跳到主要內容

臺灣博碩士論文加值系統

(44.220.44.148) 您好!臺灣時間:2024/06/14 10:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:王欣平
研究生(外文):Hsin-Ping Wang
論文名稱:萵苣品種鑑定及莖伸長期轉錄體之資訊分析
論文名稱(外文):Cultivar Identification and Informative Analysis of Transcriptome at Stem Elongation Stage in Lettuce (Lactuca sativa L.)
指導教授:羅筱鳳林彥蓉林詩舜
指導教授(外文):Hsiao-Feng LoYann-Rong LinShih-Shun Lin
口試委員:林淑怡李阿嬌
口試委員(外文):Shu-I LinAh-Chiou Lee
口試日期:2020-07-14
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:園藝暨景觀學系
學門:農業科學學門
學類:園藝學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:英文
論文頁數:118
中文關鍵詞:萵苣簡單重複序列品種鑑定抽苔轉錄體
外文關鍵詞:Lactuca sativa L.simple sequence repeatcultivar identificationboltingtranscriptome
DOI:10.6342/NTU202003937
相關次數:
  • 被引用被引用:0
  • 點閱點閱:135
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
萵苣 (Lactuca sativa L.) 為世界重要蔬菜之一,商業品種眾多。由於品種偷竊與育種者權日益受到重視,使種苗生產者關注品種鑑別及純度問題,農民亦期望種植在高溫環境下晚抽苔之品種,因其具有較高的商業價值。因此,利用多型性分子標誌鑑別商業品種以及了解高溫誘導萵苣抽苔的機制有其重要性。本研究利用去氧核醣核酸分子標誌 (deoxyribonucleic acid molecular marker) 簡單重複序列 (simple sequence repeats, SSRs) 鑑定萵苣品種。自82個SSR選出38個具有多型性者測試,結果顯示利用5個分子標誌即可有效率地鑑別25個萵苣商業品種,且基因型幾乎皆為同質結合。此外,李 (2015) 建立了萵苣早抽苔品種 ‘直立萵’ 及晚抽苔 ‘福山’在莖長5 cm時之莖頂轉錄體,並以Kyoto Encyclopedia of Genes and Genomes (KEGG) 分析;本研究進一步以 ContigView 平台比較與分析該莖頂轉錄體,結果顯示,LsCNGC4a 可能在高溫誘導抽苔的機制中扮演重要角色,且與離層酸作用、過氧化物產生、鈣離子訊息傳遞基因及開花抑制基因有關;在 ‘直立萵’ 莖伸長階段,LsFLCa、LsFLCb、LsHIPP3 以及LsOXS3 的表現量下降,可能與熱休克反應及離層酸訊息傳導路徑有關,導致該品種在高溫環境提早抽苔之外表型。
Lettuce (Lactuca sativa L.) is one of the most important vegetables in the world, which many commercial cultivars had developed. Because the concern of cultivar stealing and breeders’ right, seed producers pay attention to identify the purity of cultivars and seeds. On the other hands, farmers prefer cultivars with lately-flowering phenotype under high temperature which have higher commercial market value. Therefore, distinguishing commercial cultivars by using highly-polymorphic molecular markers and understanding the mechanism of heat-induced bolting in lettuce are important. In this study, the deoxyribonucleic (DNA) marker, simple sequence repeats (SSRs), was used to identify lettuce cultivars. From 82 SSRs, 38 with polymorphism were selected out to identify 25 commercial lettuce cultivars. Only 5 SSRs were required to identify 25 cultivars efficiently. Lee (2015) had developed stem apical transcriptomes of the early- bolting cultivar ‘Jhih Li Wo’ and the lately- bolting ‘Fu San’ of lettuce when stem elongated to 5 cm under high temperature. Lee analyzed these transcriptomes by Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway. In this study, these transcriptomes were analyzed instead through the ContigViews system and comparative networks were generated. The results showed LsCNGC4a might be an important gene which plays a role in heat-induced bolting and is involved with abscisic acid (ABA) function, reactive oxidative species (ROS) production, calcium signaling genes, and several negatively-regulated flowering genes. The decrease of LsFLCa, LsFLCb, LsHIPP3 and LsOXS3 expression might connect to the heat shock response (HSR) and ABA signaling pathway, leading to the early bolting phenotype of ‘Jhih Li Wo’.
中文摘要 I
Abstract II
Table Content VI
Figure Content VIII
Introduction 1
The characteristics of simple sequence repeat sequence in plant genomes 2
The application of SSR in cultivar identification and phylogenic analysis 4
Transcriptome analysis and datamining through ContigViews system 4
Floral transition 5
LsFT and LsSOC1 might play a role in heat-induced bolting and early-bolting phenotype 7
High temperature triggers plant hormones to control lettuce bolting 8
Genome-wide analysis of MADS-box gene family 8
Materials and methods 10
Commercial lettuce cultivars and SSR marker collections 10
DNA extraction and the SSR marker polymorphism evaluation 10
Multiplex-ready genotyping by fluorescence capillary electrophoresis 11
Calculation of polymorphism index 12
Building transcriptome database for ‘Jhih Li Wo’ and ‘Fu San’ cultivars 12
Calculation of gene expression by bowtie2 and sequence alignment by blastx 13
The model network for non-stem elongation stage (NSE) stages vs. stem elongation stage (SE) stages 14
The comparative networks for stem elongation (SE) stage to the transcriptome of 4 DAF in ‘Jhih Li Wo’ vs. ‘Fu San’ two cultivars respectively 14
Results 16
Survey polymorphic SSR markers 16
Obtaining 38 polymorphic SSRs by genotyping and polymorphism information content (PIC) calculation 17
25 commercial lettuce cultivars could identify by 5 eSSR markers developed from cultivated lettuce genome 18
Preparing the reference of lettuce CDS for ContigViews transcriptome database 19
Differentially gene expression (DEG) of 4DAP profiles in two cultivars 19
Network datamining for NSE stages vs. SE stages comparison 20
Datamining for comparative NSE stage vs. SE stage network in ‘Jhih Li Wo’ cultivar 24
Datamining for comparative NSE stage vs. SE stage network in ‘Fu San’ cultivar 26
Discussion 29
Comparison of eSSRs and gSSRs in lettuce 29
The homozygous result showed the distinguish power of SSR markers in open pollinated (OP) lettuce cultivars 30
ABA signaling pathway in SE stage 30
LsGASA10 and LsCNGC4a might be the critical genes in the mechanism of heat-induced flowering 32
Genes negatively regulated flowering might contribute to the changing of NSE stages to SE stages 34
TFs negatively regulated flowering might involve the transition of NSE stages to SE stages 35
The regulation between negative regulated flowering genes, ABA, and HSR signaling might regulate the flowering time of two cultivars 36
Working hypothesis 38
Conclusion 40
Reference 41
Supplementary Data 94
李阿嬌。2015。萵苣轉錄體分析及溫度、日長對其產量之影響。國立臺臺灣大學園藝暨景觀學系博士論文。
Aalto, M.K., Helenius, E., Kariola, T., Pennanen, V., Heino, P., Hõrak, H., Puzõrjova, I., Kollist, H., and Palva, E.T. (2012). ERD15—an attenuator of plant ABA responses and stomatal aperture. Plant Science 182, 19-28.
