|
1.WHO. Global Hepatitis Report 2020; World Health Organization: Geneva, Switzerland, 2020; p. 7. 2.Thio, C.L., et al., HIV-1, hepatitis B virus, and risk of liver-related mortality in the Multicenter Cohort Study (MACS). The Lancet, 2002. 360(9349): p. 1921- 1926. 3.Yuen, M. F., et al., Hepatitis B virus infection. Nat Rev Dis Primers, 2018. 4:18035. 4.Kao, J.‑H. & Chen, D.‑S., HBV genotypes: epidemiology and implications regarding natural history. Curr. Hepat. Rep., 2006. 5, 5–13. 5.Sunbul, M., Hepatitis B virus genotypes: global distribution and clinical importance. World J. Gastroenterol., 2014. 20, 5427. 6.Yan, H., et al., Sodium taurocholate cotransporting polypeptide is a functional receptor for human hepatitis B and D virus. Elife, 2012. 1, e00049. 7.Iwamoto, M., et al. Epidermal growth factor receptor is a host-entry cofactor triggering hepatitis B virus internalization. Proc. Natl. Acad. Sci. USA, 2019, 116, 8487–8492. 8.Cattaneo, R., H. Will, and H. Schaller, Hepatitis B virus transcription in the infected liver. The EMBO journal, 1984. 3(9): p. 2191-2196. 9.Su, H. and J.-K. Yee, Regulation of hepatitis B virus gene expression by its two enhancers. Proceedings of the National Academy of Sciences, 1992. 89(7): p. 2708- 2712. 10.Moolla N, Kew M, Arbuthnot P., Regulatory elements of hepatitis B virus transcription. J Viral Hepat., 2002; 9: 323-331. 11.Patel NU., et al., Interactions between nuclear factors and the hepatitis B virus enhancer. J Virol, 1989; 63: 5293-5301. 12.Turton, K. L., et al. Host Transcription Factors in Hepatitis B Virus RNA Synthesis. Viruses, 2020. 12(2). 13.Kim, D. H., et al., Roles of hepatocyte nuclear factors in hepatitis B virus infection. World J Gastroenterol, 2016. 22(31): 7017-7029. 14.Quasdorff, M. and U. Protzer, Control of hepatitis B virus at the level of transcription. J Viral Hepat., 2010. 17(8): 527-536. 15.Ni, Y., et al., Hepatitis B and D viruses exploit sodium taurocholate co- transporting polypeptide for species-specific entry into hepatocytes. Gastroenterology, 2014. 146(4): p. 1070-1083. e6. 16.Yan, H., et al., Sodium taurocholate cotransporting polypeptide is a functional receptor for human hepatitis B and D virus. elife, 2012. 1. 17.Nassal, M., Hepatitis B viruses: reverse transcription a different way. Virus Res., 2008. 134(1-2): p. 235-49. 18.Yang, W. and J. Summers, Illegitimate replication of linear hepadnavirus DNA through nonhomologous recombination. Journal of virology, 1995. 69(7): p. 4029- 4036. 19.Tu, Thomas, et al., HBV DNA Integration: Molecular Mechanisms and Clinical Implications. Viruses, 2017. 9(4):75. 20.Center, M.M. & Jemal, A., International trends in liver cancer incidence rates. Cancer Epidemiol. Biomarkers Prev., 2011.20, 2362–2368. 21.But, D.Y., Lai, C.L. & Yuen, M.F., Natural history of hepatitis-related hepatocellular carcinoma. World J. Gastroenterol., 2008. 14, 1652–1656. 22.Ishikawa, T., Clinical features of hepatitis B virus–related hepatocellular carcinoma. World J. Gastroenterol., 2010. 16, 2463–2467. 23.Bréchot, C., Gozuacik, D., Murakami, Y. & Paterlini-Brechot, P. Molecular bases for the development of hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC). Semin. Cancer Biol., 2000. 10, 211–231. 24.Sung, W. K., et al., Genome-wide survey of recurrent HBV integration in hepatocellular carcinoma. Nat Genet., 2012. 44(7): 765-769. 25.Li, C. L., et al., Androgen Receptor Enhances Hepatic Telomerase Reverse Transcriptase Gene Transcription After Hepatitis B Virus Integration or Point Mutation in Promoter Region. Hepatology, 2019. 69(2): 498-512. 26.Sze, K. M., et al., HBV-TERT Promoter Integration Harnesses Host ELF4 Resulting in TERT Gene Transcription in Hepatocellular Carcinoma. Hepatology, 2020. 27.Yang, H. C. and P. J. Chen, The potential and challenges of CRISPR-Cas in eradication of hepatitis B virus covalently closed circular DNA. Virus Res., 2018. 244: 304-310. 28.Lin, C.L. and J.H. Kao, Review article: novel therapies for hepatitis B virus cure-advances and perspectives. Aliment Pharmacol Ther., 2016. 44(3): p. 213-222. 29.Tseng, T.C., Kao, J.H., Clinical utility of quantitative HBsAg in natural history and nucleos(t)ide analogue treatment of chronic hepatitis B: new trick of old dog. J. Gastroenterol., 2013. 48 (1), 13–21. 30.Barrangou R., et al., CRISPR provides acquired resistance against viruses in prokaryotes. Science, 2007;315(5819):1709– 12. 31.Jinek M., et al., A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science, 2012;337(6096):816–21. 32.Sander, J.D. and J.K. Joung, CRISPR-Cas systems for editing, regulating and targeting genomes. Nature biotechnology, 2014. 