跳到主要內容

臺灣博碩士論文加值系統

(98.84.18.52) 您好!臺灣時間:2024/10/10 19:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:翁仕哲
研究生(外文):Shih-Che Weng
論文名稱:埃及斑蚊生殖調控路徑及宿主因子調控登革病毒之複製
論文名稱(外文):Pathways of reproduction control and host factors regulating dengue virus replication in the mosquito Aedes aegypti
指導教授:蕭信宏蕭信宏引用關係
指導教授(外文):SHIN-HONG SHIAO
口試委員:劉旻禕詹智強余明俊張俊哲
口試委員(外文):HELENE MINYI LIUChih-Chiang ChanMING-JIUN YUChun-che Chang
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:微生物學研究所
學門:生命科學學門
學類:微生物學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:116
中文關鍵詞:埃及斑蚊卵黃生成作用Wnt 訊息傳遞路徑未折疊蛋白質反應細胞自噬登革病毒血醣蛋白質泛素化修飾
外文關鍵詞:Aedes aegyptivitellogenesisWnt signaling pathwayunfolded protein responseUPRautophagydengue virusblood glucoseprotein SUMOylation
DOI:10.6342/NTU202000529
相關次數:
  • 被引用被引用:0
  • 點閱點閱:143
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
病媒蚊的生活史需要藉由吸取脊椎動物的血以完成其卵巢的發育。目前已知有某些病媒蚊能傳播人類重要疾病的病原體。因而,了解如何調節病媒蚊生殖調控與病原體複製的機制,對於開發嶄新的蚊媒蚊控制策略是重要的。Wnt訊息傳遞和未折疊的蛋白反應(UPR)在果蠅的胚胎發育和細胞的逆境反應中扮演重要的角色。但是,我們對於這兩種途徑與病媒蚊中卵黃生成的交互作用了解甚少。此外,先前在哺乳類細胞的研究中也發現,登革病毒感染需要高血糖和蛋白質的轉錄後修飾(例如: SUMOylation),這些對哺乳動物中的病毒複製是重要的。然而,對於登革病毒的主要傳播媒介埃及斑蚊中,吸血時血液中葡萄糖濃度和病媒蚊體內蛋白質SUMOylation對登革熱病毒複製的影響知之甚少。在本論文中,我們證明了Wnt和TOR信號之間的交互作用與埃及斑蚊生殖調控有關。我們也發現,在埃及斑蚊中,母蚊吸血後可以藉由活化未折疊的蛋白反應來啟動細胞自噬,而這些反應對於病媒蚊的生殖調控也扮演了重要的角色。另外,我們也證實了血糖和蛋白質SUMOylation有利於病毒在埃及斑蚊體內複製。
Vertebrate blood is required for mosquito egg development. Some mosquito species are known to act as vectors for pathogens that cause devastating diseases in humans. Hence, understanding the mechanisms regulating egg developmental and pathogens replication are important basis for developing novel approaches to combat mosquito-borne diseases. The Wnt signaling pathway and the unfolded protein response (UPR) are key events in embryonic development and cellular stress response in model organisms, such as Drosophila. However, the interactions between these two pathways and vitellogenesis are poorly understood in the mosquito. Moreover, the blood glucose and post-translational protein modification such as SUMOylation have been shown to be required for dengue virus infection and important for viral replication in mammals. However, little is known about the effect of glucose levels and protein SUMOylation on dengue virus replication in the mosquito. Here, I demonstrated that there is a crosstalk between Wnt and TOR signaling, which are involved in the regulation of mosquito reproduction. I also showed that the autophagy-mediated egg production in the mosquito A. aegypti is regulated by UPR. In addition, I demonstrated that blood glucose and protein SUMOylation are beneficial to the virus replication and facilitates the virus transmission in the mosquito via the AKT and TOR signaling.