Achard, P., Cheng, H., De Grauwe, L., Decat, J., Schoutteten, H., Moritz, T., Van Der Straeten, D., Peng, J., and Harberd, N.P. (2006). Integration of plant responses to environmentally activated phytohormonal signals. Science 311, 91-94.
Adams, M.D., Kelley, J.M., Gocayne, J.D., Dubnick, M., Polymeropoulos, M.H., Xiao, H., Merril, C.R., Wu, A., Olde, B., and Moreno, R.F. (1991). Complementary DNA sequencing: expressed sequence tags and human genome project. Science 252, 1651-1656.
Aka Kaçar, Y., Lezzoni, A.F., and Çetiner, S. (2005). Sweet cherry cultivar identification by using SSR markers. Journal of Biological Sciences 5, 616-619.
Akin, M., Nyberg, A., Postman, J., Mehlenbacher, S., and Bassil, N. (2016). A multiplexed microsatellite fingerprinting set for hazelnut cultivar identification. age 2008.
Alavilli, H., Lee, H., Park, M., and Lee, B.-h. (2017). Antarctic moss multiprotein bridging factor 1c overexpression in Arabidopsis resulted in enhanced tolerance to salt stress. Frontiers in Plant Science 8, 1206.
Albrecht, B.E., Schulz, B., Harter, K., Luan, S., Bock, R., and Kudla, J. (2006). Alternative complex formation of the Ca 2-regulated protein kinase CIPK1 controls abscisic acid-dependent and inde-pendent stress responses in Arabidopsis. The Plant Journal 48, 857-872.
Amiryousefi, A., Hyvönen, J., and Poczai, P. (2018). iMEC: online marker efficiency calculator. Applications in Plant Sciences 6, e01159.
Ausin, I., Alonso-Blanco, C., and Martinez-Zapater, J.-M. (2004). Environmental regulation of flowering. International Journal of Developmental Biology 49, 689-705.
Baek, K., Seo, P.J., and Park, C.-M. (2011). Activation of a mitochondrial ATPase gene induces abnormal seed development in Arabidopsis. Molecules and Cells 31, 361-369.
Balagué, C., Lin, B., Alcon, C., Flottes, G., Malmström, S., Köhler, C., Neuhaus, G., Pelletier, G., Gaymard, F., and Roby, D. (2003). HLM1, an essential signaling component in the hypersensitive response, is a member of the cyclic nucleotide–gated channel ion channel family. The Plant Cell 15, 365-379.
Balasubramanian, S., Sureshkumar, S., Lempe, J., and Weigel, D. (2006). Potent induction of Arabidopsis thaliana flowering by elevated growth temperature. PLoS Genetics 2.
Barbez, E., Kubeš, M., Rolčík, J., Béziat, C., Pěnčík, A., Wang, B., Rosquete, M.R., Zhu, J., Dobrev, P.I., and Lee, Y. (2012). A novel putative auxin carrier family regulates intracellular auxin homeostasis in plants. Nature 485, 119-122.
Barratt, D.P., Kölling, K., Graf, A., Pike, M., Calder, G., Findlay, K., Zeeman, S.C., and Smith, A.M. (2011). Callose synthase GSL7 is necessary for normal phloem transport and inflorescence growth in Arabidopsis. Plant Physiology 155, 328-341.
Borghi, L., Kang, J., Ko, D., Lee, Y., and Martinoia, E. (2015). The role of ABCG-type ABC transporters in phytohormone transport. Biochemical Society Transactions 43, 924-930.
Brinker, M., Brosché, M., Vinocur, B., Abo-Ogiala, A., Fayyaz, P., Janz, D., Ottow, E.A., Cullmann, A.D., Saborowski, J., and Kangasjärvi, J. (2010). Linking the salt transcriptome with physiological responses of a salt-resistant Populus species as a strategy to identify genes important for stress acclimation. Plant Physiology 154, 1697-1709.
Bürkle, L., Cedzich, A., Döpke, C., Stransky, H., Okumoto, S., Gillissen, B., Kühn, C., and Frommer, W.B. (2003). Transport of cytokinins mediated by purine transporters of the PUP family expressed in phloem, hydathodes, and pollen of Arabidopsis. The Plant Journal 34, 13-26.
Caruso, M., Federici, C.T., and Roose, M.L. (2008). EST–SSR markers for asparagus genetic diversity evaluation and cultivar identification. Molecular Breeding 21, 195-204.
Cha, J.-Y., Kim, W.-Y., Kang, S.B., Im Kim, J., Baek, D., Jung, I.J., Kim, M.R., Li, N., Kim, H.-J., and Nakajima, M. (2015). A novel thiol-reductase activity of Arabidopsis YUC6 confers drought tolerance independently of auxin biosynthesis. Nature Communications 6, 8041.
Chen, J., Zhang, Q., Wang, Q., Feng, M., Li, Y., Meng, Y., Zhang, Y., Liu, G., Ma, Z., and Wu, H. (2017). RhMKK9, a rose MAP KINASE KINASE gene, is involved in rehydration-triggered ethylene production in rose gynoecia. BMC Plant Biology 17, 51.
Chen, K.-M., Holmström, M., Raksajit, W., Suorsa, M., Piippo, M., and Aro, E.-M. (2010). Small chloroplast-targeted DnaJ proteins are involved in optimization of photosynthetic reactions in Arabidopsis thaliana. BMC Plant Biology 10, 43.
Chen, Z., Han, Y., Ning, K., Ding, Y., Zhao, W., Yan, S., Luo, C., Jiang, X., Ge, D., and Liu, R. (2018a). Inflorescence development and the role of LsFT in regulating bolting in lettuce (Lactuca sativa L.). Frontiers in Plant Science 8, 2248.
Chen, Z., Zhao, W., Ge, D., Han, Y., Ning, K., Luo, C., Wang, S., Liu, R., Zhang, X., and Wang, Q. (2018b). LCM‐seq reveals the crucial role of LsSOC1 in heat‐promoted bolting of lettuce (Lactuca sativa L.). The Plant Journal 95, 516-528.
Chen, Z., Zhao, P.-X., Miao, Z.-Q., Qi, G.-F., Wang, Z., Yuan, Y., Ahmad, N., Cao, M.-J., Hell, R., and Wirtz, M. (2019). SULTR3s function in chloroplast sulfate uptake and affect ABA biosynthesis and the stress response. Plant Physiology 180, 593-604.
Cheng, C.-H., Shen, B.-N., Shang, Q.-W., Liu, L.-Y.D., Peng, K.-C., Chen, Y.-H., Chen, F.-F., Hu, S.-F., Wang, Y.-T., and Wang, H.-C. (2018). Gene-to-gene network analysis of the mediation of plant innate immunity by the eliciting plant response-like 1 (Epl1) elicitor of Trichoderma formosa. Molecular Plant-Microbe Interactions 31, 683-691.
Chiba, Y., Shimizu, T., Miyakawa, S., Kanno, Y., Koshiba, T., Kamiya, Y., and Seo, M. (2015). Identification of Arabidopsis thaliana NRT1/PTR FAMILY (NPF) proteins capable of transporting plant hormones. Journal of Plant Research 128, 679-686.
