were also analyzed. In 3rd experiment, a part of nitrogen was replaced by 0, 0.5, 1, 1.5, 2, 2.5 mM urea in nutrient solution containing 7 mM nitrogen. Vegetative growth, leaf urea, nitrate, ammonium, total free amino acid and other mineral nutrition content were measured. In 4th experiment, 0, 0.125 or 2 mgL-1 nickel were added in solution containing 0 or 2 mM urea as nitrogen source (Total nitrogen: 7 mM); while in 5th experiment, 0 or 0.125 mgL-1 nickel were added in solution containing 0, 2 or 5 mM urea as nitrogen source (total nitrogen: 14 mM). The changes of urea, nitrate and ammonium content in solution were measured within 7 days and mineral elements were analyzed in both experiments.
Adding small amount of nickel was considered beneficial to 'Taoyuan No. 4' strawberry grown in urea-containing solution. When 22% of inorganic nitrogen was substituted by urea, the suitable nickel content would be 0.12-0.24 mgL-1, which had largest yield and highest percentage of fruit set. Inhibition of root growth and swelling root tips were observed in solution contained more than 1.0 mgL-1 nickel. When exposed to more than 2.0 mgL-1 nickel, yellowing of intervals was observed in new leaves. While adding 8 mgL-1 nickel caused necrosis on leaves and browning of roots. The symptoms caused by nickel toxic are similar to those of iron deficiency. However, the iron content of affected site was not decreased, accompanied by iron accumulation in roots. This result indicated that toxicity symptom may be caused by competition between nickel and iron at new formed leaves. Nickel may substitute the function site of iron, which induced iron deficiency symptoms.
Strawberry is urea-tolerant plant, and may even prefer urea as part of nitrogen source. This might be caused by the metabolism site of urea and ammonium. The highest dry weight of 'Taoyuan No. 4' strawberry occurred in treatment containing 2 mM urea (total N: 7 mM). While adding 0.125 mgL-1 nickel increased urea absorption significantly. No toxic symptom except growth decrease was observed even in 5 mM urea solution (total N: 14 mM). With more urea in solution, the content of nickel rose in root but declined in shoot, which suggests that nickel might be left in root for urea metabolism.
Strawberry is highly tolerant to ammonium and urea. Thus, it is suitable to grown in urea-containing nutrient solution. The advantage of urea-containing solution is lower cost and lower electricity conductivity (EC). Prompt raise of solution pH in season which has slower ammonium absorption would be a shortage. However, this can be improved by adjusting NH4:NO3 in solution. According to the result, it is recommended to cultivate strawberry in modified 1/2 Hoagland solution containing 2 mM urea as nitrogen source, and add 0.125 mg L-1 nickel.