Table of Contents

Abstract 1
中文摘要 2
Chapter 1
General Introduction 9
Mosquito-borne diseases 10
Mosquito vitellogenesis 10
UPR and Autophagy 13
Dengue fever 16
The life cycle of the dengue virus in the mosquito vector 16
Blood glucose and dengue fever 17
SUMOylation 19
Chapter 2
Frizzled 2 is a key component in the regulation of TOR signaling mediated egg production in the mosquito Aedes aegypti 21
Abstract 22
Results 23
2.1. Cloning and characterization of A. aegypti Frizzled 2 23
2.2. Tissue-specific expression of AaFz2 26
2.3. Silencing AaFz2 significantly inhibited the fecundity of the female mosquito 27
2.4. Silencing AaFz2 inhibited the activation of TOR signaling 30
2.5. Silencing AaFz2 inhibited the Vg expression 32
Discussion 35
Chapter 3
The unfolded protein response is essential for reproduction control of the mosquito Aedes aegypti 38
Abstract 39
Results 40
3.1 Unfolded protein response (UPR) is activated after a blood meal in the fat body of mosquitoes 40
3.2 UPR is essential for mosquito fecundity 44
3.3 Both UPR and autophagy were activated after a blood meal in the mosquito 46
3.4 Amino acid treatment-activated UPR in the in vitro fat body culture system 50
3.5 UPR is the upstream regulator of autophagy in the control of Vg production 52
Discussion 55
Chapter 4
Effect of glucose on dengue virus replication in the mosquito Aedes aegypti 66
Abstract 67
Result 68
4.1 Glucose concentration is an important factor for dengue virus. 68
4.2 AKT signaling and TOR signaling are activated during the mosquito cell incubated at high glucose medium. 70
4.3 AKT and TOR signaling are involved in the glucose dependent enhancement of dengue virus replication and transmission in the mosquitoes. 71
Discussion 74
Chapter 5
Role of SUMOylation in dengue virus replication in the mosquito Aedes aegypti 78
Abstract 79
Result 80
5.1 Protein SUMOylation pathway is activated after a blood meal in the midgut of mosquitoes 80
5.2 protein SUMOylation pathway play an essential role on dengue virus replication in the mosquito. 82
5.3 Dengue virus envelope protein (E) and pre-membrane protein (prM) are potential target proteins of protein SUMOylation. 84
Chapter 6
General discussion 88
Signaling regulate the mosquito reproduction 89
Blood glucose and protein SUMOylation are beneficial to the virus replication and facilitates the virus transmission in the mosquito. 92
Material and methods 97
Rearing and maintenance 97
Blood feeding 97
RNA extraction 97
Reverse transcription (RT) 98
Polymerase chain reaction (PCR) 99
Quantitative polymerase chain reaction (Q-PCR) 99
Double-stranded RNA preparation-Plasmid construction 100
Double-stranded RNA synthesis 100
RNAi-mediated silencing and evaluation of silencing efficiency 101
Western blot analysis 102
Fat body culture 102
Treatment with UPR activator 103
Statistical analyses 103
References 104
References

Aamir, M., Mukhtar, F., Fatima, A., Ijaz, A.U., Nasir, S., Masood, G., Aamir, W., 2015. Newly Diagnosed Diabetes Mellitus in Patients with Dengue Fever Admitted in Teaching Hospital of Lahore. Pak J Med Health Sci 9, 99-101.
Airo, A.M., Urbanowski, M.D., Lopez-Orozco, J., You, J.H., Skene-Arnold, T.D., Holmes, C., Yamshchikov, V., Malik-Soni, N., Frappier, L., Hobman, T.C., 2018. Expression of flavivirus capsids enhance the cellular environment for viral replication by activating Akt-signalling pathways. Virology 516, 147-157.
Al-Alimi, A.A., Ali, S.A., Al-Hassan, F.M., Idris, F.M., Teow, S.Y., Mohd Yusoff, N., 2014. Dengue virus type 2 (DENV2)-induced oxidative responses in monocytes from glucose-6-phosphate dehydrogenase (G6PD)-deficient and G6PD normal subjects. PLoS Negl Trop Dis 8, e2711.
Appenzeller-Herzog, C., Hall, M.N., 2012. Bidirectional crosstalk between endoplasmic reticulum stress and mTOR signaling. Trends Cell Biol 22, 274-282.
