[1]丁峰、彭宏祥、何新華、李冬波、朱建華、秦獻泉、李鴻莉、羅聰、曹輝慶. 2012. 荔枝 FLOWERING LOCUST (FT) 同源基因 cDNA 全長克隆及其表達. 果樹學報 29(1):75-80. (以簡體發表)
[2]沈素美. 1992. 溫度、葉片、乙烯和光線對荔枝花穗形成之影響. 國立臺灣大學園藝系博士論文. 臺北. 臺灣[3]李雪如. 2006. ‘玉荷包’荔枝開花及著果習性之研究. 高雄區農業改良場研究彙報 17 (1):9-19.
[4]李曉明、魏寶東、劉愛群、張家旺、馮輝. 2010. 乙烯利誘導雄全同株甜瓜形成雌花. 中國蔬菜 2010 (4):67-70. (以簡體發表)
[5]肖華山、呂柳新、肖祥希. 2002. 荔枝花雄蕊和雌蕊發育過程中碳氮化合物的動態變化. 應用與環境生物學報 8 (1):26-30. (以簡體發表)
[6]肖華山、呂柳新. 2002. 荔枝花芽和花性別分化研究進展. 福建農林大學學報 31 (3):334-338. (以簡體發表)
[7]林宗賢. 1987. 荔枝開花與花序型態. 園藝作物產期調節研討會專集. 台中區農業改良場編印特刊P. 56-76.
[8]胡香英、胡福初、範鴻雁、王祥和、韓冰、林尤奮. 2016. 5種植物生長調節劑對妃子笑荔枝開花坐果調控效應的比較. 西南農業學報 29(4):915-919. (以簡體發表)
[9]張哲瑋、趙政男、陳右人、鄭正勇. 1997. 溫度及乾旱對荔枝開花的影響. 中國園藝 43 (4):322-329.
[10]張哲瑋、鄧永興、顏昌瑞. 2012. 臺灣荔枝新品種介紹與佈局策略. P.25-38. 臺灣荔枝產業佈局研討會專刊. 農業試驗所鳳山分所. 台中
[11]陳柏安、阮素芬、李金龍、陳右人. 2014. 激勃素於果樹開花誘導中扮演之角色. 臺灣園藝 60 (3):137-148.
[12]陳柏安. 2014. 修剪和GA3處理建構‘玉荷包’荔枝開花溫量模式之研究. 國立臺灣大學園藝系博士論文. 臺北. 臺灣
[13]陳厚彬、蘇鉆賢、張榮、張紅娜、丁峰、周碧燕. (2014). 荔枝花芽分化研究進展. 中國農業科學 47(9):1774-1783. (以簡體發表)
[14]陳盟松. 2014. 荔枝花芽分化與開花過程. 臺中區農業改良場122號特刊P. 379-382.
[15]陳溪潭. 1994. 荔枝枝梢生長與花穗形成之探討. 臺南區農業改良場研究彙報31:23-34.
[16]陳溪潭. 1994. 利用益收(Ethrel)及耕作處理對荔枝花性及產量影響之研究. 臺南區農業改良場研究彙報31:35-45.
[17]傅華龍、 何天久、 吳巧玉. 2008. 植物生長調節劑的研究與應用. 生物加工過程 6(4):7-12. (以簡體發表)
[18]鄧永興、張哲瑋、王怡玎. 2006. 荔枝. 臺灣農家要覽農作篇(二). P.39-52. 豐年社, 臺北. 臺灣
[19]應振土、李曙軒. 1987. 乙烯, 乙烯利和 ACC 對瓠瓜性別表現的影響. 園藝學報 14 (1):42-48. (以簡體發表)
[20]Chen, P. A., S.F. Roan, C. L. Lee, and I. Z. Chen. 2013. The effect of temperature during inflorescence development to flowering and inflorescence length on yield of ‘Yu Her Pau’ litchi. Scientia Horticulturae 159:186-189.
[21]Chen, P. A., S. F. Roan, C. L. Lee, and I. Z. Chen. 2016. Temperature model of litchi flowering-from induction to anthesis. Scientia Horticulturae 205:106-111.
[22]Cui, Z., B. Zhou, Z. Zhang, and Z. Hu. 2013. Abscisic acid promotes flowering and enhances LcAP1 expression in Litchi chinensis sonn. South African Journal of Botany 88:76-79.
[23]Davenport, T. L., and R. A. Stern. 2005. Flowering. Litchi and Longan: Botany, Cultivation and Uses. P.87-113.
