跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.89) 您好!臺灣時間:2024/12/12 03:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:顧芷凌
研究生(外文):Chi-Ling Ku
論文名稱:淹水後復氧期間氧化逆境對甘藍淹水耐受性之角色
論文名稱(外文):The role of oxidative stress in submergence tolerance during post-submergence reoxygenation in cabbage (Brassica oleracea L. var. capitata)
指導教授:許富鈞
指導教授(外文):Fu-Chiun Hsu
口試委員:林淑怡陳賢明
口試委員(外文):Shu-I LinHieng-Ming Ting
口試日期:2020-07-02
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:園藝暨景觀學系
學門:農業科學學門
學類:園藝學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:59
中文關鍵詞:活性氧物質抗氧化系統回復期
外文關鍵詞:reactive oxygen speciesantioxidant systemrecovery phase
DOI:10.6342/NTU202003601
相關次數:
  • 被引用被引用:0
  • 點閱點閱:258
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
甘藍(Brassica oleracea L. var. capitata)是全球重要的蔬菜作物之一。在台灣,颱風伴隨之暴雨經常導致淹水災情使得甘藍產量大量損失,使得現今產業上有發展耐淹水甘藍品種之需求。了解甘藍於淹水後反應有助於耐淹水甘藍品種之選育,故本研究欲利用淹水耐受性不同之甘藍品種,探討淹水後回復期甘藍耐淹水之機制。期望挑選耐淹水標誌以應用於品種改良。
首先為了定義不同甘藍品種之耐淹水能力,調查三甘藍商業品種‘大蕊’、‘初秋’及‘228’避光淹水後之性狀。分析甘藍品種生理特性,‘大蕊’於回復期之有最小之葉片傷害及株高萎縮量,且其鮮重及相對水含量也較穩定,由此推測‘大蕊’為三品種中較耐淹水之品種。淹水的主要傷害在退水後之回復期。退水後由於高光強度、高氧氣含量使氧化逆境產生,導致細胞傷害嚴重。為了呈現三甘藍品種淹水後氧化逆境之差異,利用3',3'-diaminobenzendine (DAB)染色及nitro blue tetrazolium chloride (NBT)做組織化學染色。過氧化氫(hydrogen peroxide, H2O2)和超氧陰離子(superoxide anion, O2∙−)於‘初秋’及‘228’葉子累積明顯,而於‘大蕊’中並無此現象。此外,‘初秋’及‘228’之H2O2及丙二醛(malondialdehyde, MDA)含量多於‘大蕊’。以此結果可推測耐淹水品種‘大蕊’有更強之能力以緩解氧化逆境。本研究接著探索回復期之淹水耐受性跟活性氧化物(reactive oxygen species, ROS)生合成基因與抗氧化能力之關聯。就甘藍品種生化特性而言,於回復期間,‘大蕊’相較於‘初秋’及‘228’ 有較高之過氧化酶(peroxidase, POX)活性及還原態抗壞血酸(ascorbic acid, AsA)含量。就基因表現量來說,‘初秋’及‘228’有較高之ROS生合成基因RESPIRATORY BURST OXIDASE HOMOLOG D-LIKE (RBOHD-L)表現量,可能進而導致ROS之累積。作用於防止粒線體過多ROS形成之ALTERNATIVE OXIDASE1a (AOX1a)基因於‘大蕊’中表現量較高,暗示‘大蕊’緩解氧化逆境傷害能力較佳。
總體而言,本研究將有助於了解甘藍耐淹水機制。其中,測量指標如葉片受傷程度、鮮重、株高及相對水含量、H2O2、MDA和AsA之含量及RBOHD-L和AOX1a之基因表現量,具作為淹水耐受性之指標之潛力,期望有助於加速耐淹水甘藍品種之育種。
Cabbage (Brassica oleracea L. var. capitata) is one of the most important vegetable crops grown worldwide. In Taiwan, strong typhoons with torrential rain flood many areas and often result in large losses in cabbage production. There is a need to develop submergence tolerant cabbage cultivars in commercial. Understanding the response of cabbage after flooding is helpful to the selection of submergence tolerant cabbage cultivars. Therefore, our study intends to use cabbage cultivars with different submergence tolerance and investigated mechanisms of their tolerance upon recovery stage after submergence. We expect to develop markers that are closely linked to submergence tolerance for breeding.
To define submergence tolerance in different genotypes of cabbages, phenotypes were assessed for three commercial cabbage cultivars ‘Fuyudori’, ‘K-Y cross’ and ‘228’ after submerged in dark. With respect to physiological observation, ‘Fuyudori’ had least damaged leaves and wilted shoots in height upon recovery stage, and its fresh weight and relative water content (RWC) were relative stable, suggesting that ‘Fuyudori’ is the most flooding-tolerant cultivar among the three cultivars tested. Major damage from submergence occurs during recovery stage after flooding. Desubmergence leads to serious cellular injury due to oxidative stress caused by higher light intensity and oxygen concentration. To visualize the difference of oxidative stress among three cabbage cultivars after submergence, histochemical staining were carried out using 3',3'-diaminobenzendine (DAB) and nitro blue tetrazolium chloride (NBT) staining. The accumulation of hydrogen peroxide (H2O2) and superoxide anion (O2∙−) was pronounced in ‘K-Y cross’ and ‘228’ leaves but not in ‘Fuyudori’. Moreover, ‘K-Y cross’ and ‘228’ had higher amount of H2O2 and malondialdehyde (MDA) than ‘Fuyudori’ did. These results suggest submergence tolerant cultivar ‘Fuyudori’ has higher ability to alleviate oxidative stress. We further explored the relationship among submergence tolerance, reactive oxygen species (ROS) synthesis gene and antioxidant ability. With respect to biochemical observation, ‘Fuyudori’ had higher activity of peroxidase (POX) and content of reduced ascorbic acid (AsA) than ‘K-Y cross’ and ‘228’ did throughout the recovery. In terms of gene expression level, transcript level of ROS synthesis gene RESPIRATORY BURST OXIDASE HOMOLOG D-LIKE (RBOHD-L) was higher in ‘K-Y cross’ and ‘228’, which suggests a higher accumulation of ROS. The transcript level of ALTERNATIVE OXIDASE1a (AOX1a) which functions to prevent excess mitochondrial ROS formation was higher in ‘Fuyudori’, suggesting higher ability to alleviate oxidative stress.
Taken together, this study contributes to our understanding of the regulatory mechanisms underlying the flooding tolerance in cabbage. The indicators such as leaf damage, fresh weight, height and RWC, the content of H2O2, MDA and AsA, and transcript level of RBOHD-L and AOX1a are potential markers for submergence tolerant selection to accelerate cabbage breeding for submergence tolerance.