Arik, A.J., Hun, L.V., Quicke, K., Piatt, M., Ziegler, R., Scaraffia, P.Y., Badgandi, H., Riehle, M.A., 2015. Increased Akt signaling in the mosquito fat body increases adult survivorship. Faseb J 29, 1404-1413.
Attardo, G.M., Hansen, I.A., Raikhel, A.S., 2005. Nutritional regulation of vitellogenesis in mosquitoes: implications for anautogeny. Insect Biochem Mol Biol 35, 661-675.
Back, S.H., Schroder, M., Lee, K., Zhang, K., Kaufman, R.J., 2005. ER stress signaling by regulated splicing: IRE1/HAC1/XBP1. Methods 35, 395-416.
Badawi, A., Velummailum, R., Ryoo, S.G., Senthinathan, A., Yaghoubi, S., Vasileva, D., Ostermeier, E., Plishka, M., Soosaipillai, M., Arora, P., 2018. Prevalence of chronic comorbidities in dengue fever and West Nile virus: A systematic review and meta-analysis. Plos One 13.
Baig Mirza, A.M., Fida, M., Murtaza, G., Niazi, R., Hanif, A., Irfan, K., Masud, F., 2016. Association of metabolic factors with dengue viral infection on admission triage which predict its clinical course during Lahore dengue epidemic. J Pak Med Assoc 66, 1102-1106.
Bedoya-Perez, L.P., Cancino-Rodezno, A., Flores-Escobar, B., Soberon, M., Bravo, A., 2013a. Role of UPR Pathway in Defense Response of A. aegypti against Cry11Aa Toxin from Bacillus thuringiensis. International journal of molecular sciences 14, 8467-8478.
Bedoya-Perez, L.P., Cancino-Rodezno, A., Flores-Escobar, B., Soberon, M., Bravo, A., 2013b. Role of UPR pathway in defense response of Aedes aegypti against Cry11Aa toxin from Bacillus thuringiensis. Int J Mol Sci 14, 8467-8478.
Benbrook, D.M., Long, A., 2012. Integration of autophagy, proteasomal degradation, unfolded protein response and apoptosis. Exp Oncol 34, 286-297.
Benoit, J.B., Lopez-Martinez, G., Patrick, K.R., Phillips, Z.P., Krause, T.B., Denlinger, D.L., 2011. Drinking a hot blood meal elicits a protective heat shock response in mosquitoes. Proc Natl Acad Sci U S A 108, 8026-8029.
Bonnevie-Nielsen, V., Larsen, M.L., Frifelt, J.J., Michelsen, B., Lernmark, A., 1989. Association of IDDM and attenuated response of 2'',5''-oligoadenylate synthetase to yellow fever vaccine. Diabetes 38, 1636-1642.
Bose, S.K., Shrivastava, S., Meyer, K., Ray, R.B., Ray, R., 2012. Hepatitis C virus activates the mTOR/S6K1 signaling pathway in inhibiting IRS-1 function for insulin resistance. J Virol 86, 6315-6322.
Brewer, J.W., 2014. Regulatory crosstalk within the mammalian unfolded protein response. Cell Mol Life Sci 71, 1067-1079.
Bryant, B., Raikhel, A.S., 2011. Programmed autophagy in the fat body of Aedes aegypti is required to maintain egg maturation cycles. PLoS One 6, e25502.
Buchkovich, N.J., Yu, Y., Zampieri, C.A., Alwine, J.C., 2008. The TORrid affairs of viruses: effects of mammalian DNA viruses on the PI3K-Akt-mTOR signalling pathway. Nat Rev Microbiol 6, 265-275.
Casqueiro, J., Casqueiro, J., Alves, C., 2012. Infections in patients with diabetes mellitus: A review of pathogenesis. Indian J Endocrinol Metab 16 Suppl 1, S27-36.
Chakrabarti, A., Chen, A.W., Varner, J.D., 2011. A review of the mammalian unfolded protein response. Biotechnol Bioeng 108, 2777-2793.
Chang, C.H., Liu, Y.T., Weng, S.C., Chen, I.Y., Tsao, P.N., Shiao, S.H., 2018. The non-canonical Notch signaling is essential for the control of fertility in Aedes aegypti. PLoS Negl Trop Dis 12, e0006307.