32(4): p. 347-355. 33.Jiang F, Doudna JA. CRISPR-Cas9 structures and mechanisms. Annu Rev Biophys., 2017. 46:505–29. 34.Zhang S., et al., Recent advances of CRISPR/Cas9- based genetic engineering and transcriptional regulation in industrial biology. Front Bioeng Biotechnol., 2019. 7:459. 35.Lin SR., et al., The CRISPR/Cas9 system facilitates clearance of the intrahepatic HBV templates in vivo. Mol Ther Nucleic Acids, 2014. 3: e186. 36.Kennedy EM, Kornepati AV, Cullen BR. Targeting hepatitis B virus cccDNA using CRISPR/Cas9. Antivir Res., 2015. 123:188–92. 37.Seeger C, Sohn JA. Complete Spectrum of CRISPR/Cas9-induced mutations on HBV cccDNA. Mol Ther., 2016. 24(7):1258–66. 38.Ramanan V., et al., CRISPR/Cas9 cleavage of viral DNA efficiently suppresses hepatitis B virus. Sci Rep., 2015. 5:10833. 39.Dong C., et al., Targeting hepatitis B virus cccDNA by CRISPR/Cas9 nuclease efficiently inhibits viral replication Antivir Res., 2015. 118:110–7. 40.Liu X., et al., Inhibition of hepatitis B virus by the CRISPR/Cas9 system via targeting the conserved regions of the viral genome. J Gen Virol., 2015;96(8):2252–61. 41.Seeger, C., Sohn, J.A., Targeting hepatitis B virus with CRISPR/Cas9. Mol. Ther. Nucleic Acids, 2014. 3, pe216. 42.Karimova, M., et al., CRISPR/Cas9 nickase-mediated disruption of hepatitis B virus open reading frame S and X. Sci. Rep., 2015. 5, 13734. 43.Ramanan, V., et al., CRISPR/Cas9 cleavage of viral DNA efficiently suppresses hepatitis B virus. Sci. Rep., 2015. 5, 10833. 44.Li, H., et al., Removal of integrated hepatitis B virus DNA using CRISPR-Cas9. Front. Cell. Infect. Microbiol., 2017. 7, 91. 45.Kosicki, M., et al., Repair of double-strand breaks induced by CRISPR-Cas9 leads to large deletions and complex rearrangements. Nat Biotechnol., 2018. 36(8): 765-771. 46.Komor, A. C., et al., Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature, 2016. 533(7603): 420-424. 47.Yang, Y. C., et al., Permanent Inactivation of HBV Genomes by CRISPR/Cas9- Mediated Non-cleavage Base Editing. Mol Ther Nucleic Acids, 2020. 20: 480-490. 48.Yan, J., et al., Prime Editing: Precision Genome Editing by Reverse Transcription. Mol Cell, 2020. 77(2): 210-212. 49.Anzalone, A. V., et al., Search-and-replace genome editing without double-strand breaks or donor DNA. Nature, 2019. 50.Marzec M, Brąszewska-Zalewska A, Hensel G. Prime Editing: A New Way for Genome Editing. Trends Cell Biol., 2020. 30(4):257-259. 51.Schreiber RD, Old LJ, Smyth MJ. Cancer immunoediting: integrating immunity’s roles in cancer suppression and promotion. Science, 2011. 331: 1565–70. 52.Dornmair K, Meinl E, Hohlfeld R. Novel approaches for identifying target antigens of autoreactive human B and T cells. Sem Immunopathol., 2009. 31:467–77. 53.Appay V, Doueck DC, Price DA. CD8+ T cell efficacy in vaccination and disease. Nat Med., 2008. 14:623–8. 54.Sharma, G. and R. A. Holt., T-cell epitope discovery technologies. Hum Immunol., 2014.75(6): 514-519. 55.Purcell, A. W., et al. Mass spectrometry-based identification of MHC-bound peptides for immunopeptidomics. Nat Protoc., 2019. 14(6): 1687-1707. 56.Robinson, J., et al., The IPD and IMGT/HLA database: allele variant databases. Nucleic Acids Res., 2015. 43, D423–D431. 57.Vita, R., et al., The immune epitope database (IEDB) 3.0. Nucleic Acids Res., 2015. 43, D405–D412. 58.Abelin, J. G., et al., Mass Spectrometry Profiling of HLA-Associated Peptidomes in Mono-allelic Cells Enables More Accurate Epitope Prediction. Immunity, 2017. 46(2): 315- 326. 59.Weissert, R. Is there a value for definition of human leukocyte antigen-associated peptidomes? Annals of Research Hospitals, 2017. 1(3). 60.Torikai H, Reik A, Soldner F, et al. Toward eliminating HLA class I expression to generate universal cells from allogeneic donors. Blood, 2013. 122:1341–1349. 61.Mandal PK, Ferreira LM, Collins R, et al. Efficient ablation of genes in human hematopoietic stem and effector cells using CRISPR/Cas9. Cell Stem Cell, 2014. 15: 643– 652. 62.Torikai H, Mi T, Gragert L, et al. Genetic editing of HLA expression in hematopoietic stem cells to broaden their human application. Sci Rep., 2016. 6:21757. 63.Hong CH, Sohn HJ, Lee HJ, Cho HI, Kim TG. Antigen Presentation by Individually Transferred HLA Class I Genes in HLA-A, HLA-B, HLA-C Null Human Cell Line Generated Using the Multiplex CRISPR-Cas9 System. J Immunother., 2017. 40(6):201-210. 64.Daumke O, Knittler MR. Functional asymmetry of the ATP-binding-cassettes of the ABC transporter TAP is determined by intrinsic properties of the nucleotide binding domains. Eur J Biochem., 2001. 268(17):4776-4786.
|