|
[1]A. Amir, B. Taba, D. Berg, T. Melano, J. McKinstry, C. Di Nolfo, T. Nayak, A. Andreopoulos, G. Garreau, M. Mendoza, et al. A low power, fully event-based gesture recognition system. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 7243–7252, 2017.
[2]J. Bruna and S. Mallat. Invariant scattering convolution networks.IEEE transactions on pattern analysis and machine intelligence, 35(8):1872–1886, 2013.
[3]N. F. Chen. Pseudo-labels for supervised learning on dynamic vision sensor data,applied to object detection under ego-motion. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pages 644–653, 2018.
[4]K. He, X. Zhang, S. Ren, and J. Sun. Delving deep into rectifiers: Surpassing human-level performance on imagenet classification. In Proceedings of the IEEE international conference on computer vision, pages 1026–1034, 2015.
[5]B. K. Horn and B. G. Schunck. Determining optical flow. In Techniques and Applications of Image Understanding, volume 281, pages 319–331. International Society for Optics and Photonics, 1981.
[6]B. Huval, T. Wang, S. Tandon, J. Kiske, W. Song, J. Pazhayampallil, M. Andriluka,P. Rajpurkar, T. Migimatsu, R. Cheng-Yue, et al. An empirical evaluation of deep learning on highway driving.arXiv preprint arXiv:1504.01716, 2015.
[7]iniVation. DAVIS240 hardware support. https://inivation.com/wp-content/uploads/2019/08/DAVIS240.pdf.
[8]iniVation. DV (Dynamic Vision System). https://inivation.gitlab.io/dv/dv-docs/.
[9]R. Kanjee, A. K. Bachoo, and J. Carroll. Vision-based adaptive cruise control using pattern matching. In 2013 6th Robotics and Mechatronics Conference (RobMech),pages 93–98. IEEE, 2013.
[10]N. Kolotouros, G. Pavlakos, and K. Daniilidis. Convolutional mesh regression for single-image human shape reconstruction. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 4501–4510, 2019.
[11]X. Lagorce, G. Orchard, F. Galluppi, B. E. Shi, and R. B. Benosman. Hots: a hierarchy of event-based time-surfaces for pattern recognition.IEEE transactions on pattern analysis and machine intelligence, 39(7):1346–1359, 2016.
[12]P. Lichtsteiner, C. Posch, and T. Delbruck. A 128x128 120 db 15us latency asynchronous temporal contrast vision sensor.IEEE journal of solid-state circuits,43(2):566–576, 2008.
[13]M. Lin, Q. Chen, and S. Yan. Network in network.arXiv preprint arXiv:1312.4400,2013.
[14]J. Manderscheid, A. Sironi, N. Bourdis, D. Migliore, and V. Lepetit. Speed invariant time surface for learning to detect corner points with event-based cameras. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,pages 10245–10254, 2019.
[15]A. I. Maqueda, A. Loquercio, G. Gallego, N. García, and D. Scaramuzza. Event-based vision meets deep learning on steering prediction for self-driving cars. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,pages 5419–5427, 2018.
[16]E. Mueggler, C. Bartolozzi, and D. Scaramuzza. Fast event-based corner detection.2017.
[17]Z. Niu, M. Zhou, L. Wang, X. Gao, and G. Hua. Ordinal regression with multiple output cnn for age estimation. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 4920–4928, 2016.
[18]B. Ramesh, H. Yang, G. M. Orchard, N. A. Le Thi, S. Zhang, and C. Xiang. Dart:distribution aware retinal transform for event-based cameras.IEEE transactions on pattern analysis and machine intelligence, 2019.
[19]S. Ren, K. He, R. Girshick, and J. Sun. Faster r-cnn: Towards real-time object detection with region proposal networks. In Advances in neural information processing systems, pages 91–99, 2015.
[20]C. Shorten and T. M. Khoshgoftaar. A survey on image data augmentation for deep learning.Journal of Big Data, 6(1):60, 2019.
[21]A. Sironi, M. Brambilla, N. Bourdis, X. Lagorce, and R. Benosman. Hats: Histograms of averaged time surfaces for robust event-based object classification. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,pages 1731–1740, 2018.
[22]G. P. Stein, O. Mano, and A. Shashua. Vision-based acc with a single camera: boundson range and range rate accuracy. In IEEE IV2003 Intelligent Vehicles Symposium.Proceedings (Cat. No. 03TH8683), pages 120–125. IEEE, 2003.
[23]A. Z. Zhu, L. Yuan, K. Chaney, and K. Daniilidis. