跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.89) 您好!臺灣時間:2024/12/10 00:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:邱亭瑋
研究生(外文):Ting-Wei Chiu
論文名稱:從誘導低溫量與益收生長素施用探討荔枝花序形成與開花
論文名稱(外文):The Inflorescence Formation and Flowering of Litchi (Litchi chinensis Sonn.) under Chilling Requirements and Ethephon Application
指導教授:林書妍
口試委員:陳右人陳柏安
口試日期:2019-06-18
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:園藝暨景觀學系
學門:農業科學學門
學類:園藝學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:72
中文關鍵詞:花序誘導植物生長調節劑開花基因益收生長素
外文關鍵詞:floral inductionplant growth regulatorflowering geneethephon
DOI:10.6342/NTU202000697
相關次數:
  • 被引用被引用:0
  • 點閱點閱:172
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究使用定量即時聚合酶鏈式反應(quantitative real time polymerase chain reaction, qPCR)分別探討‘玉荷包’在控溫環境下及‘黑葉’荔枝在自然環境下LcFT、LcFLC、LcAP1、LcAP2及LcSOC1開花基因相對表達量。‘玉荷包’荔枝的試驗結果,在15/13 °C的溫度處理下,當低於門檻溫度23.42 °C的誘導溫度累積達5706.0小時,LcFT 的相對表現量達到高峰值,可觀察到花序形成。隨著相對低溫誘導時間增加,LcFT的表達量會被正向調控。在20/15 °C的溫度處理組中,誘導溫度達4861.1小時後可觀察到荔枝花序誘導成功;而25/20℃溫度處理下的‘玉荷包’荔枝,LcFT的表達量始終維持低含量,其他開花相關基因的表達則呈現波動的趨勢,且無法觀察到荔枝花序誘導及分化之情形。‘黑葉’荔枝的試驗結果,在12108 C.U.時,達到基因相對表現量的高峰值,並可觀察到花序形成。在這項研究中,可觀察到‘黑葉’及‘玉荷包’荔枝兩個品種的所需低溫誘導時數不同,若以相同的基礎溫度計算,‘黑葉’荔枝所需的低溫誘導量遠高於‘玉荷包’荔枝。本研究另進行施用益收生長素(乙烯釋放劑)對荔枝開花的試驗調查。以‘黑葉’荔枝樹作為試驗材料,在荔枝花序抽長至10~15公分、荔枝花序小花膨大、第一朵小花綻放及小花完全綻放四個不同花序生長階段:處理濃度50及100 mg·L-1的益收生長素,持續進行三年。由三年的試驗研究結果得知,在花序小花膨大階段施用50 mg·L-1益收生長素可以增加荔枝整體的總花數和偏雌花數量,唯試驗處理組和對照組的初期結果數並沒有顯著差異,顯示益收生長素的應用雖能影響花數,但在結果產量上仍需其他協助才能有效提升。
In this study, to clear the gene relative expression of ‘Yu-Her-Pau’ and ‘Hey-Yeh’ litchi under temperature effect and natural environment we analyzed LcFT, LcFLC, LcAP1, LcAP2, and LcSOC1 gene expression through quantitative real time polymerase chain reaction (qPCR). The result of ‘Yu-Her-Pau’ showed that under 15/13 °C treatment the relative expression of LcFT peaked at 5706.0 chilling units, and the litchi inflorescence formed. While the inducing hours increased, the expression of LcFT up-regulated;under 20/15 °C treatment, litchi flower induction succeed after 4861.1 chilling units. As for litchi under 25/20 °C treatment, the expression of LcFT was keeping in a low content and the other genes expressions varied, with no litchi floral bud differentiation observed. The result of ‘Hey-Yeh’ showed that the relative expression of LcFT peaked at 12108 chilling units, and the litchi inflorescence formed. In this study, the requirement of chilling units was different in these two cultivars of litchi, and in ‘Hey-Yeh’ litchi, the requirement was much higher than in ‘Yu-Her-Pau’. Beside of the effect of temperature, we conducted experiments of plant growth regulator. ‘Hey-Yeh’ litchi trees were treated with ethephon under 50 and 100 mg·L-1 and four inflorescence stages, the length of inflorenscence is 10-15 cm, the floret swollen, the first floret blossom, and the male flowers fully blossom. In this three-year experiments, 50 mg·L-1 ethephon application in the stage of the floret swollen could increase the number of total flower and the hermaphrodite female flower of litchi. There was no significant difference of the preliminary fruit number in treatments and control group, which meant the application of ethephon could affect the flower numbers, but still need other studies to efficiently improve the fruit production.