誌謝 i
中文摘要 ii
ABSTRACT iii
目錄 v
表目錄 viii
圖目錄 ix
第一章 前言 1
第二章 前人研究 2
一、 淹水是嚴峻之自然災害 2
二、 作物耐淹水性改良之概況 2
三、 淹水逆境對植物之影響 4
(一) 植物形態變化以應對淹水逆境 4
(二) ROS對淹水之影響 5
四、 淹水後之回復期 7
(一) 植物加強抗氧化能力以緩解由復氧引起之氧化逆境 7
(二) 回復期之脫水逆境 9
第三章 研究方法 12
一、 植物材料與處理 12
二、 植物性狀調查 12
(一) 葉片受傷程度 12
(二) 鮮重、株高與相對水含量(relative water content, RWC) 12
三、 化學組織染色3',3'-diaminobenzendine (DAB)及nitro blue tetrazolium chloride (NBT) 13
四、 過氧化氫含量測定 13
五、 MDA含量測定 13
六、 AsA定量 14
七、 抗氧化酵素活性測量 14
(一) CAT酵素活性測定 15
(二) APX酵素活性測量 15
(三) POX酵素活性測量 15
八、 利用Basic Local Alignment Search Tool (Blast)分析同源基因 16
九、 甘藍之基因表現 16
(一) 核糖核酸萃取(RNA extraction) 16
(二) 去氧核醣核酸酶(DNase)處理 16
(三) 反轉錄(reverse transcription) 17
(四) 即時定量聚合酶連鎖反應(real-time quantitative polymerase chain reaction, qPCR) 17
十、 數據作圖與統計分析 17
第四章 結果 19
一、 三栽培品種淹水後之性狀變化 19
二、 退水後之氧化逆境傷害 20
三、 淹水後之抗氧化能力 21
(一) 活性氧分子清除酵素(ROS scavenging enzyme)對淹水耐受性之影響 21
(二) AsA-GSH cycle對淹水耐受性之影響 22
(三) AOX對淹水耐受性之影響 23
第五章 討論 24
一、 回復期氧化逆境傷害阻礙甘藍生長發育 24
二、 回復期抗氧化系統對於緩解氧化逆境之影響 26
第六章 結論 31
結果圖表 32
附錄 45
參考文獻 47
石佩玉、施任青、張連宗、羅筱鳳. 2013. 花椰菜高溫淹水耐受性之生理指標. 臺灣園藝 59:191-204.
吳竺郡. 2016. 耐高溫淹水甘藍苗期生理指標研究. 國立臺灣大學園藝學研究所碩士論文. 臺北.
姚銘輝. 1992. 離層酸和葉片氣孔導度與高粱幼苗耐冷性之關係. 國立臺灣大學農藝學研究所碩士論文 碩士.
姚靜樺. 2014. 選拔耐高溫淹水花椰菜及其相關形態與生理指標. 國立臺灣大學園藝學研究所碩士論文. 臺北.
洪志良. 2016. 甘藍高溫淹水耐受性之 RNA-seq 轉錄體分析. 國立臺灣大學園藝學研究所博士論文. 臺北.
許聖章、張靜貞. 2009. 台灣颱風災害之影響評估─ 以蔬菜供需為例. 應用經濟論叢歐89: 31-62.
陳姵華、謝明憲、羅筱鳳. 2014. 甘藍對高溫淹水之生理反應. 臺灣園藝. 60:265-286
陳薇. 2016. 結球白菜幼苗於高溫淹水逆境下之生理性狀. 臺灣大學 國立臺灣大學園藝學研究所碩士論文. 臺北.
廖芳心. 1993. 溫度對甘藍結球生理之效應. 桃園區農業改良場研究彙報. 15: 16-23.
蕭政弘. 2017. 甘藍產業特性與品種類型. 臺中區農業專訓. 96:3-5.
蕭政弘、郭俊毅. 2007. 甘藍育種成果及未來育種方向. 臺中區農業改良場特刊. 88:36-56.
蕭政弘、郭俊毅. 2015. 走過漫長育種路耐熱生長我最棒—甘藍臺中 2 號育成. 臺中區農業改良場. 30:66-71.
謝明憲、林棟樑、王仕賢. 甘藍台南2號之育成. 臺南區農業改良場研究彙報. 54:47-53.
羅元浩. 2007. 甘藍於高溫淹水逆境下之蛋白質體分析. 中國文化大學生物科技研究所碩士論文. 臺北
Agaphonov, M.O., A.N. Packeiser, M.B. Chechenova, E.S. Choi, and M.D. Ter‐Avanesyan, 2001. Mutation of the homologue of GDP‐mannose pyrophosphorylase alters cell wall structure, protein glycosylation and secretion in Hansenula polymorpha. Yeast 18:391-402.
Akram, N.A., F. Shafiq, and M. Ashraf, 2017. Ascorbic acid a potential oxidant scavenger and its role in plant development and abiotic stress tolerance. Frontiers Plant Sci. 8:613.
Alpuerto, J.B., R.M.F. Hussain, and T. Fukao, 2016. The key regulator of submergence tolerance SUB1A promotes photosynthetic and metabolic recovery from submergence damage in rice leaves. Plant Cell Environ. 39:672-684.
Altschul, S.F., T.L. Madden, A.A. Schäffer, J. Zhang, Z. Zhang, W. Miller, and D.J. Lipman, 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucl. Acids Res. 25:3389-3402.
Amor, Y., M. Chevion, and A. Levine, 2000. Anoxia pretreatment protects soybean cells against H2O2‐induced cell death: possible involvement of peroxidases and of alternative oxidase. FEBS Lett. 477:175-180.
Anjum, N.A., S. Umar, M. Iqbal, and N.A. Khan, 2011. Cadmium causes oxidative stress in mung bean by affecting the antioxidant enzyme system and ascorbate-glutathione cycle metabolism. Russian J. Plant Physiol. 58:92-99.
Apel, K. and H. Hirt, 2004. Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu. Rev. Plant Biol. 55:373-399.
Aroca, R., G. Amodeo, S. Fernández-Illescas, E.M. Herman, F. Chaumont, and M.J. Chrispeels, 2005. The role of aquaporins and membrane damage in chilling and hydrogen peroxide induced changes in the hydraulic conductance of maize roots. Plant Physiol. 137:341-353.
Arora, A., R. Sairam, and G. Srivastava, 2002. Oxidative stress and antioxidative system in plants. Curr. Sci. 82:1227-1238.
Asada, K., 1992. Ascorbate peroxidase–a hydrogen peroxide‐scavenging enzyme in plants. Physiol. Plant. 85:235-241.
Ayano, M., T. Kani, M. Kojima, H. Sakakibara, T. Kitaoka, T. Kuroha, R.B. Angeles-Shim, H. Kitano, K. Nagai, and M. Ashikari, 2014. Gibberellin biosynthesis and signal transduction is essential for internode elongation in deepwater rice. Plant Cell Environ. 37:2313-2324.
Azbill, R.D., X. Mu, A.J. Bruce-Keller, M.P. Mattson, and J.E. Springer, 1997. Impaired mitochondrial function, oxidative stress and altered antioxidant enzyme activities following traumatic spinal cord injury. Brain Res. 765:283-290.
Baek, K.-H. and D.Z. Skinner, 2003. Alteration of antioxidant enzyme gene expression during cold acclimation of near-isogenic wheat lines. Plant Sci. 165:1221-1227.
Bailey-Serres, J., T. Fukao, D.J. Gibbs, M.J. Holdsworth, S.C. Lee, F. Licausi, P. Perata, L.A. Voesenek, and J.T. van Dongen, 2012. Making sense of low oxygen sensing. Trends Plant Sci. 17:129-138.
Bailey-Serres, J. and L. Voesenek, 2008. Flooding stress: acclimations and genetic diversity. Annu. Rev. Plant Biol. 59:313-339.
Bailey-serres, J.C., Timothy D, 2014. Plant tolerance of flooding stress–recent advances. Plant Cell Environ. 37:2211-2215.