Chen, C.Y., Lee, M.Y., Lin, K.D., Hsu, W.H., Lee, Y.J., Hsiao, P.J., Shin, S.J., 2015. Diabetes mellitus increases severity of thrombocytopenia in dengue-infected patients. Int J Mol Sci 16, 3820-3830.
Chen, H.H., Chen, C.C., Lin, Y.S., Chang, P.C., Lu, Z.Y., Lin, C.F., Chen, C.L., Chang, C.P., 2017. AR-12 suppresses dengue virus replication by down-regulation of PI3K/AKT and GRP78. Antivir Res 142, 158-168.
Clarke, R., Cook, K.L., Hu, R., Facey, C.O., Tavassoly, I., Schwartz, J.L., Baumann, W.T., Tyson, J.J., Xuan, J., Wang, Y., Warri, A., Shajahan, A.N., 2012. Endoplasmic reticulum stress, the unfolded protein response, autophagy, and the integrated regulation of breast cancer cell fate. Cancer Res 72, 1321-1331.
Ding, W.X., Yin, X.M., 2008. Sorting, recognition and activation of the misfolded protein degradation pathways through macroautophagy and the proteasome. Autophagy 4, 141-150.
Fernandes-Siqueira, L.O., Zeidler, J.D., Sousa, B.G., Ferreira, T., Da Poian, A.T., 2018. Anaplerotic Role of Glucose in the Oxidation of Endogenous Fatty Acids during Dengue Virus Infection. mSphere 3.
Figueiredo, M.A., Rodrigues, L.C., Barreto, M.L., Lima, J.W., Costa, M.C., Morato, V., Blanton, R., Vasconcelos, P.F., Nunes, M.R., Teixeira, M.G., 2010. Allergies and diabetes as risk factors for dengue hemorrhagic fever: results of a case control study. PLoS Negl Trop Dis 4, e699.
Fong, C.Y., Biswas, A., Stunkel, W., Chong, Y.S., Bongso, A., 2017. Tissues Derived From Reprogrammed Wharton''s Jelly Stem Cells of the Umbilical Cord Provide an Ideal Platform to Study the Effects of Glucose, Zika Virus, and Other Agents on the Fetus. J Cell Biochem 118, 437-441.
Fontaine, K.A., Sanchez, E.L., Camarda, R., Lagunoff, M., 2015. Dengue virus induces and requires glycolysis for optimal replication. J Virol 89, 2358-2366.
Geng, J., Klionsky, D.J., 2008. The Atg8 and Atg12 ubiquitin-like conjugation systems in macroautophagy. ''Protein modifications: beyond the usual suspects'' review series. EMBO Rep 9, 859-864.
George, A., Panda, S., Kudmulwar, D., Chhatbar, S.P., Nayak, S.C., Krishnan, H.H., 2012. Hepatitis C Virus NS5A Binds to the mRNA Cap-binding Eukaryotic Translation Initiation 4F (eIF4F) Complex and Up-regulates Host Translation Initiation Machinery through eIF4E-binding Protein 1 Inactivation. J Biol Chem 287, 5042-5058.
Gray, T.J., Webb, C.E., 2014. A review of the epidemiological and clinical aspects of West Nile virus. Int J Gen Med 7, 193-203.
Guo, C., Zhou, Z., Wen, Z., Liu, Y., Zeng, C., Xiao, D., Ou, M., Han, Y., Huang, S., Liu, D., Ye, X., Zou, X., Wu, J., Wang, H., Zeng, E.Y., Jing, C., Yang, G., 2017. Global Epidemiology of Dengue Outbreaks in 1990-2015: A Systematic Review and Meta-Analysis. Front Cell Infect Microbiol 7, 317.
Hansen, I.A., Attardo, G.M., Rodriguez, S.D., Drake, L.L., 2014. Four-way regulation of mosquito yolk protein precursor genes by juvenile hormone-, ecdysone-, nutrient-, and insulin-like peptide signaling pathways. Front Physiol 5, 103.
Hasanat, M.A., Ananna, M.A., Ahmed, M.U., Alam, M.N., 2010. Testing blood glucose may be useful in the management of dengue. Mymensingh Med J 19, 382-385.