口試委員會審定書 #
誌謝 i
中文摘要 ii
ABSTRACT iii
目錄 iv
圖目錄 vi
表目錄 xi
第一章 文獻回顧 1
第一節 溫度與荔枝開花之關係 1
(一) 荔枝的生殖生長階段與開花行為 1
(二) 溫度對花序誘導之影響 2
(三) 荔枝開花基因表現量與溫度之關係 3
第二節 植物生長調節劑對荔枝開花之影響 6
(一) 植物生長調節劑對荔枝生理之影響 6
(二) 乙烯釋放劑對園藝作物開花行為之影響 7
(三) 乙烯釋放劑在荔枝產業的應用 8
第二章 材料與方法 10
第一節 溫度與荔枝開花基因之關係 10
(一) 植物材料 10
(二) 試驗處理 10
(三) 誘導低溫量計算 11
(四) 資料分析 11
第二節 益收生長素對‘黑葉’荔枝開花之影響 12
(一) 植物材料 12
(二) 試驗處理 12
(三) 資料收集 13
(四) 資料分析 14
第三章 結果與討論 15
第一節 溫度與荔枝開花基因之關係 15
(一) 溫度對‘玉荷包’荔枝開花基因表現量之影響 15
(二) 溫度對‘黑葉’荔枝開花基因表現量之影響 17
(三) 低溫誘導荔枝花序在溫量模型與基因表現之關係 18
第二節 益收生長素對‘黑葉’荔枝開花之影響 20
(一) 益收生長素處理後對荔枝開花數量之影響 20
(二) 益收生長素處理濃度與時期對荔枝開花之影響 23
(三) 益收生長素處理後對荔枝小花花性之影響 23
(四) 益收生長素處理後對荔枝初期結果量之影響 24
參考文獻 66
附錄 72
[1]丁峰、彭宏祥、何新華、李冬波、朱建華、秦獻泉、李鴻莉、羅聰、曹輝慶. 2012. 荔枝 FLOWERING LOCUST (FT) 同源基因 cDNA 全長克隆及其表達. 果樹學報 29(1):75-80. (以簡體發表)
[2]沈素美. 1992. 溫度、葉片、乙烯和光線對荔枝花穗形成之影響. 國立臺灣大學園藝系博士論文. 臺北. 臺灣
[3]李雪如. 2006. ‘玉荷包’荔枝開花及著果習性之研究. 高雄區農業改良場研究彙報 17 (1):9-19.
[4]李曉明、魏寶東、劉愛群、張家旺、馮輝. 2010. 乙烯利誘導雄全同株甜瓜形成雌花. 中國蔬菜 2010 (4):67-70. (以簡體發表)
[5]肖華山、呂柳新、肖祥希. 2002. 荔枝花雄蕊和雌蕊發育過程中碳氮化合物的動態變化. 應用與環境生物學報 8 (1):26-30. (以簡體發表)
[6]肖華山、呂柳新. 2002. 荔枝花芽和花性別分化研究進展. 福建農林大學學報 31 (3):334-338. (以簡體發表)
[7]林宗賢. 1987. 荔枝開花與花序型態. 園藝作物產期調節研討會專集. 台中區農業改良場編印特刊P. 56-76.
[8]胡香英、胡福初、範鴻雁、王祥和、韓冰、林尤奮. 2016. 5種植物生長調節劑對妃子笑荔枝開花坐果調控效應的比較. 西南農業學報 29(4):915-919. (以簡體發表)
[9]張哲瑋、趙政男、陳右人、鄭正勇. 1997. 溫度及乾旱對荔枝開花的影響. 中國園藝 43 (4):322-329.