Bandyopadhyay, U., D. Das, and R.K. Banerjee, 1999. Reactive oxygen species: oxidative damage and pathogenesis. Curr. Sci. 77:658-666.
Banti, V., F. Mafessoni, E. Loreti, A. Alpi, and P. Perata, 2010. The heat-inducible transcription factor HsfA2 enhances anoxia tolerance in Arabidopsis. Plant Physiol. 152:1471-1483.
Bartoli, C.G., F. Gómez, D.E. Martínez, and J.J. Guiamet, 2004. Mitochondria are the main target for oxidative damage in leaves of wheat (Triticum aestivum L.). J. Exp. Bot. 55:1663-1669.
Bauer, H., P. Ache, S. Lautner, J. Fromm, W. Hartung, K.A. Al-Rasheid, S. Sonnewald, U. Sonnewald, S. Kneitz, and N. Lachmann, 2013. The stomatal response to reduced relative humidity requires guard cell-autonomous ABA synthesis. Curr. Biol. 23:53-57.
Benschop, J.J., J. Bou, A.J. Peeters, N. Wagemaker, K. Gühl, D. Ward, P. Hedden, T. Moritz, and L. Voesenek, 2006. Long-term submergence-induced elongation in Rumex palustris requires abscisic acid-dependent biosynthesis of gibberellin1. Plant Physiol. 141:1644-1652.
Benschop, J.J., M.B. Jackson, K. Gühl, R.A. Vreeburg, S.J. Croker, A.J. Peeters, and L. Voesenek, 2005. Contrasting interactions between ethylene and abscisic acid in Rumex species differing in submergence tolerance. Plant J. 44:756-768.
Biemelt, S., U. Keetman, and G. Albrecht, 1998. Re-aeration following hypoxia or anoxia leads to activation of the antioxidative defense system in roots of wheat seedlings. Plant Physiol. 116:651-658.
Blokhina, O. and K.V. Fagerstedt, 2010. Oxidative metabolism, ROS and NO under oxygen deprivation. Plant Physiol. Biochem. 48:359-373.
Blokhina, O., E. Virolainen, and K.V. Fagerstedt, 2003. Antioxidants, oxidative damage and oxygen deprivation stress: a review. Ann. Bot. 91:179-194.
Blokhina, O.B., E. Virolainen, K.V. Fagerstedt, A. Hoikkala, K. Wähälä, and T.V. Chirkova, 2000. Antioxidant status of anoxia‐tolerant and‐intolerant plant species under anoxia and reaeration. Physiol. Plant. 109:396-403.
Bradford, M.M., 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72:248-254.
Brodribb, T.J. and N.M. Holbrook, 2003. Stomatal closure during leaf dehydration, correlation with other leaf physiological traits. Plant Physiol. 132:2166-2173.
Cavalcanti, F.R., J.P.M.S. Lima, S.L. Ferreira-Silva, R.A. Viégas, and J.A.G. Silveira, 2007. Roots and leaves display contrasting oxidative response during salt stress and recovery in cowpea. J. Plant Physiol. 164:591-600.
Chakraborty, U.P., Deepti, 2011. High temperature-induced oxidative stress in Lens culinaris, role of antioxidants and amelioration of stress by chemical pre-treatments. J. Plant Interactions 6:43-52.
Chang, R., C.J. Jang, C. Branco-Price, P. Nghiem, and J. Bailey-Serres, 2012. Transient MPK6 activation in response to oxygen deprivation and reoxygenation is mediated by mitochondria and aids seedling survival in Arabidopsis. Plant Mol. Biol. 78:109-122.
Chau, V.N., S. Cassells, and J. Holland, 2015. Economic impact upon agricultural production from extreme flood events in Quang Nam, central Vietnam. Nat. Hazards 75:1747-1765.
Cho, U.-H. and J.-O. Park, 2000. Mercury-induced oxidative stress in tomato seedlings. Plant Sci. 156:1-9.
Chung, S., J. Takeuchi, M. Fujihara, and C. Oeurng, 2019. Flood damage assessment on rice crop in the Stung Sen River Basin of Cambodia. Paddy Water Environ. 17:255-263.
Colmer, T. and L. Voesenek, 2009. Flooding tolerance: suites of plant traits in variable environments. Funct. Plant Biol. 36:665-681.
Corlett, J., H. Jones, A. Massacci, and J. Masojidek, 1994. Water deficit, leaf rolling and susceptibility to photoinhibition in field grown sorghum. Physiol. Plant. 92:423-430.
Crawford, R. and R. Brändle, 1996. Oxygen deprivation stress in a changing environment. J. Exp. Bot. 47:145-159.
Damanik, R.I., M. Maziah, M.R. Ismail, S. Ahmad, and A.M. Zain, 2010. Responses of the antioxidative enzymes in Malaysian rice (Oryza sativa L.) cultivars under submergence condition. Acta physiologiae plantarum 32:739-747.
Das, K. and A. Roychoudhury, 2014. Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Frontiers Environ. Sci. 2:53.
Dat, J., S. Vandenabeele, E. Vranova, M. Van Montagu, D. Inzé, and F. Van Breusegem, 2000. Dual action of the active oxygen species during plant stress responses. Cell. Mol. Life Sci. 57:779-795.
Dittrich, P. and M. Mayer, 1978. Inhibition of stomatal opening during uptake of carbohydrates by guard cells in isolated epidermal tissues. Planta 139:167-170.
Dossa, K., X. Wei, D. Li, D. Fonceka, Y. Zhang, L. Wang, J. Yu, L. Boshou, D. Diouf, and N. Cissé, 2016. Insight into the AP2/ERF transcription factor superfamily in sesame and expression profiling of DREB subfamily under drought stress. BMC Plant Biol. 16:171.
Drążkiewicz, M., E. Skórzyńska-Polit, and Z. Krupa, 2003. Response of the ascorbate–glutathione cycle to excess copper in Arabidopsis thaliana (L.). Plant Sci. 164:195-202.
Drew, M., M. Jackson, and S. Giffard, 1979. Ethylene-promoted adventitious rooting and development of cortical air spaces (aerenchyma) in roots may be adaptive responses to flooding in Zea mays L. Planta 147:83-88.
Drew, M.C., 1997. Oxygen deficiency and root metabolism: injury and acclimation under hypoxia and anoxia. Annu. Rev. Plant Biol. 48:223-250.
Du, X., X. Jin, X. Yang, X. Yang, X. Xiang, and Y. Zhou, 2015. Spatial-temporal pattern changes of main agriculture natural disasters in China during 1990–2011. J. Geographical Sci. 25:387-398.
Dubouzet, J.G., Y. Sakuma, Y. Ito, M. Kasuga, E.G. Dubouzet, S. Miura, M. Seki, K. Shinozaki, and K. Yamaguchi‐Shinozaki, 2003. OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought‐, high‐salt‐and cold‐responsive gene expression. Plant J. 33:751-763.
Ella, E.S., N. Kawano, and O. Ito, 2003. Importance of active oxygen-scavenging system in the recovery of rice seedlings after submergence. Plant Sci. 165:85-93.
Foyer, C.H. and G. Noctor, 2003. Redox sensing and signalling associated with reactive oxygen in chloroplasts, peroxisomes and mitochondria. Physiol. Plant. 119:355-364.
Foyer, C.H. and G. Noctor, 2005. Redox homeostasis and antioxidant signaling: a metabolic interface between stress perception and physiological responses. Plant Cell 17:1866-1875.