Hetz, C., Martinon, F., Rodriguez, D., Glimcher, L.H., 2011. The unfolded protein response: integrating stress signals through the stress sensor IRE1alpha. Physiol Rev 91, 1219-1243.
Horvath, T.D., Dagan, S., Lorenzi, P.L., Hawke, D.H., Scaraffia, P.Y., 2018. Positional stable isotope tracer analysis reveals carbon routes during ammonia metabolism of Aedes aegypti mosquitoes. Faseb J 32, 466-477.
Hou, Y., Wang, X.L., Saha, T.T., Roy, S., Zhao, B., Raikhel, A.S., Zou, Z., 2015. Temporal Coordination of Carbohydrate Metabolism during Mosquito Reproduction. Plos Genet 11.
Hoyt, A.T., Canfield, M.A., Langlois, P.H., Waller, D.K., Agopian, A.J., Shumate, C.J., Hall, N.B., Marengo, L.K., Ethen, M.K., Scheuerle, A.E., 2018. Pre-Zika descriptive epidemiology of microcephaly in Texas, 2008-2012. Birth Defects Res 110, 395-405.
Hsieh, Y.C., Chen, Y.M., Li, C.Y., Chang, Y.H., Liang, S.Y., Lin, S.Y., Lin, C.Y., Chang, S.H., Wang, Y.J., Khoo, K.H., Aoki, T., Wang, H.C., 2015. To complete its replication cycle, a shrimp virus changes the population of long chain fatty acids during infection via the PI3K-Akt-mTOR-HIF1alpha pathway. Dev Comp Immunol 53, 85-95.
Htun, H.L., Yeo, T.W., Tam, C.C., Pang, J., Leo, Y.S., Lye, D.C., 2018. Metformin Use and Severe Dengue in Diabetic Adults. Sci Rep 8, 3344.
Htun, N.S., Odermatt, P., Eze, I.C., Boillat-Blanco, N., D''Acremont, V., Probst-Hensch, N., 2015. Is diabetes a risk factor for a severe clinical presentation of dengue?--review and meta-analysis. PLoS Negl Trop Dis 9, e0003741.
Huang, C.C., Hsu, C.C., Guo, H.R., Su, S.B., Lin, H.J., 2017. Dengue fever mortality score: A novel decision rule to predict death from dengue fever. J Infect 75, 532-540.
Huang, J., Klionsky, D.J., 2007. Autophagy and human disease. Cell Cycle 6, 1837-1849.
Isoe, J., Hagedorn, H.H., 2007. Mosquito vitellogenin genes: Comparative sequence analysis, gene duplication, and the role of rare synonymous codon usage in regulating expression. J Insect Sci 7, 1-49.
Jager, R., Bertrand, M.J., Gorman, A.M., Vandenabeele, P., Samali, A., 2012. The unfolded protein response at the crossroads of cellular life and death during endoplasmic reticulum stress. Biol Cell 104, 259-270.
Ji, W.T., Wang, Y.C., Lin, F.L., Liao, M.H., Shih, W.L., Liu, H.J., 2011. Inhibitors of phosphatidylinositol 3-kinase and mTOR but not Akt enhance replication of bovine ephemeral fever virus. Vet J 187, 119-123.
Jordan, T.X., Randall, G., 2017. Dengue Virus Activates the AMP Kinase-mTOR Axis To Stimulate a Proviral Lipophagy. J Virol 91.
Khairallah, M., Yahia, S.B., Letaief, M., Attia, S., Kahloun, R., Jelliti, B., Zaouali, S., Messaoud, R., 2007. A prospective evaluation of factors associated with chorioretinitis in patients with West Nile virus infection. Ocul Immunol Inflamm 15, 435-439.
Klionsky, D.J., Abdalla, F.C., Abeliovich, H., Abraham, R.T., Acevedo-Arozena, A., Adeli, K., et.al , 2012. Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy 8, 445-544.
Klionsky, D.J., Abdelmohsen, K., Abe, A., Abedin, M.J., Abeliovich, H., Acevedo Arozena, A., et.al , 2016. Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy 12, 1-222.