致謝 i
摘要 ii
Abstract iiv
目錄 vii
表目錄 xi
圖目錄 xiiiii
前言 1
文獻回顧 3
一、 草苺之栽培現況 3
二、 水耕系統與養液之建立 4
三、 氮吸收與代謝 5
(一) 氮利用效率 6
(二) 銨態氮的吸收與代謝 7
(三) 硝酸態氮的吸收與代謝 7
(四) 尿素的吸收與代謝 8
(五) 尿素水解酶 10
(六) 含尿素養液之優點 10
(七) 草苺對氮型態之喜好 11
四、 鎳 12
(一) 鎳的必要性 12
(二) 鎳毒害 13
(三) 添加微量鎳元素對植物生長的優點 15
材料與方法 16
一、 植物材料與試驗設施 16
二、 試驗方法與調查項目 16
試驗一、含尿素養液中添加鎳對‘桃園四號’草苺生長之影響 16
試驗二、鎳毒害對水耕‘桃園四號’草苺生長與要素吸收之影響 17
試驗三、以尿素作為部分氮源對水耕‘桃園四號’草苺生長與氮素利用之影響 17
試驗四與五、以水耕‘桃園四號’草苺探討鎳與尿素之關聯 17
三、 分析方法 19
(一) 葉綠素含量 (SPAD) 19
(二) pH值與電導度 (EC) 19
(三) 樣品處理 20
(四) 凱式氮 20
(五) 尿素 21
(六) 總游離胺基酸 22
(七) 硝酸鹽 23
(八) 銨態氮... 24
(九) 磷元素:鉬藍法 24
(十) 其他營養要素 (K, Ca, Mg, Fe, Mn, Zn, Ni) 之測定:原子吸收光譜儀 26
四、 統計分析 26
結果 27
一、 含尿素養液中添加鎳對‘桃園四號’草苺生長之影響 (試驗一) 27
(一) 營養生長 27
(二) 生殖生長與果實品質 27
(三) 營養元素含量 27
二、 鎳毒害對水耕‘桃園四號’草苺生長與要素吸收之影響 (試驗二) 28
(一) 鎳毒害發生時間與症狀 28
(二) 鎳毒害對‘桃園四號’草苺生長之影響 28
(三) 營養元素含量 28
三、 以尿素作為部分氮源對水耕‘桃園四號’草苺生長與氮素利用之影響 (試驗三) 29
(一) 營養生長 29
(二) 植體內氮含量 29
(三) 營養元素含量 30
四、 以水耕‘桃園四號’草苺探討鎳與尿素之關聯 (試驗四、五) 30
(一) pH值 31
(二) 電導度 31
(三) 尿素 32
(四) 銨態氮 32
(五) 硝酸態氮 33
(六) 總氮吸收 34
(七) 植株生長 35
(八) 鎳與尿素之關聯 35
(九) 其他營養元素 (磷、鉀、鈣、鎂、鐵、錳、鋅) 含量 36
討論... 37
一、 鎳對水耕‘桃園四號’草苺對營養生長與產量之影響 37
(一) 含尿素養液添加適量鎳 37
(二) 鎳毒害 38
二、 鎳對植體營養元素之影響 39
(一) 巨量元素 (鈣、鎂、鉀、磷) 39
(二) 微量元素 (鐵、錳、鋅) 40
三、 尿素對水耕‘桃園四號’草苺生長之影響 42
(一) 草苺對尿素之耐受性 42
(二) 含尿素養液之優缺點 43
四、 尿素對植體營養元素之影響 45
五、 鎳與尿素對草苺氮吸收之影響 45
(一) 鎳濃度與養液尿素消耗之關聯 45
(二) 水耕液中尿素與銨態氮之關係 46
(三) 養液中不同氮源比例對硝酸態氮吸收之影響 47
(四) 養液中添加尿素草苺氮吸收效率之影響 48
結論 50
表 52
圖 78
參考文獻 107
附錄 119
行政院農業委員會統計室. 2017. 中華民國106年農業統計年報.
朱亭箏. 2007. 台灣草苺栽培之過去與前瞻. 國立臺灣大學園藝系碩士論文.
沈再發. 2009. 培養液組成之理論和實際 (中). 技術服務20:37-41.
高德錚. 1986. 水耕栽培-精緻蔬菜生產技術之開發. 台中區農推專訊56:1-5
陳可馨. 2014. 暗中斷與溫度處理對‘桃園三號’草苺 (Fragaria x ananassa Duch.) 生育之影響. 國立臺灣大學園藝暨景觀學系碩士論文.
蔡宜峰, 高德錚. 2002. 本土化蔬果有機介質配方之開發. 臺中區農業專訊 38:1-8.
羅國偉, 張志展, 李窓明. 2013. 草莓品種‘桃園4號’. 桃園區農技報導. 65:1-4.
羅國偉. 2017. 不同施肥量及施肥間隔對高架草莓生育及產量影響. 桃園區農業改良場研究彙報 81:11-22.
池田英男、大沢孝也. 1979. 施用窒素形態とそ菜の適応性. 園芸学会雑誌 47:454-462.
Arnon, D.I. and P.R. Stout. 1939. The essentiality of certain elements in minute quantity for plants with special reference to copper. Plant Physiol. 14:371-375.
Asher, C.J. 1991. Beneficial elements, functional nutrients, and possible new essential elements, p.703-723. In: Mortvedt, J.J., F.R. Cox, L.M. Shuman, and R.M. Welch (eds.). Micronutrients in agriculture, 2nd edition. Soil Sci. Soc. Amer., Madison, USA.