Fridovich, I., 1986. Biological effects of the superoxide radical. Archives Biochem. Biophysics 247:1-11.
Fridovich, I., 1997. Superoxide anion radical (O2∙−), superoxide dismutases, and related matters. J. Biol. Chem. 272:18515-18517.
Fukao, T. and J. Bailey-Serres, 2008. Submergence tolerance conferred by Sub1A is mediated by SLR1 and SLRL1 restriction of gibberellin responses in rice. Proc. Natl. Acad. Sci. USA 105:16814-16819.
Fukao, T., K. Xu, P.C. Ronald, and J. Bailey-Serres, 2006. A variable cluster of ethylene response factor–like genes regulates metabolic and developmental acclimation responses to submergence in rice. Plant Cell 18:2021-2034.
Fukao, T., E. Yeung, and J. Bailey-Serres, 2011. The submergence tolerance regulator SUB1A mediates crosstalk between submergence and drought tolerance in rice. Plant Cell 23:412-427.
Gao, Q. and L. Zhang, 2008. Ultraviolet-B-induced oxidative stress and antioxidant defense system responses in ascorbate-deficient vtc1 mutants of Arabidopsis thaliana. J. Plant Physiol. 165:138-148.
Gaspar, M., A. Bousser, I. Sissoëff, O. Roche, J. Hoarau, and A. Mahé, 2003. Cloning and characterization of ZmPIP1-5b, an aquaporin transporting water and urea. Plant Sci. 165:21-31.
Grellet Bournonville, C.F. and J.C. Díaz‐Ricci, 2011. Quantitative determination of superoxide in plant leaves using a modified NBT staining method. Phytochem. Anal. 22:268-271.
Grichko, V.P. and B.R. Glick, 2001. Ethylene and flooding stress in plants. Plant Physiol. Biochem. 39:1-9.
Gueta-Dahan, Y., Z. Yaniv, B.A. Zilinskas, and G. Ben-Hayyim, 1997. Salt and oxidative stress: similar and specific responses and their relation to salt tolerance in citrus. Planta 203:460-469.
Gunawardena, A.H., D.M. Pearce, M.B. Jackson, C.R. Hawes, and D.E. Evans, 2001. Characterisation of programmed cell death during aerenchyma formation induced by ethylene or hypoxia in roots of maize (Zea mays L.). Planta 212:205-214.
Gunes, A., A. Inal, E. Bagci, S. Coban, and O. Sahin, 2007. Silicon increases boron tolerance and reduces oxidative damage of wheat grown in soil with excess boron. Biologia Plantarum 51:571-574.
Gupta, A.S., J.L. Heinen, A.S. Holaday, J.J. Burke, and R.D. Allen, 1993. Increased resistance to oxidative stress in transgenic plants that overexpress chloroplastic Cu/Zn superoxide dismutase. Proc. Natl. Acad. Sci. USA 90:1629-1633.
Hattori, Y., K. Nagai, S. Furukawa, X.-J. Song, R. Kawano, H. Sakakibara, J. Wu, T. Matsumoto, A. Yoshimura, and H. Kitano, 2009. The ethylene response factors SNORKEL1 and SNORKEL2 allow rice to adapt to deep water. Nature 460:1026-1030.
He, C.-J., P.W. Morgan, and M.C. Drew, 1996. Transduction of an ethylene signal is required for cell death and lysis in the root cortex of maize during aerenchyma formation induced by hypoxia. Plant Physiol. 112:463-472.
Henzler, T., R.N. Waterhouse, A.J. Smyth, M. Carvajal, D.T. Cooke, A.R. Schäffner, E. Steudle, and D.T. Clarkson, 1999. Diurnal variations in hydraulic conductivity and root pressure can be correlated with the expression of putative aquaporins in the roots of Lotus japonicus. Planta 210:50-60.
Hernhdeza, J., E. Olmosa, F. Corpasb, F. Sevilla, and L. de1 Riob, 1995. Salt-induced oxidative stress in chloroplasts of pea plants. Plant Sci. 105:04047-04048.
Hernández, J.A., M.A. Ferrer, A. Jiménez, A.R. Barceló, and F. Sevilla, 2001. Antioxidant systems and O2·−/H2O2 production in the apoplast of pea leaves. Its relation with salt-induced necrotic lesions in minor veins. Plant Physiol. 127:817-831.
Hinz, M., I.W. Wilson, J. Yang, K. Buerstenbinder, D. Llewellyn, E.S. Dennis, M. Sauter, and R. Dolferus, 2010. Arabidopsis RAP2.2: an ethylene response transcription factor that is important for hypoxia survival. Plant Physiol. 153:757-772.
Hossain, M.A., M. Hasanuzzaman, and M. Fujita, 2011. Coordinate induction of antioxidant defense and glyoxalase system by exogenous proline and glycinebetaine is correlated with salt tolerance in mung bean. Frontiers Agr. China 5:1-14.
Hsu, F.-C. and Y.-L. Wu. 2018. Performance of three cabbage (Brassica oleracea var. capitate) genotypes in flooding tolerance. Acta Hort. 1257:139-142.
Huang, M. and Z. Guo, 2005. Responses of antioxidative system to chilling stress in two rice cultivars differing in sensitivity. Biologia Plantarum 49:81-84.
Iftekharuddaula, K., M. Newaz, M. Salam, H. Ahmed, M. Mahbub, E. Septiningsih, B. Collard, D. Sanchez, A. Pamplona, and D. Mackill, 2011. Rapid and high-precision marker assisted backcrossing to introgress the SUB1 QTL into BR11, the rainfed lowland rice mega variety of Bangladesh. Euphytica 178:83-97.
Irfan, M., S. Hayat, Q. Hayat, S. Afroz, and A. Ahmad, 2010. Physiological and biochemical changes in plants under waterlogging. Protoplasma 241:3-17.
Jackson, M. and T. Colmer, 2005. Response and adaptation by plants to flooding stress. Ann. Bot. 96:501-505.
Jackson, M.B., 1985. Ethylene and responses of plants to soil waterlogging and submergence. Annu. Rev. Plant Physiol. 36:145-174.
Jackson, M.B., 2008. Ethylene-promoted elongation: an adaptation to submergence stress. Ann. Bot. 101:229-248.
Jana, S. and M.A. Choudhuri, 1981. Glycolate metabolism of three submersed aquatic angiosperms: effect of heavy metals. Aquat. Bot. 11:67-77.
Jayawardhane, J., D.W. Cochrane, P. Vyas, N.V. Bykova, G.C. Vanlerberghe, and A.U. Igamberdiev, 2020. Roles for plant mitochondrial alternative oxidase under normoxia, hypoxia, and reoxygenation conditions. Frontiers Plant Sci. 11:566.
Jisha, V., L. Dampanaboina, J. Vadassery, A. Mithöfer, S. Kappara, and R. Ramanan, 2015. Overexpression of an AP2/ERF type transcription factor OsEREBP1 confers biotic and abiotic stress tolerance in rice. PLoS One 10:e0127831.
Jones, M.A., M.J. Raymond, Z. Yang, and N. Smirnoff, 2007. NADPH oxidase-dependent reactive oxygen species formation required for root hair growth depends on ROP GTPase. J. Exp. Bot. 58:1261-1270.
Jongman, B., P.J. Ward, and J.C. Aerts, 2012. Global exposure to river and coastal flooding: Long term trends and changes. Global Environ. Change 22:823-835.
Ju, C. and C. Chang, 2015. Mechanistic insights in ethylene perception and signal transduction. Plant Physiol. 169:85-95.
Jung, K.-H., Y.-S. Seo, H. Walia, P. Cao, T. Fukao, P.E. Canlas, F. Amonpant, J. Bailey-Serres, and P.C. Ronald, 2010. The submergence tolerance regulator Sub1A mediates stress-responsive expression of AP2/ERF transcription factors. Plant Physiol. 152:1674-1692.
Kang, G., G. Li, G. Liu, W. Xu, X. Peng, C. Wang, Y. Zhu, and T. Guo, 2013. Exogenous salicylic acid enhances wheat drought tolerance by influence on the expression of genes related to ascorbate-glutathione cycle. Biologia Plantarum 57:718-724.
Kapilan, R., M. Vaziri, and J.J. Zwiazek, 2018. Regulation of aquaporins in plants under stress. Biol. Res. 51:4.
Kinoshita, T. and K.I. Shimazaki, 1999. Blue light activates the plasma membrane H+‐ATPase by phosphorylation of the C‐terminus in stomatal guard cells. EMBO J. 18:5548-5558.
Kizis, D. and M. Pagès, 2002. Maize DRE‐binding proteins DBF1 and DBF2 are involved in rab17 regulation through the drought‐responsive element in an ABA‐dependent pathway. Plant J. 30:679-689.
Klok, E.J., I.W. Wilson, D. Wilson, S.C. Chapman, R.M. Ewing, S.C. Somerville, W.J. Peacock, R. Dolferus, and E.S. Dennis, 2002. Expression profile analysis of the low-oxygen response in Arabidopsis root cultures. Plant Cell 14:2481-2494.
Kumar, S.M. and A. Dey, 2014. Regulation of glutathione in health and disease with special emphasis on chronic alcoholism and hyperglycaemia mediated liver Injury: a brief perspective. Springer Sci. Rev. 2:1-13.
Lai, L.-W., 2018. The relationship between extreme weather events and crop losses in central Taiwan. Theoretical Applied Climatol. 134:107-119.
Lal, B., P. Gautam, L. Rath, D. Haldar, B. Panda, R. Raja, M. Shahid, R. Tripathi, P. Bhattacharyya, and S. Mohanty, 2015. Effect of nutrient application on growth, metabolic and enzymatic activities of rice seedlings during flooding stress and subsequent re‐aeration. J. Agron. Crop Sci. 201:138-151.
Lee, S.H., A.P. Singh, and G.C. Chung, 2004. Rapid accumulation of hydrogen peroxide in cucumber roots due to exposure to low temperature appears to mediate decreases in water transport. J. Exp. Bot. 55:1733-1741.
Leung, J. and J. Giraudat, 1998. Abscisic acid signal transduction. Annu. Rev. Plant Biol. 49:199-222.
Li, C., D. Jiang, B. Wollenweber, Y. Li, T. Dai, and W. Cao, 2011. Waterlogging pretreatment during vegetative growth improves tolerance to waterlogging after anthesis in wheat. Plant Sci. 180:672-678.
Li, Y., S. Zhang, W. Jiang, and D. Liu, 2013. Cadmium accumulation, activities of antioxidant enzymes, and malondialdehyde (MDA) content in Pistia stratiotes L. Environ. Sci. Pollution Res. 20:1117-1123.
Licausi, F., J.T. Van Dongen, B. Giuntoli, G. Novi, A. Santaniello, P. Geigenberger, and P. Perata, 2010. HRE1 and HRE2, two hypoxia‐inducible ethylene response factors, affect anaerobic responses in Arabidopsis thaliana. Plant J. 62:302-315.
Liu, H.-C. and Y.-Y. Charng, 2013. Common and distinct functions of Arabidopsis class A1 and A2 heat shock factors in diverse abiotic stress responses and development. Plant Physiol. 163:276-290.
Liu, H.C., H.T. Liao, and Y.Y. Chang, 2011. The role of class A1 heat shock factors (HSFA1s) in response to heat and other stresses in Arabidopsis. Plant Cell Environ. 34:738-751.
Livak, K.J. and T.D. Schmittgen, 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. methods 25:402-408.
Loreti, E., H. van Veen, and P. Perata, 2016. Plant responses to flooding stress. Curr. Opin. Plant Biol. 33:64-71.
Møller, I.M. and L.J. Sweetlove, 2010. ROS signalling–specificity is required. Trends Plant Sci. 15:370-374.
MacRobbie, E., 1995. ABA‐induced ion efflux in stomatal guard cells: multiple actions of ABA inside and outside the cell. Plant J. 7:565-576.
Mallikarjuna, G., K. Mallikarjuna, M. Reddy, and T. Kaul, 2011. Expression of OsDREB2A transcription factor confers enhanced dehydration and salt stress tolerance in rice (Oryza sativa L.). Biotechnol. Lett. 33:1689-1697.
Mano, Y. and F. Omori, 2007. Breeding for flooding tolerant maize using" teosinte" as a germplasm resource. Plant Root 1:17-21.
Manzur, M., A. Grimoldi, P. Insausti, and G. Striker, 2009. Escape from water or remain quiescent? Lotus tenuis changes its strategy depending on depth of submergence. Ann. Bot. 104:1163-1169.
Mari, M., A. Colell, A. Morales, C. von Montfort, C. Garcia-Ruiz, and J.C. Fernández-Checa, 2010. Redox control of liver function in health and disease. Antioxidants redox signaling 12:1295-1331.
Maxwell, D.P., Y. Wang, and L. McIntosh, 1999. The alternative oxidase lowers mitochondrial reactive oxygen production in plant cells. Proc. Natl. Acad. Sci. USA 96:8271-8276.
Meister, A., 1995. Glutathione metabolism. Methods Enzymol. 251:3-7.
Meriga, B., B.K. Reddy, K.R. Rao, L.A. Reddy, and P.K. Kishor, 2004. Aluminium-induced production of oxygen radicals, lipid peroxidation and DNA damage in seedlings of rice (Oryza sativa). J. Plant Physiol. 161:63-68.
Miller, G., K. Schlauch, R. Tam, D. Cortes, M.A. Torres, V. Shulaev, J.L. Dangl, and R. Mittler, 2009. The plant NADPH oxidase RBOHD mediates rapid systemic signaling in response to diverse stimuli. Sci. Signaling 2:ra45-ra45.
Mirza, M.M.Q., 2011. Climate change, flooding in South Asia and implications. Reg. Environ. Change 11:95-107.
Mittler, R., S. Vanderauwera, M. Gollery, and F. Van Breusegem, 2004. Reactive oxygen gene network of plants. Trends Plant Sci. 9:490-498.
Mohanty, H., S. Mallik, and A. Grover, 2000. Prospects of improving flooding tolerance in lowland rice varieties by conventional breeding and genetic engineering. Curr. Sci. 78:132-137.
Molassiotis, A., T. Sotiropoulos, G. Tanou, G. Diamantidis, and I. Therios, 2006. Boron-induced oxidative damage and antioxidant and nucleolytic responses in shoot tips culture of the apple rootstock EM 9 (Malus domestica Borkh). Environ. Exp. Bot. 56:54-62.