Kruse, K.B., Brodsky, J.L., McCracken, A.A., 2006. Autophagy: an ER protein quality control process. Autophagy 2, 135-137.
Kumar, M., Roe, K., Nerurkar, P.V., Namekar, M., Orillo, B., Verma, S., Nerurkar, V.R., 2012. Impaired virus clearance, compromised immune response and increased mortality in type 2 diabetic mice infected with West Nile virus. PLoS One 7, e44682.
Kumar, M., Roe, K., Nerurkar, P.V., Orillo, B., Thompson, K.S., Verma, S., Nerurkar, V.R., 2014. Reduced immune cell infiltration and increased pro-inflammatory mediators in the brain of Type 2 diabetic mouse model infected with West Nile virus. J Neuroinflammation 11, 80.
Le Sage, V., Cinti, A., Amorim, R., Mouland, A.J., 2016. Adapting the Stress Response: Viral Subversion of the mTOR Signaling Pathway. Viruses 8.
Lee, C.J., Liao, C.L., Lin, Y.L., 2005. Flavivirus activates phosphatidylinositol 3-kinase signaling to block caspase-dependent apoptotic cell death at the early stage of virus infection. Journal of Virology 79, 8388-8399.
Lee, I.K., Hsieh, C.J., Chen, R.F., Yang, Z.S., Wang, L., Chen, C.M., Liu, C.F., Huang, C.H., Lin, C.Y., Chen, Y.H., Yang, K.D., Liu, J.W., 2013. Increased production of interleukin-4, interleukin-10, and granulocyte-macrophage colony-stimulating factor by type 2 diabetes'' mononuclear cells infected with dengue virus, but not increased intracellular viral multiplication. Biomed Res Int 2013, 965853.
Levine, B., Klionsky, D.J., 2004. Development by self-digestion: molecular mechanisms and biological functions of autophagy. Dev Cell 6, 463-477.
Li, C.Y., Wang, Y.J., Huang, S.W., Cheng, C.S., Wang, H.C., 2016. Replication of the Shrimp Virus WSSV Depends on Glutamate-Driven Anaplerosis. PLoS One 11, e0146902.
Li, H., Korennykh, A.V., Behrman, S.L., Walter, P., 2010. Mammalian endoplasmic reticulum stress sensor IRE1 signals by dynamic clustering. Proc Natl Acad Sci U S A 107, 16113-16118.
Liang, Q., Luo, Z., Zeng, J., Chen, W., Foo, S.S., Lee, S.A., Ge, J., Wang, S., Goldman, S.A., Zlokovic, B.V., Zhao, Z., Jung, J.U., 2016. Zika Virus NS4A and NS4B Proteins Deregulate Akt-mTOR Signaling in Human Fetal Neural Stem Cells to Inhibit Neurogenesis and Induce Autophagy. Cell Stem Cell 19, 663-671.
Lin, J.H., Li, H., Yasumura, D., Cohen, H.R., Zhang, C., Panning, B., Shokat, K.M., Lavail, M.M., Walter, P., 2007. IRE1 signaling affects cell fate during the unfolded protein response. Science 318, 944-949.
Mallhi, T.H., Khan, A.H., Adnan, A.S., Sarriff, A., Khan, Y.H., Jummaat, F., 2015. Incidence, Characteristics and Risk Factors of Acute Kidney Injury among Dengue Patients: A Retrospective Analysis. PLoS One 10, e0138465.
Martina, B.E., Koraka, P., Osterhaus, A.D., 2009. Dengue virus pathogenesis: an integrated view. Clin Microbiol Rev 22, 564-581.
Mizushima, N., Levine, B., Cuervo, A.M., Klionsky, D.J., 2008. Autophagy fights disease through cellular self-digestion. Nature 451, 1069-1075.
Mizushima, N., Yoshimori, T., Levine, B., 2010. Methods in mammalian autophagy research. Cell 140, 313-326.
Moore, K.A., Hollien, J., 2012. The unfolded protein response in secretory cell function. Annu Rev Genet 46, 165-183.
Mori, K., 2009. Signalling pathways in the unfolded protein response: development from yeast to mammals. J Biochem 146, 743-750.
