跳到主要內容

臺灣博碩士論文加值系統

(44.200.168.16) 您好!臺灣時間:2023/03/21 16:20
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:徐慧真
研究生(外文):Hui-Zhen Xu
論文名稱:埃及斑蚊熱休克蛋白90與茲卡病毒非結構性蛋白NS3之交互關係研究
論文名稱(外文):Study of the Zika virus NS3 protein and Hsp90 interaction on virus replication in the mosquito Aedes aegypti
指導教授:蕭信宏洪健清洪健清引用關係
指導教授(外文):Shin-Hong ShiaoChien-Ching Hung
口試委員:顧家綺張永祺
口試委員(外文):Chia-Chi KuYung-Chiy Chang
口試日期:2020-07-23
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:微生物學研究所
學門:生命科學學門
學類:微生物學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:75
中文關鍵詞:茲卡病毒埃及斑蚊非結構性蛋白3熱休克蛋白90蟲媒疾病
外文關鍵詞:Aedes aegyptizika virusNS3Hsp90arthropod-borne diseases
DOI:10.6342/NTU202002280
相關次數:
  • 被引用被引用:0
  • 點閱點閱:46
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
蚊子是許多傳染病的主要病媒,舉凡瘧疾、絲蟲病、日本腦炎、登革熱、屈躬病,乃至近年爆發的茲卡病毒感染症 (Zika virus infection),皆是經由不同種類的病媒蚊感染人類。目前茲卡病毒的防治多利用噴灑殺蟲劑控制病媒蚊數量作為主要降低病毒傳播的方式,並無有效之疫苗及藥物可供預防及治療。而針對突變率較高之RNA病毒設計藥物也易有抗藥性的產生,因此積極開發新穎替代性策略是首要之務。過去的文獻指出,茲卡病毒的非結構性蛋白 (nonstructural proteins, NSs) 會參與病毒自身的複製與組裝,並透過活化螺旋酶 (helicase) 與蛋白酶 (protease) 進行病毒蛋白的修飾。而在哺乳動物及昆蟲的模式研究中,宿主細胞的熱休克蛋白90 (Heat shock protein 90, Hsp90) 不僅會與茲卡病毒NS3蛋白有交互作用,當Hsp90被降解,也會使病毒複製能力下降。因此本研究將利用埃及斑蚊為研究模式,探討病媒蚊體內Hsp90與茲卡病毒NS3作為抑制病毒複製標的蛋白的可能性。從初步的實驗結果中,我們發現Hsp90與NS3不僅有形成複合物的現象,且Hsp90的表現受到抑制時,也會影響茲卡病毒的感染率。此外我們利用病毒蛋白抑制劑 (Hydroxychloroquine) 抑制NS3被後會影響Hsp90蛋白的表現。因此,我們推測茲卡病毒可能透過NS3蛋白切割的方式,改變宿主體內Hsp90表現,藉此進行調控病毒複製與增殖的能力。我們預期透過抑制Hsp90能干擾NS3發揮正常功能,因此降低病毒數量及感染率。未來我們也會經由調控Hsp90的表現,更進一步去了解茲卡病毒與埃及斑蚊體內蛋白間調控的分子機制,期許能為研發抗病毒藥物提供一個可能的方向。
The mosquito is the main vector of several important arthropod-borne diseases, such as malaria, filariasis, Japanese encephalitis, dengue fever, chikungunya and Zika. These diseases are transmitted from human to human by different mosquito vectors. However, no effective vaccine and medication are available for Zika virus infection until now. Currently, vector control through insecticide treatment become the main approach to reduce the transmission of Zika virus. However, the fast modification on RNA viral genome might neutralize the effect of inhibition. Therefore, development of alternative strategies for mosquito-borne disease control is urgently required. Previous reports indicated that ZIKV nonstructural proteins (NSs) participated in the viral replication and protein assembly, whereas the viral protein processing was mediated by non-structure protein 3 (NS3) through helicase and protease activity. In addition, NS3 has been shown to interact with heat shock protein 90 (Hsp90) in mammalian model. When hsp90 be silenced in insect cell, the virus replication be suppressed. Our preliminary results showed that Hsp90 interacted with NS3, and viral infectivity was reduced by inhibition of Hsp90 through reverse genetic approach. We also showed that inhibition of NS3 by hydroxychloroquine resulted in the inhibition of Hsp90 expression. We hypothesize that NS3 might play important role of modulating Hsp90 function through its protease activity. In the future, we will further investigate the detail mechanism underlying the regulation between ZIKV protein and host heat shock proteins. Information gathered in this study will pave the way toward the drug development by using molecular engineering approaches.