[10]張哲瑋、鄧永興、顏昌瑞. 2012. 臺灣荔枝新品種介紹與佈局策略. P.25-38. 臺灣荔枝產業佈局研討會專刊. 農業試驗所鳳山分所. 台中
[11]陳柏安、阮素芬、李金龍、陳右人. 2014. 激勃素於果樹開花誘導中扮演之角色. 臺灣園藝 60 (3):137-148.
[12]陳柏安. 2014. 修剪和GA3處理建構‘玉荷包’荔枝開花溫量模式之研究. 國立臺灣大學園藝系博士論文. 臺北. 臺灣
[13]陳厚彬、蘇鉆賢、張榮、張紅娜、丁峰、周碧燕. (2014). 荔枝花芽分化研究進展. 中國農業科學 47(9):1774-1783. (以簡體發表)
[14]陳盟松. 2014. 荔枝花芽分化與開花過程. 臺中區農業改良場122號特刊P. 379-382.
[15]陳溪潭. 1994. 荔枝枝梢生長與花穗形成之探討. 臺南區農業改良場研究彙報31:23-34.
[16]陳溪潭. 1994. 利用益收(Ethrel)及耕作處理對荔枝花性及產量影響之研究. 臺南區農業改良場研究彙報31:35-45.
[17]傅華龍、 何天久、 吳巧玉. 2008. 植物生長調節劑的研究與應用. 生物加工過程 6(4):7-12. (以簡體發表)
[18]鄧永興、張哲瑋、王怡玎. 2006. 荔枝. 臺灣農家要覽農作篇(二). P.39-52. 豐年社, 臺北. 臺灣
[19]應振土、李曙軒. 1987. 乙烯, 乙烯利和 ACC 對瓠瓜性別表現的影響. 園藝學報 14 (1):42-48. (以簡體發表)
[20]Chen, P. A., S.F. Roan, C. L. Lee, and I. Z. Chen. 2013. The effect of temperature during inflorescence development to flowering and inflorescence length on yield of ‘Yu Her Pau’ litchi. Scientia Horticulturae 159:186-189.
[21]Chen, P. A., S. F. Roan, C. L. Lee, and I. Z. Chen. 2016. Temperature model of litchi flowering-from induction to anthesis. Scientia Horticulturae 205:106-111.
[22]Cui, Z., B. Zhou, Z. Zhang, and Z. Hu. 2013. Abscisic acid promotes flowering and enhances LcAP1 expression in Litchi chinensis sonn. South African Journal of Botany 88:76-79.
[23]Davenport, T. L., and R. A. Stern. 2005. Flowering. Litchi and Longan: Botany, Cultivation and Uses. P.87-113.
[24]Ding, F., S. Zhang, H. Chen, Z. Su, R. Zhang, Q. Xiao, and H. Li. 2015. Promoter difference of LcFT1 is a leading cause of natural variation of flowering timing in different litchi cultivars (Litchi chinensis Sonn.). Plant Science 241:128-137.
[25]Feng, S., M. F. Li, F. Wu, W. L. Li, and S. P. Li. 2015. 5-Aminolevulinic acid affects fruit coloration, growth, and nutrition quality of Litchi chinensis Sonn. cv. Feizixiao in Hainan, tropical China. Scientia Horticulturae 193:188-194.
[26]Huang, H. B., and H. B. Chen. 2003. A phasic approach towards the floral formation in Litchi chinensis Sonn. Journal of Fruit Science 20(6):487-492.
[27]Hu, J., H. J. Kim, H. Chen, and B. Zhou. 2018. Litchi Flowering is Regulated by Expression of Short Vegetative Phase Genes. Journal of the American Society for Horticultural Science 143(2):101-109.
[28]Iwahori, S., J. M. Lyons, and O. E. Smith. 1970. Sex expression in cucumber plants as affected by 2-chloroethylphosphonic acid, ethylene, and growth regulators. Plant Physiology 46 (3):412-415.