Bai, C., C.C. Reilly, and B.W. Wood. 2006. Nickel deficiency disrupts metabolism of ureides, amino acids, and organic acids of young pecan foliage. Plant Physiol. 140:433-443.
Bashmakov, D.I, A.S. Lukatkin, and M.N.V. Prasad. 2006. Temperate weeds in Russia: Sentinels for monitoring trace element pollution and possible application in phytoremediation, p.439-449. In: Prasad, M.N.V., S. Kenneth, and N. Ravi (eds.). Trace elements application of quantitative fluorescence and absorption-edge computed microtomography to image metal compartmentalization in Alyssum murale. CRC Press. Florida, U.S.A.
Bloom, A.J. 2010. Mineral nutrient, p.116. In: Taiz, L. and E. Zeiger (eds.). Plant physiology 5th Ed. Sinauer. Sunderland, U.S.A.
Bloom, A.J., S.S. Sukrapanna, and R.L. Warner. 1992. Root respiration associated with ammonium and nitrate absorption and assimilation by barley. Plant Physiol. 99:1294-301.
Bollard, E.G. 1983. Involvement of unusual elements in plant growth and nutrition, p. 695-755. In: Läuchli, A. and R.L. Bieleski (eds). Encyclopedia of plant physiology. Springer. Berlin, Germany.
Boominathan R. and P.M. Doran. 2002. Nickel induced oxidative stress in roots of Ni hyperaccumulater Alyssum bertolonii. New Phytol. 156:205–215.
Brown, P.H., R.M. Welch, and E.E. Cary. 1987. Nickel: A micronutrient essential for higher plants. Plant Physiol. 85:801-803.
Brune, A. and K.J. Deitz. 1995. A comparative analysis of element composition of roots and leaves of barley seedlings grown in the presence of toxic cadmium, molybdenum, nickel and zinc concentrations. J. Plant Nutr. 18:853-868.
Cao, F.Q, A.K. Werner, K. Dahncke, T. Romeis, L.H. Liu, and C.P. Witte. 2010. Identification and characterisation of proteins involved in rice urea and arginine catabolism. Plant Physiol. 154:98-108.
Cárdenas-Navarro, R., L. López-Pérez, P. Lobit, R. Ruiz-Corro, and V.C. Castellanos-Morales. 2006. Effects of nitrogen source on growth and development of strawberry plants. J. Plant Nutr. 29:1699-1707.
Cataldo, D.A., M. Maroon, L.E. Schrader, and V.L. Youngs. 1975. Rapid colorimetric determination of nitrate in plant tissue by nitration of salicylic acid. Commun. Soil Sci. Plant Anal. 6:71-80.
Chow, K.K., T.V. Price, and B.C. Hanger. 1992. Nutritional requirements for growth and yield of strawberry in deep flow hydroponic systems. Scientia Hort. 52:95-104.
Cruz, C., A.F.M. Bio, M.D. Domínguez-Valdivia, P.M. Aparicio-Tejo, C. Lamsfus, and M.A. Martins-Louçao. 2006. How does glutamine synthetase activity determine plant tolerance to ammonium? Planta 223:1068-1080.
Daneshmand, B., S. Eshghi, and A. Gharaghani. 2019. Growth, mineral nutrient composition, and enzyme activity of strawberry as influenced by adding urea and nickel to the nutrient solution. J. Berry Res. (Preprint):1-11.
Darnell, R.L. and G.W. Stutte. 2001. Nitrite concentration effects on NO¬¬3-N uptake and reduction, growth, and fruit yield in strawberry. Amer. Soc. Hort. Sci. 126:560-563.
Demirsoy, H., L. Demirsoy, and A. Öztürk. 2005. Improved model for the non-destructive estimation of strawberry leaf area. Fruits 60:69-73.
Dixon N.E., J.A. Hinds, A.K. Fihelly, C. Gozala, D.J. Winzor, R.L. Blakeley, and B. Zerner. 1980. Jack bean urease (EC 3.5.1.5). IV. The molecular size and mechanism of inhibition by hydroxamic acids. Spectrophotometric fixation of enzymes with reversible inhibitors. Can. J. Biochem. 58:1323-1334.