Muraoka, T., Ichikawa, T., Taura, N., Miyaaki, H., Takeshita, S., Akiyama, M., Miuma, S., Ozawa, E., Isomoto, H., Takeshima, F., Nakao, K., 2012. Insulin-induced mTOR activity exhibits anti-hepatitis C virus activity. Mol Med Rep 5, 331-335.
Nagy, P., Varga, A., Pircs, K., Hegedus, K., Juhasz, G., 2013. Myc-driven overgrowth requires unfolded protein response-mediated induction of autophagy and antioxidant responses in Drosophila melanogaster. PLoS Genet 9, e1003664.
Nash, D., Mostashari, F., Fine, A., Miller, J., O''Leary, D., Murray, K., Huang, A., Rosenberg, A., Greenberg, A., Sherman, M., Wong, S., Layton, M., West Nile Outbreak Response Working, G., 2001. The outbreak of West Nile virus infection in the New York City area in 1999. N Engl J Med 344, 1807-1814.
Organization, W.H., 2009. Dengue: Guidelines for Diagnosis, Treatment, Prevention and Control: New Edition, Dengue: Guidelines for Diagnosis, Treatment, Prevention and Control: New Edition, Geneva.
Organization, W.H., 2018. Dengue vaccine: WHO position paper – September 2018. Weekly epidemiological record 93, 457-476.
Pang, J., Hsu, J.P., Yeo, T.W., Leo, Y.S., Lye, D.C., 2017. Diabetes, cardiac disorders and asthma as risk factors for severe organ involvement among adult dengue patients: A matched case-control study. Sci Rep 7, 39872.
Pang, J., Salim, A., Lee, V.J., Hibberd, M.L., Chia, K.S., Leo, Y.S., Lye, D.C., 2012. Diabetes with hypertension as risk factors for adult dengue hemorrhagic fever in a predominantly dengue serotype 2 epidemic: a case control study. PLoS Negl Trop Dis 6, e1641.
Parmar, V.M., Schroder, M., 2012. Sensing endoplasmic reticulum stress. Adv Exp Med Biol 738, 153-168.
Patel, R.K., Hardy, R.W., 2012. Role for the phosphatidylinositol 3-kinase-Akt-TOR pathway during sindbis virus replication in arthropods. J Virol 86, 3595-3604.
Raikhel, A.S., 1986. Lysosomes in the cessation of vitellogenin secretion by the mosquito fat body; selective degradation of Golgi complexes and secretory granules. Tissue Cell 18, 125-142.
Rodenhuis-Zybert, I.A., Wilschut, J., Smit, J.M., 2010. Dengue virus life cycle: viral and host factors modulating infectivity. Cell Mol Life Sci 67, 2773-2786.
Ron, D., Harding, H.P., 2012. Protein-folding homeostasis in the endoplasmic reticulum and nutritional regulation. Cold Spring Harb Perspect Biol 4.
Ron, D., Walter, P., 2007. Signal integration in the endoplasmic reticulum unfolded protein response. Nat Rev Mol Cell Biol 8, 519-529.
Ryoo, H.D., Li, J., Kang, M.J., 2013. Drosophila XBP1 expression reporter marks cells under endoplasmic reticulum stress and with high protein secretory load. PLoS One 8, e75774.
Ryoo, H.D., Steller, H., 2007. Unfolded protein response in Drosophila: why another model can make it fly. Cell Cycle 6, 830-835.
Salasc, F., Mutuel, D., Debaisieux, S., Perrin, A., Dupressoir, T., Grenet, A.S., Ogliastro, M., 2016. Role of the phosphatidylinositol-3-kinase/Akt/target of rapamycin pathway during ambidensovirus infection of insect cells. J Gen Virol 97, 233-245.
Shiao, S.H., Hansen, I.A., Zhu, J., Sieglaff, D.H., Raikhel, A.S., 2008. Juvenile hormone connects larval nutrition with target of rapamycin signaling in the mosquito Aedes aegypti. J Insect Physiol 54, 231-239.