Chin, K., DeFalco, T.A., Moeder, W., and Yoshioka, K. (2013). The Arabidopsis cyclic nucleotide-gated ion channels AtCNGC2 and AtCNGC4 work in the same signaling pathway to regulate pathogen defense and floral transition. Plant Physiology 163, 611-624.
Cho, Y.G., Ishii, T., Temnykh, S., Chen, X., Lipovich, L., McCOUCH, S.R., Park, W.D., Ayres, N., and Cartinhour, S. (2000). Diversity of microsatellites derived from genomic libraries and GenBank sequences in rice (Oryza sativa L.). Theoretical and Applied Genetics 100, 713-722.
Clough, S.J., Fengler, K.A., Yu, I.-c., Lippok, B., Smith, R.K., and Bent, A.F. (2000). The Arabidopsis dnd1 “defense, no death” gene encodes a mutated cyclic nucleotide-gated ion channel. Proceedings of the National Academy of Sciences 97, 9323-9328.
Colombatti, F., Mencia, R., Garcia, L., Mansilla, N., Alemano, S., Andrade, A.M., Gonzalez, D.H., and Welchen, E. (2019). The mitochondrial oxidation resistance protein AtOXR2 increases plant biomass and tolerance to oxidative stress. Journal of Experimental Botany 70, 3177-3195.
Corrales, A.R., Carrillo, L., Lasierra, P., Nebauer, S.G., Dominguez‐Figueroa, J., Renau‐Morata, B., Pollmann, S., Granell, A., Molina, R.V., and Vicente‐Carbajosa, J. (2017). Multifaceted role of cycling DOF factor 3 (CDF3) in the regulation of flowering time and abiotic stress responses in Arabidopsis. Plant, Cell & Environment 40, 748-764.
Day, I.S., Reddy, V.S., Ali, G.S., and Reddy, A. (2002). Analysis of EF-hand-containing proteins in Arabidopsis. Genome Biology 3, research0056. 0051.
De la Rosa, R., Angiolillo, A., Guerrero, C., Pellegrini, M., Rallo, L., Besnard, G., Bervillé, A., Martin, A., and Baldoni, L. (2003). A first linkage map of olive (Olea europaea L.) cultivars using RAPD, AFLP, RFLP and SSR markers. Theoretical and Applied Genetics 106, 1273-1282.
Denancé, N., Szurek, B., and Noël, L.D. (2014). Emerging functions of nodulin-like proteins in non-nodulating plant species. Plant and Cell Physiology 55, 469-474.
Devaiah, B.N., Madhuvanthi, R., Karthikeyan, A.S., and Raghothama, K.G. (2009). Phosphate starvation responses and gibberellic acid biosynthesis are regulated by the MYB62 transcription factor in Arabidopsis. Molecular Plant 2, 43-58.
Devey, D.S., Chase, M.W., and Clarkson, J.J. (2009). A stuttering start to plant DNA barcoding: microsatellites present a previously overlooked problem in non‐coding plastid regions. Taxon 58, 7-15.
Engstrom, E.M., Andersen, C.M., Gumulak-Smith, J., Hu, J., Orlova, E., Sozzani, R., and Bowman, J.L. (2011). Arabidopsis homologs of the petunia hairy meristem gene are required for maintenance of shoot and root indeterminacy. Plant Physiology 155, 735-750.
Enoki, S., Fujimori, N., Yamaguchi, C., Hattori, T., and Suzuki, S. (2017). High constitutive overexpression of glycosyl hydrolase family 17 delays floral transition by enhancing FLC expression in transgenic Arabidopsis. Plants 6, 31.
Finka, A., Cuendet, A.F.H., Maathuis, F.J., Saidi, Y., and Goloubinoff, P. (2012). Plasma membrane cyclic nucleotide gated calcium channels control land plant thermal sensing and acquired thermotolerance. The Plant Cell 24, 3333-3348.
Finkelstein, R.R., and Lynch, T.J. (2000). The Arabidopsis abscisic acid response gene ABI5 encodes a basic leucine zipper transcription factor. The Plant Cell 12, 599-609.
Fortuna, A., Lee, J., Ung, H., Chin, K., Moeder, W., and Yoshioka, K. (2015). Crossroads of stress responses, development and flowering regulation—the multiple roles of Cyclic Nucleotide Gated Ion Channel 2. Plant Signaling & Behavior 10, e989758.
Fukuda, M., Matsuo, S., Kikuchi, K., Mitsuhashi, W., Toyomasu, T., and Honda, I. (2009). The endogenous level of GA1 is upregulated by high temperature during stem elongation in lettuce through LsGA3ox1 expression. Journal of Plant Physiology 166, 2077-2084.
Gaitán‐Solís, E., Duque, M., Edwards, K., and Tohme, J. (2002). Microsatellite Repeats in Common Bean (Phaseolus vulgaris) Isolation, Characterization, and Cross‐Species Amplification in Phaseolus ssp. Crop Science 42, 2128-2136.
Gao, C., Ren, X., Mason, A.S., Li, J., Wang, W., Xiao, M., and Fu, D. (2013). Revisiting an important component of plant genomes: microsatellites. Functional Plant Biology 40, 645-661.
Gao, S., Guo, W., Feng, W., Liu, L., Song, X., Chen, J., Hou, W., Zhu, H., Tang, S., and Hu, J. (2016). LTP3 contributes to disease susceptibility in A rabidopsis by enhancing abscisic acid (ABA) biosynthesis. Molecular Plant Pathology 17, 412-426.
Geisler, M., Frangne, N., Gomès, E., Martinoia, E., and Palmgren, M.G. (2000). The ACA4 gene of Arabidopsis encodes a vacuolar membrane calcium pump that improves salt tolerance in yeast. Plant Physiology 124, 1814-1827.
Gómez-Soto, D., Galván, S., Rosales, E., Bienert, P., Abreu, I., Bonilla, I., Bolaños, L., and Reguera, M. (2019). Insights into the role of phytohormones regulating pAtNIP5; 1 activity and boron transport in Arabidopsis thaliana. Plant Science 287, 110198.
Gong, Q., Li, S., Zheng, Y., Duan, H., Xiao, F., Zhuang, Y., He, J., Wu, G., Zhao, S., and Zhou, H. (2020). SUMOylation of MYB30 enhances salt tolerance by elevating alternative respiration via transcriptionally upregulating AOX1a in Arabidopsis. The Plant Journal. 102, 1157-1171.
Gonzali, S., Loreti, E., Cardarelli, F., Novi, G., Parlanti, S., Pucciariello, C., Bassolino, L., Banti, V., Licausi, F., and Perata, P. (2015). Universal stress protein HRU1 mediates ROS homeostasis under anoxia. Nature Plants 1, 1-9.
Grover, A., and Sharma, P. (2016). Development and use of molecular markers: past and present. Critical Reviews in Biotechnology 36, 290-302.
Guilford, P., Prakash, S., Zhu, J., Rikkerink, E., Gardiner, S., Bassett, H., and Forster, R. (1997). Microsatellites in Malus x domestica (apple): abundance, polymorphism and cultivar identification. Theoretical and Applied Genetics 94, 249-254.