El-Shintinawy, F. and A. El-Ansary. 2000. Differential effect of Cd2+ and Ni2+ on amino acid metabolism in soybean seedlings. Biol. Plant. 43:79-84.
Eshghi, S. and R. Ranjbar. 2015. Vegetative growth, yield and leaf mineral composition in strawberry (Fragaria ×ananassa Duch. cv. Pajaro) as influenced using nickel sulfate and urea sprays. J. Plant Nutr. 38:1336-1345.
Eskew, D.L., R.M. Welch, and W.A. Norvell. 1984. Nickel in higher plants: Further evidence for an essential role. Plant Physiol. 76:691-693.
Food and Agriculture Organization. 2017. Food and Agriculture Organization of the United Nations, Title 7. Statistics, Production, Crops. Food and Agriculture Organization of the United Nations, Rome. <http://www.fao.org/faostat/en/#data/QC>
Gabbrielli, R. and T. Pandolfini. 1984. Effect of Mg2+ and Ca2+ on the response to nickel toxicity in a serpentine endemic and nickel accumulating species. Physiol. Plantarum 62:540-544.
Gajewska, E. and M. Sklodowska. 2007. Effect of nickel on ROS content and antioxidative enzyme activities in wheat leaves. Biometals. 20:27-36.
Gajewska, E., M. Wielanek, K. Bergier, and M. Skłodowska. 2009. Nickel-induced depression of nitrogen assimilation in wheat roots. Acta Physiol. Plant. 31:1291-1300.
Ganmore-Neumann, R. and U. Kafkafi. 1985. The effect of root temperature and nitrate/ammonium ratio on strawberry Plants. II. Nitrogen uptake, mineral Ions, and carboxylate concentrations. Agron. J. 77:835-840.
Garnica, M., F. Houdusse, J.C. Yvin, and J.M. Garcia-Mina. 2009. Nitrate modifies urea root uptake and assimilation in wheat seedlings. J. Sci. Food Agri. 89:55-62.
Genrich I., G.I. Burd, D.G. Dixon, and B.R. Glick. 1998. A plant growth promoting bacterium that decreases nickel toxicity in seedlings. Appl. Environ. Microbiol. 64:3663–3668.
Gerendás J. and B. Sattelmacher. 1997a. Significance of N source (urea vs. NH4NO3) and Ni supply for growth, urease activity and nitrogen metabolism of zucchini (Cucurbita pepo convar. Giromontiina). Plant Soil. 196:217–222.
Gerendás, J. and B. Sattelmacher. 1997b. Significance of Ni supply for growth, urease activity and the concentrations of urea, amino acids and mineral nutrients of urea-grown plants. Plant Soil. 190: 153-162.
Gerendás, J., J.C. Polacco, S.K. Freyermuth, and B. Sattelmacher. 1999. Significance of nickel for plant growth and metabolism. J. Plant Nutr. Soil Sci. 162:241-256.
Gerendás, J., Z. Zhu, and B. Sattelmacher. 1998. Influence of N and Ni supply on nitrogen metabolism and urease activity in rice (Oryza sativa L.). J. Exp. Botany 49:1545-1554.
Gonçalves, S. C., A. Portugal, M.T. Gonçalves, R. Vieira, M.A. Martins-Loução, and H. Freitas. 2007. Genetic diversity and differential in vitro responses to Ni in Cenococcum geophilum isolates from serpentine soils in Portugal. Mycorrhiza 17:677-686.
Han, M., M. Okamoto, P.H. Beatty, S.J. Rothstein, and A.G. Good. 2015. The genetics of nitrogen use efficiency in crop plants. Ann. Rev. Genet. 49:269-289.
Handcock. J.F. 1999. Crop Production Science in Horticulture --- Strawberries, Ch5-Ch7. CABI Publishing, Wallingford, UK.
Hoagland, D.R. and D.I. Arnon. 1950. The water-culture method for growing plants without soil, p.347. In: Circular. Calif. Agric. Exp. Stn. Berkeley, U.S.A.
Ikeda, H., and T. Osawa. 1981. Nitrate-and ammonium-N absorption by vegetables from nutrient solution containing ammonium nitrate and the resultant change of solution pH. Jpn. Soc. Hort. Sci. 50:225-230.