Shives, K.D., Beatman, E.L., Chamanian, M., O''Brien, C., Hobson-Peters, J., Beckham, J.D., 2014. West nile virus-induced activation of mammalian target of rapamycin complex 1 supports viral growth and viral protein expression. J Virol 88, 9458-9471.
Sommermann, T.G., O''Neill, K., Plas, D.R., Cahir-McFarland, E., 2011. IKKbeta and NF-kappaB transcription govern lymphoma cell survival through AKT-induced plasma membrane trafficking of GLUT1. Cancer Res 71, 7291-7300.
Sorenson, A., Owens, L., Caltabiano, M., Cadet-James, Y., Hall, R., Govan, B., Clancy, P., 2016. The Impact of Prior Flavivirus Infections on the Development of Type 2 Diabetes Among the Indigenous Australians. Am J Trop Med Hyg 95, 265-268.
Su, M.A., Huang, Y.T., Chen, I.T., Lee, D.Y., Hsieh, Y.C., Li, C.Y., Ng, T.H., Liang, S.Y., Lin, S.Y., Huang, S.W., Chiang, Y.A., Yu, H.T., Khoo, K.H., Chang, G.D., Lo, C.F., Wang, H.C., 2014. An invertebrate Warburg effect: a shrimp virus achieves successful replication by altering the host metabolome via the PI3K-Akt-mTOR pathway. PLoS Pathog 10, e1004196.
Su, W.C., Chao, T.C., Huang, Y.L., Weng, S.C., Jeng, K.S., Lai, M.M., 2011. Rab5 and class III phosphoinositide 3-kinase Vps34 are involved in hepatitis C virus NS4B-induced autophagy. J Virol 85, 10561-10571.
Supradish, P.O., Rienmanee, N., Fuengfoo, A., Kalayanarooj, S., 2011. Dengue hemorrhagic fever grade III with diabetic ketoacidosis: a case report. J Med Assoc Thai 94 Suppl 3, S233-240.
Thaa, B., Biasiotto, R., Eng, K., Neuvonen, M., Gotte, B., Rheinemann, L., Mutso, M., Utt, A., Varghese, F., Balistreri, G., Merits, A., Ahola, T., McInerney, G.M., 2015. Differential Phosphatidylinositol-3-Kinase-Akt-mTOR Activation by Semliki Forest and Chikungunya Viruses Is Dependent on nsP3 and Connected to Replication Complex Internalization. Journal of Virology 89, 11420-11437.
Van Handel, E., 1969. Metabolism of hexoses in the intact mosquito: exclusion of glucose and trehalose as intermediates. Comp Biochem Physiol 29, 413-421.
van Schadewijk, A., van''t Wout, E.F., Stolk, J., Hiemstra, P.S., 2012. A quantitative method for detection of spliced X-box binding protein-1 (XBP1) mRNA as a measure of endoplasmic reticulum (ER) stress. Cell Stress Chaperones 17, 275-279.
Voelker, R., 2019. Dengue Vaccine Gets the Nod. JAMA 321, 2066.
Walter, P., Ron, D., 2011. The unfolded protein response: from stress pathway to homeostatic regulation. Science 334, 1081-1086.
Wang, R.C., Levine, B., 2010. Autophagy in cellular growth control. FEBS Lett 584, 1417-1426.
Wang, S., Kaufman, R.J., 2012. The impact of the unfolded protein response on human disease. J Cell Biol 197, 857-867.
Wei, H.Y., Shu, P.Y., Hung, M.N., 2016. Characteristics and Risk Factors for Fatality in Patients with Dengue Hemorrhagic Fever, Taiwan, 2014. Am J Trop Med Hyg 95, 322-327.
Weng, S.C., Shiao, S.H., 2015. Frizzled 2 is a key component in the regulation of TOR signaling-mediated egg production in the mosquito Aedes aegypti. Insect Biochem Mol Biol 61, 17-24.
Wijekoon, C.N., Wijekoon, P.W., 2010. Dengue hemorrhagic fever presenting with acute pancreatitis. Southeast Asian J Trop Med Public Health 41, 864-866.
Wiwanitkit, V., 2011. Glycosylation, diabetes and dengue: effect on severity? Diabetes Metab Syndr 5, 158-159.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