[29]Jack, T. 2004. Molecular and genetic mechanisms of floral control. The Plant Cell 16:S1-S17.
[30]Kumar, A., S. K. Singh, S. D. Pandey, R. K. Patel, and V. Nath. 2017. Effect of foliar spray of chemicals on flowering and fruiting in litchi. International Journal of Current Microbiology and Applied Sciences 6(5):1337-1343.
[31]Li, C., Y. Wang, P. Ying, W. Ma, and J. Li. 2015. Genome-wide digital transcript analysis of putative fruitlet abscission related genes regulated by ethephon in litchi. Frontiers in Plant Science 6:502.
[32]Li, Z., S. Wang, Q. Tao, J. Pan, L. Si, Z. Gong, and R. Cai. 2012. A putative positive feedback regulation mechanism in CsACS2 expression suggests a modified model for sex determination in cucumber (Cucumis sativus L.). Journal of Experimental Botany 63(12):4475-4484.
[33]Lin, S., H. Chen, H. Luo, and Z. Zheng. 2003. Changes in endogenous hormones and polyamine during sexual differentiation of lychee flower, II International Symposium on Lychee, Longan, Rambutan and other Sapindaceae Plants. Acta Horticulturae 665:203-208.
[34]Liu, W. W., H. J. Kim, H. B. Chen, X. Y. Lu, and B. Y. Zhou. 2013. Identification of MV-generated ROS responsive EST clones in floral buds of Litchi chinensis Sonn. Plant Cell Reports 32(9):1361-1372.
[35]Lu, X., H. Kim, S. Zhong, H. Chen, Z. Hu, and B. Zhou. 2014. De novo transcriptome assembly for rudimentary leaves in Litchi chinesis Sonn. and identification of differentially expressed genes in response to reactive oxygen species. BMC Genomics 15:805.
[36]Lu, X., J. Li, H. Chen, J. Hu, P. Liu, and B. Zhou. 2017. RNA-seq analysis of apical meristem reveals integrative regulatory network of ROS and chilling potentially related to flowering in Litchi chinensis. Scientific Reports 7:10183.
[37]Menzel, C. 1983. The control of floral initiation in lychee: A review. Scientia Horticulturae 21:201-215.
[38]Menzel, C.M. 1984. The pattern and control of reproductive development in lychee: A review. Scientia Horticulturae 22:333-345.
[39]Menzel, C. M. and D. R. Simpson. 1995. Temperatures above 20 °C reduce flowering in lychee (Litchi chinensis Sonn.). Journal of Horticultural Science 70(6):981-987.
[40]Menzel, C. M. and G. K. Waite. 2005. Litchi and longan: botany, production and uses. CABI Publishing. P.87-114.
[41]Nakata, S. and Y. Watanabe. 1966. Effects of photoperiod and night temperature on the flowering of litchi chinensis. Botanical Gazette 127:146-152.
[42]Pan, J., G. Wang, H. Wen, H. Du, H. Lian, H. He, J. Pan. and R. Cai. 2018. Differential Gene Expression Caused by the F and M Loci Provides Insight into Ethylene-Mediated Female Flower Differentiation in Cucumber. Frontiers in Plant Science 9:1091.
[43]Paull R. E. and O. Duarte. 2011. Tropical fruits: Lichi and longan., 2nd Edition, Volume 1 P. 221-225.
[44]Robbertse, H., J. Fivaz, and C. Menzel. 1995. A reevaluation of tree model, inflorescence morphology, and sex ratio in lychee (Litchi chinensis sonn.). Journal of the American Society for Horticultural Science 120:914-920.
[45]Rudich J., A. H. Halevy and N. Kedar. 1969. Increase in femaleness of three cucurbits by treatment with ethrel, an ethylene releasing compound. Planta 86:69-76.
[46]Shen, J., Q. Xiao, H. Qiu, C. Chen, and H. Chen. 2016. Integrative effect of drought and low temperature on litchi (Litchi chinensis Sonn.) floral initiation revealed by dynamic genome-wide transcriptome analysis. Scientific Reports 6: 32005.