致謝 i
摘要 ii
Abstract iii
目錄 iv
圖目錄 viii
表目錄 ix
第一章 緒論 1
1.1. 病媒蚊傳播疾病 (Mosquito-borne disease) 1
1.1.1. 台灣的蚊媒疾病 (Mosquito-borne disease in Taiwan) 3
1.1.1.1. 瘧疾 (Malaria) 3
1.1.1.2. 登革熱 (Dengue fever) 3
1.2. 埃及斑蚊生活史 (The life cycle of Aedes aegypti) 4
1.3. 茲卡病毒感染症 (Zika virus infection) 5
1.3.1. 臨床症狀 5
1.3.2. 國際之流行病學 5
1.3.3. 茲卡病毒生活史 6
1.3.3.1. 宿主細胞細胞內之複製 6
1.3.3.2. 病媒蚊體內之複製 6
1.4. 非結構性蛋白 (Non-structural protein 3,NS3) 參與病毒蛋白之成熟 7
1.5. 熱休克蛋白 (Heat shock proteins) 8
1.5.1. 熱休克蛋白家族 (Heat shock protein family) 8
1.5.1.1. 熱休克蛋白90 (Heat shock protein 90) 8
1.5.1.2. 熱休克蛋白70 (Heat shock protein 70) 9
1.5.1.3. 熱休克轉錄因子 1 (Heat shock transcription factor 1, HSF1) 9
1.6. 實驗動機 10
第二章 實驗材料與方法 11
2.1. 實驗步驟與流程 11
2.1.1. 埃及斑蚊之飼養與繼代 11
2.1.2. 病毒培養 (Virus culture) 12
2.1.3. 埃及斑蚊之餵血 12
2.1.4. 雙股RNA (double-stranded RNA, dsRNA) 製備 12
2.1.4.1. 質體建構 (plasmid construction) 12
2.1.4.2. 雙股RNA合成 (dsRNA synthesis) 13
2.1.5. RNA萃取 (RNA extraction) 14
2.1.6. 反轉錄作用 (reverse transcription, RT) 14
2.1.7. 聚合酶連鎖反應 (polymerase chain reaction, PCR) 15
2.1.8. 即時定量聚合酶連鎖反應 (real-time PCR, Quantitative PCR, q-PCR) 15
2.1.9. 埃及斑蚊胸部注射 (Injection) 15
2.1.9.1. 病毒注射 (Virus injection) 15
2.1.10. RNAi-mediated silencing 與 knock-down efficiency test 16
2.1.11. 西方點墨法 (Western blot analysis ) 16
2.1.12. Hsp90 抑制試驗 (Hsp90 inhibiton assay) 17
2.1.13. 細胞培養 (Cell culture) 17
2.1.14. 溶斑試驗 (Plaque assay) 18
2.1.15. 免疫螢光染色法 (Immunofluorescence assay, IFA) 18
2.1.15.1. 組織免疫螢光染色法 18
2.1.15.2. 細胞免疫螢光染色法 19
2.1.16. 免疫沉澱試驗 (Immunoprecipitation , IP) 20
2.1.17. NS3抑制試驗 (NS3 inhibiton assay) 20
2.1.18. 細胞轉染 (Transfection) 21
2.2. 實驗試劑之配置 22
第三章 結果 24
3.1. 確認埃及斑蚊與人類之Hsp90蛋白序列相似性 24
3.2. 埃及斑蚊吸血方式感染ZIKV後Hsp90之表現情形 24
3.3. RNAi抑制Hsp90之效率以及對ZIKV表現量之影響 25
3.4. 抑制Hsp90對於ZIKV之感染力影響 26
3.5. ZIKV與Hsp90於Midgut、Salivary gland中位置相關性 27
3.6. 探討ZIKV病毒蛋白與埃及斑蚊Hsp90蛋白間之交互作用 28
3.7. 抑制Hsp90對於ZIKV之NS3於Midgut、Salivary gland中表現 28
3.8. 以Hsp90 inhibitor抑制Hsp90對於ZIKV成熟過程中的影響 29
3.9. 以NS3 inhibitor抑制ZIKV病毒蛋白表現對於Hsp90之影響 29
3.10. 設計Hsp90 HA-tag 的Overexpression系統觀察Hsp90對NS3之影響 30
第四章 討論 31
4.1. 埃及斑蚊與人類Hsp90之相似性 31
4.2. 埃及斑蚊Hsp90之表現情形及表現位置 31
4.3. 埃及斑蚊Hsp90對ZIKV之影響 32
4.4. Hsp90在埃及斑蚊被ZIKV感染後參與病毒複製的過程 33
附圖 35
附表 65
參考文獻 69
Bale. (2012). Emerging viral infections. Seminars in Pediatric Neurology, 19(3), 152-157.
Bhatt, Gething, Brady, et al. (2013). The global distribution and burden of dengue. Nature, 496(7446), 504-507.
Broutet, Krauer, Riesen, et al. (2016). Zika Virus as a Cause of Neurologic Disorders. New England Journal of Medicine, 374(16), 1506-1509.