Monk, L.S., R. Brändle, and R. Crawford, 1987a. Catalase activity and post-anoxic injury in monocotyledonous species. J. Exp. Bot. 38:233-246.
Monk, L.S., K.V. Fagerstedt, and R.M. Crawford, 1987b. Superoxide dismutase as an anaerobic polypeptide: a key factor in recovery from oxygen deprivation in Iris pseudacorus? Plant Physiol. 85:1016-1020.
Montillet, J.-L., N. Leonhardt, S. Mondy, S. Tranchimand, D. Rumeau, M. Boudsocq, A.V. Garcia, T. Douki, J. Bigeard, and C. Lauriere, 2013. An abscisic acid-independent oxylipin pathway controls stomatal closure and immune defense in Arabidopsis. PLoS Biol. 11:e1001513.
Munné-Bosch, S. and L. Alegre, 2002. Interplay between ascorbic acid and lipophilic antioxidant defences in chloroplasts of water‐stressed Arabidopsis plants. FEBS Lett. 524:145-148.
Mustroph, A., S.C. Lee, T. Oosumi, M.E. Zanetti, H. Yang, K. Ma, A. Yaghoubi-Masihi, T. Fukao, and J. Bailey-Serres, 2010. Cross-kingdom comparison of transcriptomic adjustments to low-oxygen stress highlights conserved and plant-specific responses. Plant Physiol. 152:1484-1500.
Nagai, K., Y. Hattori, and M. Ashikari, 2010. Stunt or elongate? Two opposite strategies by which rice adapts to floods. J. Plant Res. 123:303-309.
Nakashima, K., Z.K. Shinwari, Y. Sakuma, M. Seki, S. Miura, K. Shinozaki, and K. Yamaguchi-Shinozaki, 2000. Organization and expression of two Arabidopsis DREB2 genes encoding DRE-binding proteins involved in dehydration-and high-salinity-responsive gene expression. Plant Mol. Biol. 42:657-665.
Nishiuchi, S., T. Yamauchi, H. Takahashi, L. Kotula, and M. Nakazono, 2012. Mechanisms for coping with submergence and waterlogging in rice. Rice 5:2.
Noctor, G. and C.H. Foyer, 1998. Ascorbate and glutathione: keeping active oxygen under control. Annu. Rev. Plant Biol. 49:249-279.
Noctor, G., A. Mhamdi, S. Chaouch, Y. Han, J. Neukermans, B. Marquez‐Garcia, G. Queval, and C.H. Foyer, 2012. Glutathione in plants: an integrated overview. Plant Cell Environ. 35:454-484.
Ogawa, D., K. Yamaguchi, and T. Nishiuchi, 2007. High-level overexpression of the Arabidopsis HsfA2 gene confers not only increased themotolerance but also salt/osmotic stress tolerance and enhanced callus growth. J. Exp. Bot. 58:3373-3383.
Orman-Ligeza, B., B. Parizot, R. De Rycke, A. Fernandez, E. Himschoot, F. Van Breusegem, M.J. Bennett, C. Périlleux, T. Beeckman, and X. Draye, 2016. RBOH-mediated ROS production facilitates lateral root emergence in Arabidopsis. Development 143:3328-3339.
Padh, H., 1990. Cellular functions of ascorbic acid. Biochem. Cell Biol. 68:1166-1173.
Panchuk, I.I., R.A. Volkov, and F. Schöffl, 2002. Heat stress-and heat shock transcription factor-dependent expression and activity of ascorbate peroxidase in Arabidopsis. Plant Physiol. 129:838-853.
Panda, S.K. and H. Matsumoto, 2010. Changes in antioxidant gene expression and induction of oxidative stress in pea (Pisum sativum L.) under Al stress. BioMetals 23:753-762.
Pandey, P., J. Singh, V. Achary, and M.K. Reddy, 2015. Redox homeostasis via gene families of ascorbate-glutathione pathway. Frontiers Environ. Sci. 3:25.
Parveen, M., T. Asaeda, and M.H. Rashid, 2017. Biochemical adaptations of four submerged macrophytes under combined exposure to hypoxia and hydrogen sulphide. PLoS One 12:e0182691.
Polidoros, A.N., P.V. Mylona, K. Pasentsis, J.G. Scandalios, and A.S. Tsaftaris, 2005. The maize alternative oxidase 1a (Aox1a) gene is regulated by signals related to oxidative stress. Redox Report 10:71-78.
Prasad, T.K., M.D. Anderson, B.A. Martin, and C.R. Stewart, 1994. Evidence for chilling-induced oxidative stress in maize seedlings and a regulatory role for hydrogen peroxide. Plant Cell 6:65-74.
Pucciariello, C., S. Parlanti, V. Banti, G. Novi, and P. Perata, 2012. Reactive oxygen species-driven transcription in Arabidopsis under oxygen deprivation. Plant Physiol. 159:184-196.
Qiu, F., Y. Zheng, Z. Zhang, and S. Xu, 2007. Mapping of QTL associated with waterlogging tolerance during the seedling stage in maize. Ann. Bot. 99:1067-1081.
Rentel, M.C. and M.R. Knight, 2004. Oxidative stress-induced calcium signaling in Arabidopsis. Plant Physiol. 135:1471-1479.
Roelfsema, M.R.G. and R. Hedrich, 2005. In the light of stomatal opening: new insights into ‘the Watergate’. New Phytol. 167:665-691.
Roelfsema, M.R.G. and H.B. Prins, 1998. The membrane potential of Arabidopsis thaliana guard cells; depolarizations induced by apoplastic acidification. Planta 205:100-112.
Romero‐Puertas, M., M. Rodríguez‐Serrano, F. Corpas, M.d. Gomez, L. Del Rio, and L. Sandalio, 2004. Cadmium‐induced subcellular accumulation of O2·− and H2O2 in pea leaves. Plant Cell Environ. 27:1122-1134.
Ruban, A.V., 2015. Evolution under the sun: optimizing light harvesting in photosynthesis. J. Exp. Bot. 66:7-23.
Ríos, J., B. Blasco, L. Cervilla, M. Rosales, E. Sanchez‐Rodriguez, L. Romero, and J. Ruiz, 2009. Production and detoxification of H2O2 in lettuce plants exposed to selenium. Ann. Appl. Biol. 154:107-116.
Sachs, M.M. and B.B. Vartapetian, 2007. Plant anaerobic stress I. Metabolic adaptation to oxygen deficiency. Plant Stress 1:123-135.
Sagi, M. and R. Fluhr, 2006. Production of reactive oxygen species by plant NADPH oxidases. Plant Physiol. 141:336-340.
Sairam, R.K., K. Dharmar, S. Lekshmy, and V. Chinnusamy, 2011. Expression of antioxidant defense genes in mung bean (Vigna radiata L.) roots under water-logging is associated with hypoxia tolerance. Acta Physiologiae Plantarum 33:735-744.
Sairam, R.K., K.V. Rao, and G. Srivastava, 2002. Differential response of wheat genotypes to long term salinity stress in relation to oxidative stress, antioxidant activity and osmolyte concentration. Plant Sci. 163:1037-1046.
Sakuma, Y., Q. Liu, J.G. Dubouzet, H. Abe, K. Shinozaki, and K. Yamaguchi-Shinozaki, 2002. DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydration-and cold-inducible gene expression. Biochem. Biophys. Res. Commun. 290:998-1009.