Jensen, M.H. 1999. Hydroponics worldwide. Acta Hort. 481:719-730.
Jeong, H., J. Park, and H. Kim. 2013. Determination of NH4+ in environmental water with interfering substances using the modified Nessler method. J. Chem. 2013:1-9.
Jin, M., W. Rosario, E. Watler, and D.H. Calhoun. 2004. Development of a large-scale HPLC-based purification for the urease from Staphylococcus leei and determination of subunit structure. Protein Expr. Purif. 34:111-117.
Kafkafi, U. 2008. Root zone temperature and the preferred form of nitrogen to crops. International Symposium on Strategies Towards Sustainability of Protected Cultivation in Mild Winter Climate 807:321-326.
Khan, N. K., M. Watanabe, and Y. Watanabe. 1999. Effect of different concentrations of urea with or without nickel addition on spinach (Spinacia oleracea E.) growth under hydroponic culture. Soil Sci. Plant Nutr. 4:569-575.
Khoshgoftarmanesh, A.H., F. Hosseini, and M. Afyuni. 2011. Nickel supplementation effect on the growth, urease activity and urea and nitrate concentrations in lettuce supplied with different nitrogen sources. Scientia Hort. 130.2:381-385.
Kojima, S., A. Bohner, and N. von Wirén. 2006. Molecular mechanisms of urea transport in plants. J. Memb. Biol. 212:83-91
Kozlow, M.V. 2005. Pollution resistance of mountain birch, Betula pubescens subsp. czerepanovii, near the copper-nickel smelter: natural selection or phenotypic acclimation? Chemosphere 59:189-197.
Krajewska, B. 2009. Ureases I. Functional, catalytic and kinetic properties: A review. J. Mol. Catal. B Enz. 59:9-21.
Krogmeier, M.J., G.W. McCarty, D.R. Shogren, and J.M. Bremner. 1991. Effect of nickel deficiency in soybeans on the phytotoxicity of foliar-applied urea. Plant and Soil 135:283-286.
Kupper, H., E. Lombi, F.J. Zhao, G. Wieshammer, and S.P. McGrath. 2001. Cellular compartmentation of nickel in the hyperaccumulators Alyssum lesbiacum, Alyssum bertolonii and Thlaspi goesingense. J. Exp. Bot. 52:2291-3000.
Kyllingsbæk, A. 1975. Extraction and colorimetric determination of urea in plants. Acta Agric. Scand. 25:109-112.
Lassaletta, L., G. Billen, B. Grizzetti, J. Anglade, and J. Garnier. 2014. 50 year trends in nitrogen use efficiency of world cropping systems: the relationship between yield and nitrogen input to cropland. Environ. Res. Lett. 9:105011.
Latigui, A., J.M. Choi, and C.W. Lee. 2011. Growth and nutrient uptake responses of ‘Seolhyang’ strawberry to various ratios of ammonium to nitrate nitrogen in nutrient solution culture using inert media. African J. Biotech. 10:12567-12574.
Liu, D., W. Jiang, L. Guo, Y. Hao, C. Lu, and F. Zhao. 1994. Effects of nickel sulphate on root growth and nucleoli in root tip cells of Allium cepa. Isra. J. Plant Sci. 42:143-148.
Ludewig, U., B. Neuhäuser, and M. Dynowski. 2007. Molecular mechanisms of ammonium transport and accumulation in plants. FEBS Letters 581:2301-2308.
Luo, J., Z. Lian, and X. Yan. 1993. Urea transformation and the adaptability of three leafy vegetables to urea as a source of nitrogen in hydroponic culture. J. Plant Nutr. 16:797-812.
Marschner, H. 1995. Functions of Mineral Nutrients: Micronutrients, p.313-404. In: Mineral Nutrition of Higher Plants, 2nd Edition. Academic Press, London.
Matsumoto, H. and K. Tamura. 1981. Respiratory stress in cucumber roots treated with ammonium or nitrate nitrogen. Plant and Soil. 60:195-204.
Mengel, K. and E. A. Kirkby. 2001. Principles of plant nutrition. Kluwer Academic Publishers. London. p. 657–673.