Hagen, G., Kleinschmidt, A., and Guilfoyle, T. (1984). Auxin-regulated gene expression in intact soybean hypocotyl and excised hypocotyl sections. Planta 162, 147-153.
Hamamouch, N., Li, C., Hewezi, T., Baum, T.J., Mitchum, M.G., Hussey, R.S., Vodkin, L.O., and Davis, E.L. (2012). The interaction of the novel 30C02 cyst nematode effector protein with a plant β-1, 3-endoglucanase may suppress host defence to promote parasitism. Journal of Experimental Botany 63, 3683-3695.
Han, Y., Chen, Z., Lv, S., Ning, K., Ji, X., Liu, X., Wang, Q., Liu, R., Fan, S., and Zhang, X. (2016). MADS-box genes and gibberellins regulate bolting in Lettuce (Lactuca sativa L.). Frontiers in Plant Science 7, 1889.
Hao, J.-H., Zhang, L.-L., Li, P.-P., Sun, Y.-C., Li, J.-K., Qin, X.-X., Wang, L., Qi, Z.-Y., Xiao, S., and Han, Y.-Y. (2018). Quantitative proteomics analysis of lettuce (Lactuca sativa L.) reveals molecular basis-associated auxin and photosynthesis with bolting induced by high temperature. International Journal of Molecular Sciences 19, 2967.
Hayden, M., Nguyen, T., Waterman, A., McMichael, G., and Chalmers, K. (2008). Application of multiplex-ready PCR for fluorescence-based SSR genotyping in barley and wheat. Molecular Breeding 21, 271-281.
Hazak, O., Mamon, E., Lavy, M., Sternberg, H., Behera, S., Schmitz-Thom, I., Bloch, D., Dementiev, O., Gutman, I., and Danziger, T. (2019). A novel Ca2+-binding protein that can rapidly transduce auxin responses during root growth. PLoS Biology 17, e3000085.
Hedden, P., and Thomas, S.G. (2012). Gibberellin biosynthesis and its regulation. Biochemical Journal 444, 11-25.
Hepworth, J., Antoniou-Kourounioti, R.L., Bloomer, R.H., Selga, C., Berggren, K., Cox, D., Harris, B.R.C., Irwin, J.A., Holm, S., and Säll, T. (2018). Absence of warmth permits epigenetic memory of winter in Arabidopsis. Nature Communications 9, 1-8.
Hong, C.P., Piao, Z.Y., Kang, T.W., Batley, J., Yang, T., Hur, Y., Bhak, J., Park, B., Edwards, D., and Lim, Y.P. (2007). Genomic distribution of simple sequence repeats in Brassica rapa. Molecules and Cells 23, 349.
Hong, J.-H., Kwon, Y.-S., Mishra, R.K., and Kim, D.H. (2015). Construction of EST-SSR databases for effective cultivar identification and their applicability to complement for lettuce (Lactuca sativa L.) distinctness test. American Journal of Plant Sciences 6, 113.
Hooijmaijers, C., Rhee, J.Y., Kwak, K.J., Chung, G.C., Horie, T., Katsuhara, M., and Kang, H. (2012). Hydrogen peroxide permeability of plasma membrane aquaporins of Arabidopsis thaliana. Journal of Plant Research 125, 147-153.
Hsu, S.-F., and Jinn, T.-L. (2010). AtHSBP functions in seed development and the motif is required for subcellular localization and interaction with AtHSFs. Plant Signaling & Behavior 5, 1042-1044.
Hsu, S.-F., Lai, H.-C., and Jinn, T.-L. (2010). Cytosol-localized heat shock factor-binding protein, AtHSBP, functions as a negative regulator of heat shock response by translocation to the nucleus and is required for seed development in Arabidopsis. Plant Physiology 153, 773-784.
Hu, J., Wang, L., and Li, J. (2011). Comparison of genomic SSR and EST-SSR markers for estimating genetic diversity in cucumber. Biologia Plantarum 55, 577-580.
Huang, Y.-C., Niu, C.-Y., Yang, C.-R., and Jinn, T.-L. (2016). The heat stress factor HSFA6b connects ABA signaling and ABA-mediated heat responses. Plant Physiology 172, 1182-1199.
Hunter, K., Kimura, S., Rokka, A., Tran, H.C., Toyota, M., Kukkonen, J.P., and Wrzaczek, M. (2019). CRK2 enhances salt tolerance by regulating callose deposition in connection with PLDα1. Plant Physiology 180, 2004-2021.
Husar, S., Berthiller, F., Fujioka, S., Rozhon, W., Khan, M., Kalaivanan, F., Elias, L., Higgins, G.S., Li, Y., and Schuhmacher, R. (2011). Overexpression of the UGT73C6 alters brassinosteroid glucoside formation in Arabidopsis thaliana. BMC Plant Biology 11, 51.
Jin, H., and Zhu, Z. (2018). HOOKLESS1 is a positive regulator in Arabidopsis thermomorphogenesis. Science China. Life Sciences, 1-3.
Jung, H.J., Kim, M.K., and Kang, H. (2013). An ABA-regulated putative RNA-binding protein affects seed germination of Arabidopsis under ABA or abiotic stress conditions. Journal of Plant Physiology 170, 179-184.
Jurado, S., Díaz‐Triviño, S., Abraham, Z., Manzano, C., Gutierrez, C., and Pozo, C. D. (2008). SKP2A, an F‐box protein that regulates cell division, is degraded via the ubiquitin pathway. The Plant Journal 53, 828-841.
Jurkowski, G.I., Smith Jr, R.K., Yu, I.-c., Ham, J.H., Sharma, S.B., Klessig, D.F., Fengler, K.A., and Bent, A.F. (2004). Arabidopsis DND2, a second cyclic nucleotide-gated ion channel gene for which mutation causes the “defense, no death” phenotype. Molecular Plant-Microbe Interactions 17, 511-520.
K Jha, S., Sharma, M., and K Pandey, G. (2016). Role of cyclic nucleotide gated channels in stress management in plants. Current Genomics 17, 315-329.
Kaldenhoff, R., Kölling, A., and Richter, G. (1996). Regulation of the Arabidopsis thaliana aquaporin gene AthH2 (PIP1b). Journal of Photochemistry and Photobiology B: Biology 36, 351-354.
Kale, L., Nakurte, I., Jalakas, P., Kunga-Jegere, L., Brosché, M., and Rostoks, N. (2019). Arabidopsis mutant dnd2 exhibits increased auxin and abscisic acid content and reduced stomatal conductance. Plant Physiology and Biochemistry 140, 18-26.
Kanno, Y., Hanada, A., Chiba, Y., Ichikawa, T., Nakazawa, M., Matsui, M., Koshiba, T., Kamiya, Y., and Seo, M. (2012). Identification of an abscisic acid transporter by functional screening using the receptor complex as a sensor. Proceedings of the National Academy of Sciences 109, 9653-9658.