[47]Sultana, S., G. Das, B. Das, and B. C. Rudra. 2017. Evaluation of various plant growth regulators in flower and fruit setting of litchi. International Journal of Green Pharmacy 10(4): S242-S244.
[48]Sun, J. J., F. Li, D. H. Wang, X. F. Liu, X. Li, N. Liu, H. T. Gu, C. Zou, J. C. Luo, C. X. He, S. W. Huang, X. L. Zhang, Z. H. Xu, and S. N. Bai. 2016. CsAP3: A cucumber homolog to arabidopsis APETALA3 with novel characteristics. Frontiers in Plant Science 7:1181.
[49]Stern, R. A. and S. Gazit. 2002. The reproductive biology of the lychee. Horticultural Reviews 28:393-453.
[50]Tisserat, B. and T. Murashige. 1977. Effects of ethephon, ethylene, and 2, 4-dichlorophenoxyacetic acid on asexual embryogenesis in vitro. Plant Physiology 60:437-439.
[51]Wang, C., P. Lü, S. Zhong, H. Chen, and B. Zhou. 2017. LcMCII-1 is involved in the ROS-dependent senescence of the rudimentary leaves of Litchi chinensis. Plant Cell Reports 36:89-102.
[52]Wang, D. H., F. Li, Q. H. Duan, T. Han, Z. H. Xu, and S. N. Bai. 2010. Ethylene perception is involved in female cucumber flower development. The Plant Journal 61(5):862-872.
[53]Wei, Y. Z., H. N. Zhang, W. C. Li, J. H. Xie, Y. C. Wang, L. Q. Liu, and S. Y. Shi. 2013. Phenological growth stages of lychee (Litchi chinensis Sonn.) using the extended BBCH-scale. Scientia Horticulturae 161:273-277.
[54]Wilkie, J. D., M. Sedgley, and T. Olesen. 2008. Regulation of floral initiation in horticultural trees. Journal of Experimental Botany 59(12):3215-3228.
[55]Xiao, Q. S., Z. X. Su, H. B. Chen, and J. Y. Shen. 2019. Genome-wide identification and involvement of litchi SPL genes in flowering in response to cold and leaf maturity. The Journal of Horticultural Science and Biotechnology 94(4):428-440.
[56]Yang, H. F., X. Y. Lu, H. B. Chen, C. C. Wang, and B. Y. Zhou. 2017. Low temperature-induced leaf senescence and the expression of senescence-related genes in the panicles of Litchi chinensis. Biologia Plantarum 61(2):315-322.
[57]Zhang, H. N., Y. Z. Wei, J. Y. Shen, B. Lai, X. M. Huang, F. Ding, Z. X. Su, and H. B. Chen. 2014. Transcriptomic analysis of floral initiation in litchi (Litchi chinensis Sonn.) based on de novo RNA sequencing. Plant Cell Reports 33(10):1723-1735.
[58]Zhang, H., J. Shen, Y. Wei, and H. Chen. 2017. Transcriptome profiling of litchi leaves in response to low temperature reveals candidate regulatory genes and key metabolic events during floral induction. BMC Genomics 18(1):363.
[59]Zhou, B., Y. Li, J. Chen, Z. Ji, and Z. Hu. 2001. Effects of low temperature stress and aba on flower formation and endogenous hormone of litchi. Acta Horticulturae Sinica 29:577-578.
[60]Zhou, B., H. Chen, X. Huang, N. Li, Z. Hu, Z. Gao, and Y. Lu. 2008. Rudimentary leaf abortion with the development of panicle in litchi: Changes in ultrastructure, antioxidant enzymes and phytohormones. Scientia Horticulturae 117:288-296.
[61]Zhou, B., N. Li, Z. Zhang, X. Huang, H. Chen, Z. Hu, X. Pang, W. Liu and Y. Liu. 2012. Hydrogen peroxide and nitric oxide promote reproductive growth in Litchi chinensis. Biologia Plantarum 56(2):321-329.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top