Salomon, M., W. Eisenreich, H. Dürr, E. Schleicher, E. Knieb, V. Massey, W. Rüdiger, F. Müller, A. Bacher, and G. Richter, 2001. An optomechanical transducer in the blue light receptor phototropin from Avena sativa. Proc. Natl. Acad. Sci. USA 98:12357-12361.
Sasidharan, R. and L.A. Voesenek, 2015. Ethylene-mediated acclimations to flooding stress. Plant Physiol. 169:3-12.
Scandalios, J.G., 1993. Oxygen stress and superoxide dismutases. Plant Physiol. 101:7.
Schwanhäusser, B., D. Busse, N. Li, G. Dittmar, J. Schuchhardt, J. Wolf, W. Chen, and M. Selbach, 2011. Global quantification of mammalian gene expression control. Nature 473:337.
Scoffoni, C., C. Vuong, S. Diep, H. Cochard, and L. Sack, 2014. Leaf shrinkage with dehydration: coordination with hydraulic vulnerability and drought tolerance. Plant Physiol. 164:1772-1788.
Septiningsih, E.M., B.C. Collard, S. Heuer, J. Bailey-Serres, A.M. Ismail, and D.J. Mackill, 2013. Applying genomics tools for breeding submergence tolerance in rice. Translational Genomics Crop Breeding 2:9-30.
Setter, T.L., P. Bhekasut, and H. Greenway, 2010. Desiccation of leaves after de-submergence is one cause for intolerance to complete submergence of the rice cultivar IR 42. Funct. Plant Biol. 37:1096-1104.
Shahzad, Z., M. Canut, C. Tournaire-Roux, A. Martiniere, Y. Boursiac, O. Loudet, and C. Maurel, 2016. A potassium-dependent oxygen sensing pathway regulates plant root hydraulics. Cell 167:87-98.
Sharma, P., A.B. Jha, R.S. Dubey, and M. Pessarakli, 2012. Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J. Bot. 2012:217037.
Shiffler, R.E., 1988. Maximum Z scores and outliers. American Statistician 42:79-80.
Shinozaki, K. and K. Yamaguchi-Shinozaki, 1996. Molecular responses to drought and cold stress. Curr. Opin. Biotechnol. 7:161-167.
Singh, S., D.J. Mackill, and A.M. Ismail, 2009. Responses of SUB1 rice introgression lines to submergence in the field: yield and grain quality. Field Crops Res. 113:12-23.
Skutnik, M. and A.M. Rychter, 2009. Differential response of antioxidant systems in leaves and roots of barley subjected to anoxia and post-anoxia. J. Plant Physiol. 166:926-937.
Smirnoff, N., P.L. Conklin, and F.A. Loewus, 2001. Biosynthesis of ascorbic acid in plants: a renaissance. Annu. Rev. Plant Biol. 52:437-467.
Steffens, B., 2014. The role of ethylene and ROS in salinity, heavy metal, and flooding responses in rice. Frontiers Plant Sci. 5:685.
Steffens, B. and M. Sauter, 2009. Epidermal cell death in rice is confined to cells with a distinct molecular identity and is mediated by ethylene and H2O2 through an autoamplified signal pathway. Plant Cell 21:184-196.
Suzuki, N., S. Koussevitzky, R. Mittler, and G. Miller, 2012. ROS and redox signalling in the response of plants to abiotic stress. Plant Cell Environ. 35:259-270.
Swartz, T.E., S.B. Corchnoy, J.M. Christie, J.W. Lewis, I. Szundi, W.R. Briggs, and R.A. Bogomolni, 2001. The photocycle of a flavin-binding domain of the blue light photoreceptor phototropin. J. Biol. Chem. 276:36493-36500.
Szarka, A., N. Horemans, Z. Kovács, P. Gróf, M. Mayer, and G. Bánhegyi, 2007. Dehydroascorbate reduction in plant mitochondria is coupled to the respiratory electron transfer chain. Physiol. Plant. 129:225-232.
Tamang, B.G., J.O. Magliozzi, M.S. Maroof, and T. Fukao, 2014. Physiological and transcriptomic characterization of submergence and reoxygenation responses in soybean seedlings. Plant Cell Environ. 37:2350-2365.
Tanaka, Y., T. Sano, M. Tamaoki, N. Nakajima, N. Kondo, and S. Hasezawa, 2005. Ethylene inhibits abscisic acid-induced stomatal closure in Arabidopsis. Plant Physiol. 138:2337-2343.
Tanaka, Y., T. Sano, M. Tamaoki, N. Nakajima, N. Kondo, and S. Hasezawa, 2006. Cytokinin and auxin inhibit abscisic acid-induced stomatal closure by enhancing ethylene production in Arabidopsis. J. Exp. Bot. 57:2259-2266.
Tang, L., S.-Y. Kwon, S.-H. Kim, J.-S. Kim, J.S. Choi, K.Y. Cho, C.K. Sung, S.-S. Kwak, and H.-S. Lee, 2006. Enhanced tolerance of transgenic potato plants expressing both superoxide dismutase and ascorbate peroxidase in chloroplasts against oxidative stress and high temperature. Plant Cell Rep. 25:1380-1386.
Thiel, G., E. MacRobbie, and M. Blatt, 1992. Membrane transport in stomatal guard cells: the importance of voltage control. J. Membr. Biol. 126:1-18.
Thordal‐Christensen, H., Z. Zhang, Y. Wei, and D.B. Collinge, 1997. Subcellular localization of H2O2 in plants. H2O2 accumulation in papillae and hypersensitive response during the barley—powdery mildew interaction. Plant J. 11:1187-1194.
Torres, M.A. and J.L. Dangl, 2005. Functions of the respiratory burst oxidase in biotic interactions, abiotic stress and development. Curr. Opin. Plant Biol. 8:397-403.
Truffault, V., N. Gest, C. Garchery, M. Causse, R. Duboscq, G. Riqueau, C. Sauvage, H. Gautier, P. Baldet, and R. Stevens, 2014. Variation in tomato fruit ascorbate levels and consequences of manipulation of ascorbate metabolism on drought stress tolerance. Acta Hort. 1048:75-84.
Tsai, K.-J., S.-J. Chou, and M.-C. Shih, 2014. Ethylene plays an essential role in the recovery of A rabidopsis during post‐anaerobiosis reoxygenation. Plant Cell Environ. 37:2391-2405.
Upadhyay, R., S. Panda, and B. Dutta, 2010. Biochemical impact of re-oxygenation in rice seedlings after submergence stress. Indian J. Plant Physiol. 15:154-158.
Urano, K., K. Maruyama, Y. Ogata, Y. Morishita, M. Takeda, N. Sakurai, H. Suzuki, K. Saito, D. Shibata, and M. Kobayashi, 2009. Characterization of the ABA‐regulated global responses to dehydration in Arabidopsis by metabolomics. Plant J. 57:1065-1078.
Ushimaru, T., M. Shibasaka, and H. Tsuji, 1992. Development of the O2·− detoxification system during adaptation to air of submerged rice seedlings. Plant Cell Physiol. 33:1065-1071.
Vanlerberghe, G.C., 2013. Alternative oxidase: a mitochondrial respiratory pathway to maintain metabolic and signaling homeostasis during abiotic and biotic stress in plants. International J. Mol. Sci. 14:6805-6847.
VanToai, T.T. and C.S. Bolles, 1991. Postanoxic injury in soybean (Glycine max) seedlings. Plant Physiol. 97:588-592.