Kim, H.J., Chiang, Y.-H., Kieber, J.J., and Schaller, G.E. (2013). SCFKMD controls cytokinin signaling by regulating the degradation of type-B response regulators. Proceedings of the National Academy of Sciences 110, 10028-10033.
Kim, J.-A., Yun, J., Lee, M., Kim, Y.-S., Woo, J.-C., and Park, C.-M. (2005). A basic helix-loop-helix transcription factor regulates cell elongation and seed germination. Molecules & Cells (Springer Science & Business Media BV) 19.
Kim, S., Kim, S.-J., Shin, Y.-J., Kang, J.-H., Kim, M.-R., Nam, K.H., Lee, M.-S., Lee, S.-H., Kim, Y.-H., and Hong, S.-K. (2009). An atypical soybean leucine-rich repeat receptor-like kinase, GmLRK1, may be involved in the regulation of cell elongation. Planta 229, 811-821.
Kimura, S., Hunter, K., Vaahtera, L., Tran, H.C., Citterico, M., Vaattovaara, A., Rokka, A., Stolze, S.C., Harzen, A., and Meissner, L. (2020). CRK2 and C-terminal phosphorylation of NADPH oxidase RBOHD regulate reactive oxygen species production in Arabidopsis. The Plant Cell 32, 1063-1080.
Kobayashi, M., Horiuchi, H., Fujita, K., Takuhara, Y., and Suzuki, S. (2012). Characterization of grape C-repeat-binding factor 2 and B-box-type zinc finger protein in transgenic Arabidopsis plants under stress conditions. Molecular Biology Reports 39, 7933-7939.
Kong, L., Cheng, J., Zhu, Y., Ding, Y., Meng, J., Chen, Z., Xie, Q., Guo, Y., Li, J., and Yang, S. (2015). Degradation of the ABA co-receptor ABI1 by PUB12/13 U-box E3 ligases. Nature Communications 6, 1-13.
Korir, N.K., Han, J., Shangguan, L., Wang, C., Kayesh, E., Zhang, Y., and Fang, J. (2013). Plant variety and cultivar identification: advances and prospects. Critical Reviews in Biotechnology 33, 111-125.
Ladwig, F., Stahl, M., Ludewig, U., Hirner, A.A., Hammes, U.Z., Stadler, R., Harter, K., and Koch, W. (2012). Siliques are Red1 from Arabidopsis acts as a bidirectional amino acid transporter that is crucial for the amino acid homeostasis of siliques. Plant Physiology 158, 1643-1655.
Langmead, B., and Salzberg, S.L. (2012). Fast gapped-read alignment with Bowtie 2. Nature Methods 9, 357.
Lee, A.-C., Liao, F.-S., and Lo, H.-F. (2015). Temperature, daylength, and cultivar interact to affect the growth and yield of lettuce grown in high tunnels in subtropical regions. HortScience 50, 1412-1418.
Lee, H., Suh, S.-S., Park, E., Cho, E., Ahn, J.H., Kim, S.-G., Lee, J.S., Kwon, Y.M., and Lee, I. (2000). The AGAMOUS-LIKE 20 MADS domain protein integrates floral inductive pathways in Arabidopsis. Genes & Development 14, 2366-2376.
Leijten, W., Koes, R., Roobeek, I., and Frugis, G. (2018). Translating flowering time from Arabidopsis thaliana to Brassicaceae and Asteraceae crop species. Plants 7, 111.
Leng, Q., Mercier, R.W., Yao, W., and Berkowitz, G.A. (1999). Cloning and first functional characterization of a plant cyclic nucleotide-gated cation channel. Plant Physiology 121, 753-761.
Li, D., Wang, X., Yuan, D., Zhang, L., Jiang, X., Tao, Z., Li, Y., Wang, J., Li, X., and Yang, Y. (2014). Over-expression of ArathEULS3 confers ABA sensitivity and drought tolerance in Arabidopsis. Plant Cell, Tissue and Organ Culture (PCTOC) 117, 431-442.
Li, M., Wang, H., Yang, Y., and Jin, W. (2016). Capsella rubella TGA4, a bZIP transcription factor, causes delayed flowering in Arabidopsis thaliana. Archives of Biological Sciences 68, 187-194.
Li, S., Yin, T., Wang, M., and Tuskan, G.A. (2011). Characterization of microsatellites in the coding regions of the Populus genome. Molecular Breeding 27, 59-66.
Li, X., Li, G., Li, Y., Kong, X., Zhang, L., Wang, J., Li, X., and Yang, Y. (2018). ABA receptor subfamily III enhances abscisic acid sensitivity and improves the drought tolerance of Arabidopsis. International Journal of Molecular Sciences 19, 1938.
Liang, M., Xiao, S., Cai, J., and Ow, D.W. (2019). OXIDATIVE STRESS 3 regulates drought-induced flowering through APETALA 1. Biochemical and Biophysical Research Communications 519, 585-590.
Liu, B., De Storme, N., and Geelen, D. (2017). Cold interferes with male meiotic cytokinesis in Arabidopsis thaliana independently of the AHK2/3‐AHP2/3/5 cytokinin signaling module. Cell Biology International 41, 879-889.
Liu, J., Wang, X., Yang, L., Nan, W., Ruan, M., and Bi, Y. (2020). Involvement of active MKK9-MAPK3/MAPK6 in increasing respiration in salt-treated Arabidopsis callus. Protoplasma, 1-13.
Liu, L.-Y.D., Tseng, H.-I., Lin, C.-P., Lin, Y.-Y., Huang, Y.-H., Huang, C.-K., Chang, T.-H., and Lin, S.-S. (2014). High-throughput transcriptome analysis of the leafy flower transition of Catharanthus roseus induced by peanut witches’-broom phytoplasma infection. Plant and Cell Physiology 55, 942-957.
Liu, T., Longhurst, A.D., Talavera-Rauh, F., Hokin, S.A., and Barton, M.K. (2016a). The Arabidopsis transcription factor ABIG1 relays ABA signaled growth inhibition and drought induced senescence. Elife 5, e13768.
Liu, T.-Y., Huang, T.-K., Yang, S.-Y., Hong, Y.-T., Huang, S.-M., Wang, F.-N., Chiang, S.-F., Tsai, S.-Y., Lu, W.-C., and Chiou, T.-J. (2016b). Identification of plant vacuolar transporters mediating phosphate storage. Nature Communications 7, 1-11.
Liu, Y., Sun, J., and Wu, Y. (2016c). Arabidopsis ATAF1 enhances the tolerance to salt stress and ABA in transgenic rice. Journal of plant research 129, 955-962.
Liu, Z.-B., Ulmasov, T., Shi, X., Hagen, G., and Guilfoyle, T.J. (1994). Soybean GH3 promoter contains multiple auxin-inducible elements. The Plant Cell 6, 645-657.
Lokdarshi, A., Conner, W.C., McClintock, C., Li, T., and Roberts, D.M. (2016). Arabidopsis CML38, a calcium sensor that localizes to ribonucleoprotein complexes under hypoxia stress. Plant Physiology 170, 1046-1059.
Lorrai, R., Gandolfi, F., Boccaccini, A., Ruta, V., Possenti, M., Tramontano, A., Costantino, P., Lepore, R., and Vittorioso, P. (2018). Genome-wide RNA-seq analysis indicates that the DAG1 transcription factor promotes hypocotyl elongation acting on ABA, ethylene and auxin signaling. Scientific Reports 8, 1-13.