[24]Ding, F., S. Zhang, H. Chen, Z. Su, R. Zhang, Q. Xiao, and H. Li. 2015. Promoter difference of LcFT1 is a leading cause of natural variation of flowering timing in different litchi cultivars (Litchi chinensis Sonn.). Plant Science 241:128-137.
[25]Feng, S., M. F. Li, F. Wu, W. L. Li, and S. P. Li. 2015. 5-Aminolevulinic acid affects fruit coloration, growth, and nutrition quality of Litchi chinensis Sonn. cv. Feizixiao in Hainan, tropical China. Scientia Horticulturae 193:188-194.
[26]Huang, H. B., and H. B. Chen. 2003. A phasic approach towards the floral formation in Litchi chinensis Sonn. Journal of Fruit Science 20(6):487-492.
[27]Hu, J., H. J. Kim, H. Chen, and B. Zhou. 2018. Litchi Flowering is Regulated by Expression of Short Vegetative Phase Genes. Journal of the American Society for Horticultural Science 143(2):101-109.
[28]Iwahori, S., J. M. Lyons, and O. E. Smith. 1970. Sex expression in cucumber plants as affected by 2-chloroethylphosphonic acid, ethylene, and growth regulators. Plant Physiology 46 (3):412-415.
[29]Jack, T. 2004. Molecular and genetic mechanisms of floral control. The Plant Cell 16:S1-S17.
[30]Kumar, A., S. K. Singh, S. D. Pandey, R. K. Patel, and V. Nath. 2017. Effect of foliar spray of chemicals on flowering and fruiting in litchi. International Journal of Current Microbiology and Applied Sciences 6(5):1337-1343.
[31]Li, C., Y. Wang, P. Ying, W. Ma, and J. Li. 2015. Genome-wide digital transcript analysis of putative fruitlet abscission related genes regulated by ethephon in litchi. Frontiers in Plant Science 6:502.
[32]Li, Z., S. Wang, Q. Tao, J. Pan, L. Si, Z. Gong, and R. Cai. 2012. A putative positive feedback regulation mechanism in CsACS2 expression suggests a modified model for sex determination in cucumber (Cucumis sativus L.). Journal of Experimental Botany 63(12):4475-4484.
[33]Lin, S., H. Chen, H. Luo, and Z. Zheng. 2003. Changes in endogenous hormones and polyamine during sexual differentiation of lychee flower, II International Symposium on Lychee, Longan, Rambutan and other Sapindaceae Plants. Acta Horticulturae 665:203-208.
[34]Liu, W. W., H. J. Kim, H. B. Chen, X. Y. Lu, and B. Y. Zhou. 2013. Identification of MV-generated ROS responsive EST clones in floral buds of Litchi chinensis Sonn. Plant Cell Reports 32(9):1361-1372.
[35]Lu, X., H. Kim, S. Zhong, H. Chen, Z. Hu, and B. Zhou. 2014. De novo transcriptome assembly for rudimentary leaves in Litchi chinesis Sonn. and identification of differentially expressed genes in response to reactive oxygen species. BMC Genomics 15:805.
[36]Lu, X., J. Li, H. Chen, J. Hu, P. Liu, and B. Zhou. 2017. RNA-seq analysis of apical meristem reveals integrative regulatory network of ROS and chilling potentially related to flowering in Litchi chinensis. Scientific Reports 7:10183.
[37]Menzel, C. 1983. The control of floral initiation in lychee: A review. Scientia Horticulturae 21:201-215.
[38]Menzel, C.M. 1984. The pattern and control of reproductive development in lychee: A review. Scientia Horticulturae 22:333-345.
[39]Menzel, C. M. and D. R. Simpson. 1995. Temperatures above 20 °C reduce flowering in lychee (Litchi chinensis Sonn.). Journal of Horticultural Science 70(6):981-987.
[40]Menzel, C. M. and G. K. Waite. 2005. Litchi and longan: botany, production and uses. CABI Publishing. P.87-114.
[41]Nakata, S. and Y. Watanabe. 1966. Effects of photoperiod and night temperature on the flowering of litchi chinensis. Botanical Gazette 127:146-152.
[42]Pan, J., G. Wang, H. Wen, H. Du, H. Lian, H. He, J. Pan. and R. Cai. 2018. Differential Gene Expression Caused by the F and M Loci Provides Insight into Ethylene-Mediated Female Flower Differentiation in Cucumber. Frontiers in Plant Science 9:1091.
[43]Paull R. E. and O. Duarte. 2011. Tropical fruits: Lichi and longan., 2nd Edition, Volume 1 P. 221-225.