Chambers, Weir, Grakoui, et al. (1990). Evidence that the N-terminal domain of nonstructural protein NS3 from yellow fever virus is a serine protease responsible for site-specific cleavages in the viral polyprotein. Proceedings of the National Academy of Sciences of the United States of America, 87(22), 8898-8902.
Chavez-Salinas, Ceballos-Olvera, Reyes-Del Valle, et al. (2008). Heat shock effect upon dengue virus replication into U937 cells. Virus Research, 138(1-2), 111-118.
Christophers. (1960). Aëdes aegypti (L.) the Yellow Fever Mosquito: its Life
History, Bionomics and Structure. New York: Cambridge University Press
Collins, & Barrett. (2017). Live Attenuated Yellow Fever 17D Vaccine: A Legacy Vaccine Still Controlling Outbreaks In Modern Day. Current Infectious Disease Reports, 19(3), 14.
Cowman, Berry, & Baum. (2012). The cellular and molecular basis for malaria parasite invasion of the human red blood cell. Journal of Cell Biology, 198(6), 961-971. 
Cowman, Berry, & Baum. (2012). The cellular and molecular basis for malaria parasite invasion of the human red blood cell. Journal of Cell Biology, 198(6), 961-971.
Center for Disease Control and Prevention. (2020). Yellow Fever Vaccine.
https://www.cdc.gov/yellowfever/vaccine/index.html
Center for Disease Control and Prevention. (2020). Yellow Book Chapter 4 Travel-Related Infectious Diseases - Chikungunya.
https://wwwnc.cdc.gov/travel/yellowbook/2020/travel-related-infectious-diseases/chikungunya
Center for Disease Control and Prevention. (2020). Yellow Book Chapter 4 Travel-
Related Infectious Diseases- Japanese encephalitis.
https://wwwnc.cdc.gov/travel/yellowbook/2020/travel-related-infectious-diseases/japanese-encephalitis
Center for Disease Control and Prevention. (2020). West Nile virus - Symptoms,
Diagnosis, & Treatment
https://www.cdc.gov/westnile/symptoms/index.html
Center for Disease Control and Prevention. (2019). Parasite – Lymphatic Filarisis -
Epidemiology & Risk Factors.
https://www.cdc.gov/parasites/lymphaticfilariasis/epi.html
Center for Disease Control and Prevention. (2019). Zika virus – Treament.
https://www.cdc.gov/zika/symptoms/treatment.html
Center for Disease Control and Prevention. (2019). Travelers’ Health - Zika Travel
Information.
https://wwwnc.cdc.gov/travel/page/zika-information 
Dai, Whitesell, Rogers, et al. (2007). Heat shock factor 1 is a powerful multifaceted modifier of carcinogenesis. Cell, 130(6), 1005-1018.