Louarn, S., Torp, A.M., Holme, I., Andersen, S.B., and Jensen, B.D. (2007). Database derived microsatellite markers (SSRs) for cultivar differentiation in Brassica oleracea. Genetic Resources and Crop Evolution 54, 1717-1725.
Maejima, K., Kitazawa, Y., Tomomitsu, T., Yusa, A., Neriya, Y., Himeno, M., Yamaji, Y., Oshima, K., and Namba, S. (2015). Degradation of class E MADS-domain transcription factors in Arabidopsis by a phytoplasmal effector, phyllogen. Plant Signaling & Behavior 10, e1042635.
Mao, X., Kim, J.I., Wheeler, M.T., Heintzelman, A.K., Weake, V.M., and Chapple, C. (2019). Mutation of Mediator subunit CDK 8 counteracts the stunted growth and salicylic acid hyperaccumulation phenotypes of an Arabidopsis MED 5 mutant. New Phytologist 223, 233-245.
Marella, H.H., Nielsen, E., Schachtman, D.P., and Taylor, C.G. (2013). The amino acid permeases AAP3 and AAP6 are involved in root-knot nematode parasitism of Arabidopsis. Molecular Plant-Microbe Interactions 26, 44-54.
Mäser, P., Thomine, S., Schroeder, J.I., Ward, J.M., Hirschi, K., Sze, H., Talke, I.N., Amtmann, A., Maathuis, F.J., and Sanders, D. (2001). Phylogenetic relationships within cation transporter families of Arabidopsis. Plant Physiology 126, 1646-1667.
Metzgar, D., Bytof, J., and Wills, C. (2000). Selection against frameshift mutations limits microsatellite expansion in coding DNA. Genome Research 10, 72-80.
Miao, Z.-Q., Zhao, P.-X., Mao, J.-L., Yu, L.-H., Yuan, Y., Tang, H., Liu, Z.-B., and Xiang, C.-B. (2018). HOMEOBOX PROTEIN52 mediates the crosstalk between ethylene and auxin signaling during primary root elongation by modulating auxin transport-related gene expression. The Plant Cell 30, 2761-2778.
Millar, A.A., Jacobsen, J.V., Ross, J.J., Helliwell, C.A., Poole, A.T., Scofield, G., Reid, J.B., and Gubler, F. (2006). Seed dormancy and ABA metabolism in Arabidopsis and barley: The role of ABA 8′‐hydroxylase. The Plant Journal 45, 942-954.
Mittler, R., Finka, A., and Goloubinoff, P. (2012). How do plants feel the heat? Trends in Biochemical Sciences 37, 118-125.
Mizutani, T., and Tanaka, T. (2003). Genetic analyses of isozyme in lettuce, Lactuca sativa, and its relatives. Journal of the Japanese Society for Horticultural Science 72, 122-127.
Moisan-Thiery, M., Marhadour, S., Kerlan, M.-C., Dessenne, N., Perramant, M., Gokelaere, T., and Le Hingrat, Y. (2005). Potato cultivar identification using simple sequence repeats markers (SSR). Potato Research 48, 191-200.
Morgante, M., Hanafey, M., and Powell, W. (2002). Microsatellites are preferentially associated with nonrepetitive DNA in plant genomes. Nature Genetics 30, 194-200.
Mouradov, A., Cremer, F., and Coupland, G. (2002). Control of flowering time: interacting pathways as a basis for diversity. The Plant Cell 14, S111-S130.
Murray, M., and Thompson, W.F. (1980). Rapid isolation of high molecular weight plant DNA. Nucleic Acids Research 8, 4321-4326.
Nagaya, S., Kawamura, K., Shinmyo, A., and Kato, K. (2010). The HSP terminator of Arabidopsis thaliana increases gene expression in plant cells. Plant and Cell Physiology 51, 328-332.
Nakazawa, M., Yabe, N., Ichikawa, T., Yamamoto, Y.Y., Yoshizumi, T., Hasunuma, K., and Matsui, M. (2001). DFL1, an auxin‐responsive GH3 gene homologue, negatively regulates shoot cell elongation and lateral root formation, and positively regulates the light response of hypocotyl length. The Plant Journal 25, 213-221.
Ning, K., Han, Y., Chen, Z., Luo, C., Wang, S., Zhang, W., Li, L., Zhang, X., Fan, S., and Wang, Q. (2019). Genome‐wide analysis of MADS‐box family genes during flower development in lettuce. Plant, Cell & Environment 42, 1868-1881.
Oliya, B.K., Kim, M.Y., and Lee, S.-H. (2018). Development of genic-SSR markers and genetic diversity of Indian lettuce (Lactuca indica L.) in South Korea. Genes & Genomics 40, 615-623.
Parcy, F. (2004). Flowering: a time for integration. International Journal of Developmental Biology 49, 585-593.
Parker, J.L., and Newstead, S. (2014). Molecular basis of nitrate uptake by the plant nitrate transporter NRT1. 1. Nature 507, 68-72.
Peer, W.A., Bandyopadhyay, A., Blakeslee, J.J., Makam, S.N., Chen, R.J., Masson, P.H., and Murphy, A.S. (2004). Variation in expression and protein localization of the PIN family of auxin efflux facilitator proteins in flavonoid mutants with altered auxin transport in Arabidopsis thaliana. The Plant Cell 16, 1898-1911.
Pitorre, D., Llauro, C., Jobet, E., Guilleminot, J., Brizard, J.-P., Delseny, M., and Lasserre, E. (2010). RLK7, a leucine-rich repeat receptor-like kinase, is required for proper germination speed and tolerance to oxidative stress in Arabidopsis thaliana. Planta 232, 1339-1353.
Pouteau, S., and Albertini, C. (2009). The significance of bolting and floral transitions as indicators of reproductive phase change in Arabidopsis. Journal of Experimental Botany 60, 3367-3377.
Provan, J., Powell, W., and Hollingsworth, P.M. (2001). Chloroplast microsatellites: new tools for studies in plant ecology and evolution. Trends in Ecology & Evolution 16, 142-147.
Pugh, T., Fouet, O., Risterucci, A.-M., Brottier, P., Abouladze, M., Deletrez, C., Courtois, B., Clément, D., Larmande, P., and N’Goran, J.A. (2004). A new cacao linkage map based on codominant markers: development and integration of 201 new microsatellite markers. Theoretical and Applied Genetics 108, 1151-1161.
Ranocha, P., Denancé, N., Vanholme, R., Freydier, A., Martinez, Y., Hoffmann, L., Köhler, L., Pouzet, C., Renou, J.P., and Sundberg, B. (2010). Walls are thin 1 (WAT1), an Arabidopsis homolog of Medicago truncatula NODULIN21, is a tonoplast‐localized protein required for secondary wall formation in fibers. The Plant Journal 63, 469-483.
Rauscher, G., and Simko, I. (2013). Development of genomic SSR markers for fingerprinting lettuce (Lactuca sativa L.) cultivars and mapping genes. BMC Plant Biology 13, 11.