Mérigout, P., M. Lelandais, F. Bitton, J.P. Renou, X. Briand, C. Meyer, and F. Daniel-Vedele. 2008. Physiological and transcriptomic aspects of urea uptake and assimilation in Arabidopsis plants. Plant Physiol. 147:1225-1238.
Mysliwa-Kurdziel B., M.N.V. Prasad, and K. Strzalka. 2004. Photosynthesis in heavy metal stressed plants, p. 146-181. In: Prasad, M.N.V. (Ed.). Heavy metal stress in plants: from biomolecules to ecosystems. Narosa Publishing House. New Delhi, India.
Nishida, S., A. Aisu, and T. Mizuno. 2012. Induction of IRT1 by the nickel-induced iron-deficient response in Arabidopsis. Plant Signal. Behav. 7:329-331.
Okamoto, M., J. Vidmar, and A.D.M. Glass. 2003 Regulation of NRT1 and NRT2 gene families of Arabidopsis thaliana: responses to nitrate provision. Plant Cell Physiol. 44:304-317.
Ortiz-Monasterio, R., K. D. Sayre, S. Rajaram, and M. McMahon. 1997. Genetic progress in wheat yield and nitrogen use efficiency under four nitrogen rates. Crop Sci. 37: 898-904.
Page, V. and U.R.S. Feller. 2005. Selective transport of zinc, manganese, nickel, cobalt and cadmium in the root system and transfer to the leaves in young wheat plants. Ann. Bot. 96:425-434.
Palacios, G., A. Carbonell‐Barrachina, I. Gomez, and J. Mataix. 1999. The influence of organic amendment and nickel pollution on tomato fruit yield and quality. J. Environ. Sci. Health. Part B. 34:133-150.
Pandey, N. and C.P. Sharma. 2002. Effect of heavy metals Co2+, Ni2+ and Cd2+ on growth and metabolism of cabbage. Plant Sci. 163:753-758.
Pinton, R., N. Tomasi, and L. Zanin. 2016. Molecular and physiological interactions of urea and nitrate uptake in plants. Plant Signal Behav. 11:e1076603.
Plaza-Bonilla, D., J.M. Nolot, D. Raffaillac, and E. Justes. 2015. Cover crops mitigate nitrate leaching in cropping systems including grain legumes: field evidence and model simulations. Agri. Ecosyst. Envir. 212:1-12.
Polacco, J.C. 1977. Nitrogen metabolism in soybean tissue culture (II): Urea utilization and urease synthesis require Ni2+. Plant Physiol. 59:827-830.
Polacco, J.C., P. Mazzafera, and T. Tezotto. 2013. Opinion - Nickel and urease in plants: Still many knowledge gaps. Plant Sci. 199:79-90.
Pollard, A.J., K.D. Powell, H.A. Harper, and J.A.C. Smith. 2002. The genetic basis of metal hyperaccumulation in plants. Crit. Rev. Plant Sci. 21:539–566.
Quaggiotti, S., B. Ruperti, P. Borsa, T. Destro, and M. Malagoli. 2003. Expression of a putative high‐affinity NO3– transporter and of an H+- ATPase in relation to whole plant nitrate transport physiology in two maize genotypes differently responsive to low nitrogen availability. J. Exp. Bot. 54:1023-1031.
Rahman, H., S. Sabreen, S. Alam, and S. Kawai. 2005. Effects of nickel on growth and composition of metal micronutrients in barley plants grown in nutrient solution. J. Plant Nutr. 28:393-404.
Ricci, A. and C. Bertoletti. 2009. Urea derivatives on the move: cytokinin‐like activity and adventitious rooting enhancement depend on chemical structure. Plant biology. 11:262-272.
Ros, R.O.C., D.T. Cooke, R.S. Burden, and C.S. James. 1990. Effect of herbicide MCPA and the heavy metals, cadmium and nickel, on the lipid composition, Mg2+-ATPase activity and fluidity of plasma membrane from rice, Oryza sativa cv. Bhatia shoots. J. Exp. Bot. 41:457-462.
Sanders, J.R., S.P. McGrath, and T.M. Adams. 1987. Zinc, copper and nickel concentrations in soil extracts and crops grown on four soils treated with metalloaded sewage sludges. Environ. Pollut. 44:193-210.