De Alwis, Williams, Schmid, et al. (2014). Dengue viruses are enhanced by distinct populations of serotype cross-reactive antibodies in human immune sera. Public Library of Science Pathogens, 10(10), e1004386.
Goldberg. (2013). Complex nature of malaria parasite hemoglobin degradation. Proceedings of the National Academy of Sciences, 110(14), 5283-5284.
Guy, Briand, Lang, et al. (2015). Development of the Sanofi Pasteur tetravalent dengue vaccine: One more step forward. Vaccine, 33(50), 7100-7111.
Guzman, Alvarez, & Halstead. (2013). Secondary infection as a risk factor for dengue hemorrhagic fever/dengue shock syndrome: an historical perspective and role of antibody-dependent enhancement of infection. Archives of Virology, 158(7), 1445-1459.
Guzman, Gubler, Izquierdo, et al. (2016). Dengue infection. Nature Review Disease Primers, 2, 16055.
Hadinegoro, Arredondo-García, Capeding, et al. (2015). Efficacy and Long-Term Safety of a Dengue Vaccine in Regions of Endemic Disease. New England Journal of Medicine, 373(13), 1195-1206.
Halstead. (2008). Dengue virus-mosquito interactions. Annual Review Entomology, 53, 273-291.
Halstead, & Thomas. (2011). New Japanese encephalitis vaccines: alternatives to production in mouse brain. Expert Review of Vaccines, 10(3), 355-364.
Hamel, Dejarnac, Wichit, et al. (2015). Biology of Zika Virus Infection in Human Skin Cells. Journal of Virology, 89(17), 8880-8896. 
Hendrick, & Hartl. (1993). MOLECULAR CHAPERONE FUNCTIONS OF HEAT-SHOCK PROTEINS. Annual Review of Biochemistry, 62(1), 349-384.
Jain, Coloma, García-Sastre, et al. (2016). Structure of the NS3 helicase from Zika virus. Nature structural & molecular biology, 23(8), 752-754.
Kijima, Prince, Tigue, et al. (2018). HSP90 inhibitors disrupt a transient HSP90-HSF1 interaction and identify a noncanonical model of HSP90-mediated HSF1 regulation. Scientific Reports, 8(1), 6976.
Kindhauser, Allen, Frank, et al. (2016). Zika: the origin and spread of a mosquito-borne virus. Bull World Health Organ, 94(9), 675-686c.
Klase, Khakhina, Schneider, et al. (2016). Zika Fetal Neuropathogenesis: Etiology of a Viral Syndrome. Public Library of Science Neglected Tropical Diseases, 10(8), e0004877.
Kumar, Liang, Aarthy, et al. (2018). Hydroxychloroquine Inhibits Zika Virus NS2B-NS3 Protease. American Chemical Society omega, 3(12), 18132-18141.
Linthicum, Britch, & Anyamba. (2016). Rift Valley Fever: An Emerging Mosquito-Borne Disease. Annual Review of Entomology, 61(1), 395-415.
Mendillo, Santagata, Koeva, et al. (2012). HSF1 Drives a Transcriptional Program Distinct from Heat Shock to Support Highly Malignant Human Cancers. Cell, 150(3), 549-562.
Ming, Tang, & Song. (2016). Advances in Zika Virus Research: Stem Cell Models, Challenges, and Opportunities. Cell Stem Cell, 19(6), 690-702.
Mukhopadhyay, Kuhn, & Rossmann. (2005). A structural perspective of the flavivirus life cycle. Nature Reviews Microbiology, 3(1), 13-22. 
Neckers, Blagg, Haystead, et al. (2018). Methods to validate Hsp90 inhibitor specificity, to identify off-target effects, and to rethink approaches for further clinical development. Cell Stress Chaperones, 23(4), 467-482.
Pearl. (2016). Review: The HSP90 molecular chaperone-an enigmatic ATPase. Biopolymers, 105(8), 594-607.