Vartapetian, B.B. and M.B. Jackson, 1997. Plant adaptations to anaerobic stress. Ann. Bot. 79:3-20.
Velikanov, G., T. Sibgatullin, L. Belova, and I. Ionenko, 2015. Membrane water permeability of maize root cells under two levels of oxidative stress. Protoplasma 252:1263-1273.
Vidoz, M.L., F. Mignolli, H.T. Aispuru, and L.A. Mroginski, 2016. Rapid formation of adventitious roots and partial ethylene sensitivity result in faster adaptation to flooding in the aerial roots (aer) mutant of tomato. Scientia Hort. 201:130-139.
Visser, E.J., G.M. Bögemann, C.W. Blom, and L.A. Voesenek, 1996a. Ethylene accumulation in waterlogged Rumex plants promotes formation of adventitious roots. J. Exp. Bot. 47:403-410.
Visser, E.J., J.D. Cohen, G.W. Barendse, C.W. Blom, and L.A. Voesenek, 1996b. An ethylene-mediated increase in sensitivity to auxin induces adventitious root formation in flooded Rumex palustris Sm. Plant Physiol. 112:1687-1692.
Voesenek, L.A.C., M. Banga, R.H. Thier, C.M. Mudde, F.J. Harren, G.W. Barendse, and C.W.P. Blom, 1993. Submergence-induced ethylene synthesis, entrapment, and growth in two plant species with contrasting flooding resistances. Plant Physiol. 103:783-791.
Wang, C.-F., L.-L. Huang, H. Buchenauer, Q.-M. Han, H.-C. Zhang, and Z.-S. Kang, 2007. Histochemical studies on the accumulation of reactive oxygen species (O2·− and H2O2) in the incompatible and compatible interaction of wheat—Puccinia striiformis f. sp. tritici. Physiol. Mol. Plant Pathol. 71:230-239.
Wang, L., Q. Zhang, F. Wang, X. Meng, and Q. Meng, 2012. Ascorbate plays a key role in alleviating low temperature-induced oxidative stress in Arabidopsis. Photosynthetica 50:602-612.
Ward, J.M. and J.I. Schroeder, 1994. Calcium-activated K+ channels and calcium-induced calcium release by slow vacuolar ion channels in guard cell vacuoles implicated in the control of stomatal closure. Plant Cell 6:669-683.
Wheeler, G.L., M.A. Jones, and N. Smirnoff, 1998. The biosynthetic pathway of vitamin C in higher plants. Nature 393:365-369.
Wilkinson, S. and W.J. Davies, 2009. Ozone suppresses soil drying‐and abscisic acid (ABA)‐induced stomatal closure via an ethylene‐dependent mechanism. Plant Cell Environ. 32:949-959.
Wu, Y.-S. and C.-Y. Yang, 2016. Physiological responses and expression profile of NADPH oxidase in Rice (Oryza Sativa) seedlings under different levels of submergence. Rice 9:2.
Xu, K. and D.J. Mackill, 1996. A major locus for submergence tolerance mapped on rice chromosome 9. Mol. Breed. 2:219-224.
Xu, K., X. Xu, T. Fukao, P. Canlas, R. Maghirang-Rodriguez, S. Heuer, A.M. Ismail, J. Bailey-Serres, P.C. Ronald, and D.J. Mackill, 2006. Sub1A is an ethylene-response-factor-like gene that confers submergence tolerance to rice. Nature 442:705-708.
Xu, K., X. Xu, P. Ronald, and D. Mackill, 2000. A high-resolution linkage map of the vicinity of the rice submergence tolerance locus Sub1. Mol. General Genet. 263:681-689.
Xue, G.P. and C.W. Loveridge, 2004. HvDRF1 is involved in abscisic acid‐mediated gene regulation in barley and produces two forms of AP2 transcriptional activators, interacting preferably with a CT‐rich element. Plant J. 37:326-339.
Yamamoto, F., T. Kozlowski, and K. Wolter, 1987. Effect of flooding on growth, stem anatomy, and ethylene production of Pinus halepensis seedlings. Canadian J. For. Res. 17:69-79.
Yang, C.-Y. and C.-P. Hong, 2015. The NADPH oxidase Rboh D is involved in primary hypoxia signalling and modulates expression of hypoxia-inducible genes under hypoxic stress. Environ. Exp. Bot. 115:63-72.
Yeung, E., H. Van Veen, D. Vashisht, A.L.S. Paiva, M. Hummel, T. Rankenberg, B. Steffens, A. Steffen-Heins, M. Sauter, and M. De Vries, 2018. A stress recovery signaling network for enhanced flooding tolerance in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 115:E6085-E6094.
Yoshioka, H., N. Numata, K. Nakajima, S. Katou, K. Kawakita, O. Rowland, J.D. Jones, and N. Doke, 2003. Nicotiana benthamiana gp91phox homologs NbrbohA and NbrbohB participate in H2O2 accumulation and resistance to Phytophthora infestans. Plant Cell 15:706-718.
Yuan, L.-B., Y.-S. Dai, L.-J. Xie, L.-J. Yu, Y. Zhou, Y.-X. Lai, Y.-C. Yang, L. Xu, Q.-F. Chen, and S. Xiao, 2017. Jasmonate regulates plant responses to postsubmergence reoxygenation through transcriptional activation of antioxidant synthesis. Plant Physiol. 173:1864-1880.
Zhang, F.-Q., Y.-S. Wang, Z.-P. Lou, and J.-D. Dong, 2007a. Effect of heavy metal stress on antioxidative enzymes and lipid peroxidation in leaves and roots of two mangrove plant seedlings (Kandelia candel and Bruguiera gymnorrhiza). Chemosphere 67:44-50.
Zhang, G., K. Tanakamaru, J. Abe, and S. Morita, 2007b. Influence of waterlogging on some anti-oxidative enzymatic activities of two barley genotypes differing in anoxia tolerance. Acta Physiologiae Plantarum 29:171-176.
Zhang, J., W. Jia, J. Yang, and A.M. Ismail, 2006. Role of ABA in integrating plant responses to drought and salt stresses. Field Crops Res. 97:111-119.
Zhang, J. and M. Kirkham, 1996. Enzymatic responses of the ascorbate-glutathione cycle to drought in sorghum and sunflower plants. Plant Sci. 113:139-147.
Zhang, M., T. Cao, L. Ni, P. Xie, and Z. Li, 2010. Carbon, nitrogen and antioxidant enzyme responses of Potamogeton crispus to both low light and high nutrient stresses. Environ. Exp. Bot. 68:44-50.
Zhang, S.Q. and W.H. Outlaw, 2001. Gradual long-term water stress results in abscisic acid accumulation in the guard-cell symplast and guard-cell apoplast of Intact Vicia faba L. plants. J. Plant Growth Regul. 20:300-307.
Zhang, X., S. Shabala, A. Koutoulis, L. Shabala, P. Johnson, D. Hayes, D.S. Nichols, and M. Zhou, 2015. Waterlogging tolerance in barley is associated with faster aerenchyma formation in adventitious roots. Plant Soil 394:355-372.
Zhang, Y., J. Yang, S. Lu, J. Cai, and Z. Guo, 2008. Overexpressing SgNCED1 in tobacco increases ABA level, antioxidant enzyme activities, and stress tolerance. J. Plant Growth Regul. 27:151-158.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top