Reddy, V.S., Shlykov, M.A., Castillo, R., Sun, E.I., and Saier Jr, M.H. (2012). The major facilitator superfamily (MFS) revisited. The FEBS journal 279, 2022-2035.
Ren, H., and Gray, W.M. (2015). SAUR proteins as effectors of hormonal and environmental signals in plant growth. Molecular Plant 8, 1153-1164.
Reyes-Chin-Wo, S., Wang, Z., Yang, X., Kozik, A., Arikit, S., Song, C., Xia, L., Froenicke, L., Lavelle, D.O., and Truco, M.-J. (2017). Genome assembly with in vitro proximity ligation data and whole-genome triplication in lettuce. Nature Communications 8, 1-11.
Romero, I., Fuertes, A., Benito, M., Malpica, J., Leyva, A., and Paz-Ares, J. (1998). More than 80R2R3-MYB regulatory genes in the genome of Arabidopsis thaliana. The Plant Journal: for Cell and Molecular Biology 14, 273-284.
Santner, A., Calderon-Villalobos, L.I.A., and Estelle, M. (2009). Plant hormones are versatile chemical regulators of plant growth. Nature Chemical Biology 5, 301-307.
Satyal, S.H., Chen, D., Fox, S.G., Kramer, J.M., and Morimoto, R.I. (1998). Negative regulation of the heat shock transcriptional response by HSBP1. Genes & Development 12, 1962-1974.
Schilling, S., Pan, S., Kennedy, A., and Melzer, R. (2018). MADS-box genes and crop domestication: the jack of all traits (Oxford University Press UK).
Schwechheimer, C. (2008). Understanding gibberellic acid signaling—are we there yet? Current Opinion in Plant Biology 11, 9-15.
Searle, I., He, Y., Turck, F., Vincent, C., Fornara, F., Kröber, S., Amasino, R.A., and Coupland, G. (2006). The transcription factor FLC confers a flowering response to vernalization by repressing meristem competence and systemic signaling in Arabidopsis. Genes & Development 20, 898-912.
Sewelam, N., Kazan, K., Hüdig, M., Maurino, V.G., and Schenk, P.M. (2019). The AtHSP17. 4C1 Gene Expression Is Mediated by Diverse Signals that Link Biotic and Abiotic Stress Factors with ROS and Can Be a Useful Molecular Marker for Oxidative Stress. International Journal of Molecular Sciences 20, 3201.
She, C., Liu, J., Diao, Y., Hu, Z., and Song, Y. (2007). The distribution of repetitive DNAs along chromosomes in plants revealed by self-genomic in situ hybridization. Journal of Genetics and Genomics 34, 437-448.
Shi, L., Xiaoying, Z., Dongying, T., Xinhong, G., and Xuanming, L. (2010). The function of CIPK1 gene in Arabidopsis.
Shin, R., Burch, A.Y., Huppert, K.A., Tiwari, S.B., Murphy, A.S., Guilfoyle, T.J., and Schachtman, D.P. (2007). The Arabidopsis transcription factor MYB77 modulates auxin signal transduction. The Plant Cell 19, 2440-2453.
Singh, S., Yadav, S., Singh, A., Mahima, M., Singh, A., Gautam, V., and Sarkar, A.K. (2020). Auxin signaling modulates LATERAL ROOT PRIMORDIUM 1 (LRP 1) expression during lateral root development in Arabidopsis. The Plant Journal 101, 87-100.
Suárez-López, P., Wheatley, K., Robson, F., Onouchi, H., Valverde, F., and Coupland, G. (2001). CONSTANS mediates between the circadian clock and the control of flowering in Arabidopsis. Nature 410, 1116-1120.
Takasaki, H., Maruyama, K., Takahashi, F., Fujita, M., Yoshida, T., Nakashima, K., Myouga, F., Toyooka, K., Yamaguchi‐Shinozaki, K., and Shinozaki, K. (2015). SNAC‐As, stress‐responsive NAC transcription factors, mediate ABA‐inducible leaf senescence. The Plant Journal 84, 1114-1123.
Tehrani, M.S., Mardi, M., Sahebi, J., Catalán, P., and Díaz-Pérez, A. (2009). Genetic diversity and structure among Iranian tall fescue populations based on genomic-SSR and EST-SSR marker analysis. Plant Systematics and Evolution 282, 57-70.
Teotia, S., and Tang, G. (2015). To bloom or not to bloom: role of microRNAs in plant flowering. Molecular Plant 8, 359-377.
Theißen, G., Melzer, R., and Rümpler, F. (2016). MADS-domain transcription factors and the floral quartet model of flower development: linking plant development and evolution. Development 143, 3259-3271.
Thiel, T., Michalek, W., Varshney, R., and Graner, A. (2003). Exploiting EST databases for the development and characterization of gene-derived SSR-markers in barley (Hordeum vulgare L.). Theoretical and Applied Genetics 106, 411-422.
Thompson, H., and Knott, J. (1933). The effect of temperature and photoperiod on the growth of lettuce. In Proc. Amer. Soc. Hort. Sci, pp. 507-509.
To, J.P., and Kieber, J.J. (2008). Cytokinin signaling: two-components and more. Trends in Plant Science 13, 85-92.
Trapalis, M., Li, S.F., and Parish, R.W. (2017). The Arabidopsis GASA10 gene encodes a cell wall protein strongly expressed in developing anthers and seeds. Plant Science 260, 71-79.
Ueno, S., Taguchi, Y., Tomaru, N., and Tsumura, Y. (2009). Development of EST-SSR markers from an inner bark cDNA library of Fagus crenata (Fagaceae). Conservation Genetics 10, 1477.
Van Hove, J., De Jaeger, G., De Winne, N., Guisez, Y., and Van Damme, E.J. (2015). The Arabidopsis lectin EULS3 is involved in stomatal closure. Plant Science 238, 312-322.
van Treuren, R., van Eekelen, H.D., Wehrens, R., and de Vos, R.C. (2018). Metabolite variation in the lettuce gene pool: towards healthier crop varieties and food. Metabolomics 14, 146.
Vinces, M.D., Legendre, M., Caldara, M., Hagihara, M., and Verstrepen, K.J. (2009). Unstable tandem repeats in promoters confer transcriptional evolvability. Science 324, 1213-1216.
Wan, D., Li, R., Zou, B., Zhang, X., Cong, J., Wang, R., Xia, Y., and Li, G. (2012). Calmodulin-binding protein CBP60g is a positive regulator of both disease resistance and drought tolerance in Arabidopsis. Plant Cell Reports 31, 1269-1281.
Wang, J.-W. (2014). Regulation of flowering time by the miR156-mediated age pathway. Journal of Experimental Botany 65, 4723-4730.
Wang, P., Li, Z., Wei, J., Zhao, Z., Sun, D., and Cui, S. (2012a). A Na+/Ca2+ exchanger-like protein (AtNCL) involved in salt stress in Arabidopsis. Journal of Biological Chemistry 287, 44062-44070.
Wang, S., Wang, X., He, Q., Liu, X., Xu, W., Li, L., Gao, J., and Wang, F. (2012b). Transcriptome analysis of the roots at early and late seedling stages using Illumina paired-end sequencing and development of EST-SSR markers in radish. Plant Cell Reports 31, 1437-1447.