[44]Robbertse, H., J. Fivaz, and C. Menzel. 1995. A reevaluation of tree model, inflorescence morphology, and sex ratio in lychee (Litchi chinensis sonn.). Journal of the American Society for Horticultural Science 120:914-920.
[45]Rudich J., A. H. Halevy and N. Kedar. 1969. Increase in femaleness of three cucurbits by treatment with ethrel, an ethylene releasing compound. Planta 86:69-76.
[46]Shen, J., Q. Xiao, H. Qiu, C. Chen, and H. Chen. 2016. Integrative effect of drought and low temperature on litchi (Litchi chinensis Sonn.) floral initiation revealed by dynamic genome-wide transcriptome analysis. Scientific Reports 6: 32005.
[47]Sultana, S., G. Das, B. Das, and B. C. Rudra. 2017. Evaluation of various plant growth regulators in flower and fruit setting of litchi. International Journal of Green Pharmacy 10(4): S242-S244.
[48]Sun, J. J., F. Li, D. H. Wang, X. F. Liu, X. Li, N. Liu, H. T. Gu, C. Zou, J. C. Luo, C. X. He, S. W. Huang, X. L. Zhang, Z. H. Xu, and S. N. Bai. 2016. CsAP3: A cucumber homolog to arabidopsis APETALA3 with novel characteristics. Frontiers in Plant Science 7:1181.
[49]Stern, R. A. and S. Gazit. 2002. The reproductive biology of the lychee. Horticultural Reviews 28:393-453.
[50]Tisserat, B. and T. Murashige. 1977. Effects of ethephon, ethylene, and 2, 4-dichlorophenoxyacetic acid on asexual embryogenesis in vitro. Plant Physiology 60:437-439.
[51]Wang, C., P. Lü, S. Zhong, H. Chen, and B. Zhou. 2017. LcMCII-1 is involved in the ROS-dependent senescence of the rudimentary leaves of Litchi chinensis. Plant Cell Reports 36:89-102.
[52]Wang, D. H., F. Li, Q. H. Duan, T. Han, Z. H. Xu, and S. N. Bai. 2010. Ethylene perception is involved in female cucumber flower development. The Plant Journal 61(5):862-872.
[53]Wei, Y. Z., H. N. Zhang, W. C. Li, J. H. Xie, Y. C. Wang, L. Q. Liu, and S. Y. Shi. 2013. Phenological growth stages of lychee (Litchi chinensis Sonn.) using the extended BBCH-scale. Scientia Horticulturae 161:273-277.
[54]Wilkie, J. D., M. Sedgley, and T. Olesen. 2008. Regulation of floral initiation in horticultural trees. Journal of Experimental Botany 59(12):3215-3228.
[55]Xiao, Q. S., Z. X. Su, H. B. Chen, and J. Y. Shen. 2019. Genome-wide identification and involvement of litchi SPL genes in flowering in response to cold and leaf maturity. The Journal of Horticultural Science and Biotechnology 94(4):428-440.
[56]Yang, H. F., X. Y. Lu, H. B. Chen, C. C. Wang, and B. Y. Zhou. 2017. Low temperature-induced leaf senescence and the expression of senescence-related genes in the panicles of Litchi chinensis. Biologia Plantarum 61(2):315-322.
[57]Zhang, H. N., Y. Z. Wei, J. Y. Shen, B. Lai, X. M. Huang, F. Ding, Z. X. Su, and H. B. Chen. 2014. Transcriptomic analysis of floral initiation in litchi (Litchi chinensis Sonn.) based on de novo RNA sequencing. Plant Cell Reports 33(10):1723-1735.
[58]Zhang, H., J. Shen, Y. Wei, and H. Chen. 2017. Transcriptome profiling of litchi leaves in response to low temperature reveals candidate regulatory genes and key metabolic events during floral induction. BMC Genomics 18(1):363.
[59]Zhou, B., Y. Li, J. Chen, Z. Ji, and Z. Hu. 2001. Effects of low temperature stress and aba on flower formation and endogenous hormone of litchi. Acta Horticulturae Sinica 29:577-578.
[60]Zhou, B., H. Chen, X. Huang, N. Li, Z. Hu, Z. Gao, and Y. Lu. 2008. Rudimentary leaf abortion with the development of panicle in litchi: Changes in ultrastructure, antioxidant enzymes and phytohormones. Scientia Horticulturae 117:288-296.
[61]Zhou, B., N. Li, Z. Zhang, X. Huang, H. Chen, Z. Hu, X. Pang, W. Liu and Y. Liu. 2012. Hydrogen peroxide and nitric oxide promote reproductive growth in Litchi chinensis. Biologia Plantarum 56(2):321-329.