Schäfer, U.K. and H. Kaltwasser. 1994. Urease from Staphylococcus saprophyticus: purification, characterization and comparison to Staphylococcus xylosus urease. Arch. Microbiol. 161:393-399.
Shen, Z., Y. Liang, and K. Shen. 1993. Effect of boron on the nitrate reductase activity in oilseed rape plants. J. Plant Nutr. 16:1229-1239.
Shimada N. and T. Ando. 1980. Role of nickel in plant nutrition (2). Effect of nickel on the assimilation of urea by plants. Jpn. J. Soil. Sci. Plant Nutr. 51:493-496.
Shimada, N. and A. Matsuo. 1985. Role of nickel in plant nutrition (3). Effects of nickel on the growth of plants and the assimilation of urea by cucumber and barley. Jpn. J. Soil Sci. Plant Nutr. 51:257-263.
Sonneveld, C. and W. Voogt. 2009. Substrates: Chemical characteristics and preparation, p.227-256. In: Plant nutrition of greenhouse crops. Springer. Netherlands.
Sun E.J. and F.Y. Wu. 1998. Along-vein necrosis as indicator symptom on water spinach caused by nickel in water culture. Bot. Bull. Acad. Sin. 39:255–259.
Tabatabaei, S.J., M. Yusefi, and J. Hajiloo. 2008. Effects of shading and NO3:NH4 ratio on the yield, quality and N metabolism in strawberry. Sci. Hort. 116:264-272.
Tan, X.W., H. Ikeda, and M. Oda. 2000. Effects of nickel concentration in the nutrient solution on the nitrogen assimilation and growth of tomato seedlings in hydroponic culture supplied with urea or nitrate as the sole nitrogen source. Scientia Hort. 84:265-273.
Thauer, R.K., G. Diekert, and P. Schönheit. 1980. Biological role of nickel. Trends Biochem Sci. 5:304-306.
Thiel, H. and A. Finck. 1973. Ermittlung von Grenzwerten optimaler Kupfer-Versorgung für Hafer und Sommergerste. J. Plant Nutr. Soil Sci. 134:107-125.
Trejo-Tellez, L.I. and F.C. Gomez-Merino. 2012. Nutrient Solutions for Hydroponic Systems, In: Asao, T. (ed.). Hydroponics - A standard methodology for plant biological researches. InTech. Rijeka, Croatia.
Van Assche, F. and H. Clijsters. 1986. Inhibition of photosynthesis in Phaseolus vulgaris by treatment with toxic concentration of zinc: effect on ribulose-1,5-bisphosphate carboxylase/oxygenase. J. Plant Physiol. 125:355-360.
Verzeaux, J., B. Hirel, F. Dubois, P.J. Lea, and T. Tétu. 2017. Agricultural practices to improve nitrogen use efficiency through the use of arbuscular mycorrhizae: Basic and agronomic aspects. Plant Sci. 264: 48-56.
Walker C.D., R.D. Graham, J.T. Madison, E.E. Cary, and R.M. Welch. 1985. Effects of Ni deficiency on some nitrogen metabolites in cowpeas (Vigna unguiculata L. Walp). Plant Physiol. 79:474-479.
Witte, C. P. 2011. Urea metabolism in plants. Plant Sci. 180:431-438.
Yadava, U. L. 1986. A rapid and nondestructive method to determine chlorophyll in intact leaves. HortScience 22:1449-1450.
Yamazaki, K. 1982. Nutrient solution culture. Pak-kyo, Tokyo. p.251.
Yusuf, M., Q. Fariduddin, S. Hayat, and A. Ahmad. 2011. Nickel: an overview of uptake, essentiality and toxicity in plants. Bull. Environ. Contam. Toxicol. 86:1-17.
Zanin, L., A. Zamboni, R. Monte, N. Tomasi, Z. Varanini, S. Cesco, and R. Pinton. 2015. Transcriptomic analysis highlights reciprocal interactions of urea and nitrate for nitrogen acquisition by maize roots. Plant Cell Physiol. 56:532-548.
Zerner B. 1991. Recent advances in the chemistry of an old enzyme, urease. Bioinorg. Chem. 19:116–131.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