Wang, T., Chen, Y., Zhang, M., Chen, J., Liu, J., Han, H., and Hua, X. (2017a). Arabidopsis AMINO ACID PERMEASE1 contributes to salt stress-induced proline uptake from exogenous sources. Frontiers in Plant Science 8, 2182.
Wang, Y., Li, L., Ye, T., Lu, Y., Chen, X., and Wu, Y. (2013). The inhibitory effect of ABA on floral transition is mediated by ABI5 in Arabidopsis. Journal of Experimental Botany 64, 675-684.
Wang, Y., Yang, L., Chen, X., Ye, T., Zhong, B., Liu, R., Wu, Y., and Chan, Z. (2016). Major latex protein-like protein 43 (MLP43) functions as a positive regulator during abscisic acid responses and confers drought tolerance in Arabidopsis thaliana. Journal of Experimental Botany 67, 421-434.
Wang, Y., Wang, Q., Liu, M., Bo, C., Wang, X., Ma, Q., Cheng, B., and Cai, R. (2017b). Overexpression of a maize MYB48 gene confers drought tolerance in transgenic arabidopsis plants. Journal of Plant Biology 60, 612-621.
Wawrzynska, A., Christiansen, K.M., Lan, Y., Rodibaugh, N.L., and Innes, R.W. (2008). Powdery mildew resistance conferred by loss of the ENHANCED DISEASE RESISTANCE1 protein kinase is suppressed by a missense mutation in KEEP ON GOING, a regulator of abscisic acid signaling. Plant Physiology 148, 1510-1522.
Wege, S., De Angeli, A., Droillard, M.-J., Kroniewicz, L., Merlot, S., Cornu, D., Gambale, F., Martinoia, E., Barbier-Brygoo, H., and Thomine, S. (2014). Phosphorylation of the vacuolar anion exchanger AtCLCa is required for the stomatal response to abscisic acid. Sci. Signal. 7, ra65-ra65.
Weller, J.L., Ross, J.J., and Reid, J.B. (1994). Gibberellins and phytochrome regulation of stem elongation in pea. Planta 192, 489-496.
Weng, M., Yang, Y., Feng, H., Pan, Z., SHEN, W.H., Zhu, Y., and Dong, A. (2014). Histone chaperone ASF1 is involved in gene transcription activation in response to heat stress in A rabidopsis thaliana. Plant, Cell & Environment 37, 2128-2138.
Wu, G., and Poethig, R.S. (2006). Temporal regulation of shoot development in Arabidopsis thaliana by miR156 and its target SPL3. Development 133, 3539-3547.
Wu, J.X., Li, J., Liu, Z., Yin, J., Chang, Z.Y., Rong, C., Wu, J.L., Bi, F.C., and Yao, N. (2015). The Arabidopsis ceramidase At ACER functions in disease resistance and salt tolerance. The Plant Journal 81, 767-780.
Wu, Y., Yang, Z., How, J., Xu, H., Chen, L., and Li, K. (2017). Overexpression of a peroxidase gene (AtPrx64) of Arabidopsis thaliana in tobacco improves plant’s tolerance to aluminum stress. Plant Molecular Biology 95, 157-168.
Wunderlich, M., Groß-Hardt, R., and Schöffl, F. (2014). Heat shock factor HSFB2a involved in gametophyte development of Arabidopsis thaliana and its expression is controlled by a heat-inducible long non-coding antisense RNA. Plant Molecular Biology 85, 541-550.
Yadav, D., Ahmed, I., Shukla, P., Boyidi, P., and Kirti, P.B. (2016). Overexpression of Arabidopsis AnnAt8 alleviates abiotic stress in transgenic Arabidopsis and tobacco. Plants 5, 18.
Yan, H., Yoo, M.-J., Koh, J., Liu, L., Chen, Y., Acikgoz, D., Wang, Q., and Chen, S. (2014). Molecular reprogramming of Arabidopsis in response to perturbation of jasmonate signaling. Journal of Proteome Research 13, 5751-5766.
Yu, I.-c., Parker, J., and Bent, A.F. (1998). Gene-for-gene disease resistance without the hypersensitive response in Arabidopsis dnd1 mutant. Proceedings of the National Academy of Sciences 95, 7819-7824.
Yu, J., Lai, Y., Wu, X., Wu, G., and Guo, C. (2016). Overexpression of OsEm1 encoding a group I LEA protein confers enhanced drought tolerance in rice. Biochemical and Biophysical Research Communications 478, 703-709.
Zagotta, W.N., and Siegelbaum, S.A. (1996). Structure and function of cyclic nucleotide-gated channels. Annual Review of Neuroscience 19, 235-263.
Zhang, B., Van Aken, O., Thatcher, L., De Clercq, I., Duncan, O., Law, S.R., Murcha, M.W., Van der Merwe, M., Seifi, H.S., and Carrie, C. (2014). The mitochondrial outer membrane AAA ATP ase At OM 66 affects cell death and pathogen resistance in A rabidopsis thaliana. The Plant Journal 80, 709-727.
Zhang, K., Wang, R., Zi, H., Li, Y., Cao, X., Li, D., Guo, L., Tong, J., Pan, Y., and Jiao, Y. (2018). AUXIN RESPONSE FACTOR3 regulates floral meristem determinacy by repressing cytokinin biosynthesis and signaling. The Plant Cell 30, 324-346.
Zhao, C., Hanada, A., Yamaguchi, S., Kamiya, Y., and Beers, E.P. (2011). The Arabidopsis Myb genes MYR1 and MYR2 are redundant negative regulators of flowering time under decreased light intensity. The Plant Journal 66, 502-515.
Zheng, X., Tan, D.X., Allan, A.C., Zuo, B., Zhao, Y., Reiter, R.J., Wang, L., Wang, Z., Guo, Y., and Zhou, J. (2017). Chloroplastic biosynthesis of melatonin and its involvement in protection of plants from salt stress. Scientific Reports 7, 1-12.
Zhong, C., Xu, H., Ye, S., Wang, S., Li, L., Zhang, S., and Wang, X. (2015). Gibberellic acid-stimulated Arabidopsis6 serves as an integrator of gibberellin, abscisic acid, and glucose signaling during seed germination in Arabidopsis. Plant Physiology 169, 2288-2303.
Zientara, K., Wawrzyńska, A., Łukomska, J., López-Moya, J.R., Liszewska, F., Assunção, A.G., Aarts, M.G., and Sirko, A. (2009). Activity of the AtMRP3 promoter in transgenic Arabidopsis thaliana and Nicotiana tabacum plants is increased by cadmium, nickel, arsenic, cobalt and lead but not by zinc and iron. Journal of Biotechnology 139, 258-263.
Zschiesche, W., Barth, O., Daniel, K., Böhme, S., Rausche, J., and Humbeck, K. (2015). The zinc‐binding nuclear protein HIPP 3 acts as an upstream regulator of the salicylate‐dependent plant immunity pathway and of flowering time in Arabidopsis thaliana. New Phytologist 207, 1084-1096.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top