Petersen, Jamieson, Powers, et al. (2016). Zika Virus. New England Journal of Medicine, 374(16), 1552-1563.
Quel, Pinheiro, Rodrigues, et al. (2020). Heat shock protein 90 kDa (Hsp90) from Aedes aegypti has an open conformation and is expressed under heat stress. International Journal of Biological Macromolecules, 156, 522-530.
Rosenzweig, Nillegoda, Mayer, et al. (2019). The Hsp70 chaperone network. Nature Reviews Molecular Cell Biology, 20(11), 665-680.
Salazar, Richardson, Sánchez-Vargas, et al. (2007). Dengue virus type 2: replication and tropisms in orally infected Aedes aegypti mosquitoes. Biomedcentral Microbiology, 7(1), 9.
Screaton, Mongkolsapaya, Yacoub, et al. (2015). New insights into the immunopathology and control of dengue virus infection. Nature Reviews Immunology, 15(12), 745-759.
Shang, Wu, Huang, et al. (2020). Inhibition of heat shock protein 90 suppresses Bombyx mori nucleopolyhedrovirus replication in B. mori. Insect Molecular Biology, 29(2), 205-213.
Sreedhar, Soti, & Csermely. (2004). Inhibition of Hsp90: a new strategy for inhibiting protein kinases. Biochimica et Biophysica Acta, 1697(1-2), 233-242. 
Srisutthisamphan, Jirakanwisal, Ramphan, et al. (2018). Hsp90 interacts with multiple dengue virus 2 proteins. Scientific Reports, 8(1), 4308.
Stadler, Allison, Schalich, et al. (1997). Proteolytic activation of tick-borne encephalitis virus by furin. Journal of Virology, 71(11), 8475-8481.
Taguwa, Yeh, Rainbolt, et al. (2019). Zika Virus Dependence on Host Hsp70 Provides a Protective Strategy against Infection and Disease. Cell reports, 26(4), 906-920.e903.
Tjaden, Thomas, Fischer, et al. (2013). Extrinsic Incubation Period of Dengue: Knowledge, Backlog, and Applications of Temperature Dependence. Public Library of Science Neglected Tropical Diseases, 7(6), e2207.
Ujino, Yamaguchi, Shimotohno, et al. (2009). Heat-shock protein 90 is essential for stabilization of the hepatitis C virus nonstructural protein NS3. The Journal of Biological Chemistry, 284(11), 6841-6846.
Verma, Goyal, Jamal, et al. (2016). Hsp90: Friends, clients and natural foes. Biochimie, 127, 227-240.
Vihervaara, & Sistonen. (2014). HSF1 at a glance. Journal of Cell Science, 127(2), 261-266.
Vu, Nguyen, Tran, et al. (2018). Immunogenicity and safety of a single dose of a live attenuated Japanese encephalitis chimeric virus vaccine in Vietnam: A single-arm, single-center study. International Journal of Infectious Disease, 66, 137-142.
Weaver, & Lecuit. (2015). Chikungunya virus and the global spread of a mosquito-borne disease. New England Journal of Medicine, 372(13), 1231-1239. 
World Health Organization. (2017). Global vector control response 2017–2030.
https://www.who.int/publications/i/item/9789241512978
World Health Organization. (2017). World malaria report 2019.
https://www.afro.who.int/publications/world-malaria-report-2019
World Health Organization. (2020). Dengue and severe dengue.
https://www.who.int/news-room/fact-sheets/detail/dengue-and-severe-dengue
Yu, Zhang, Holdaway, et al. (2008). Structure of the Immature Dengue Virus at Low pH Primes Proteolytic Maturation. Science, 319(5871), 1834-1837.
Zeldenryk, Gordon, Gray, et al. (2012). Disability measurement for lymphatic filariasis: a review of generic tools used within morbidity management programs. Public Library of Science Neglected Tropical Diseases, 6(9), e1768.
Zhang, Ge, Yu, et al. (2013). Cryo-EM structure of the mature dengue virus at 3.5-Å resolution. Nature structural & molecular biology, 20(1), 105-110.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top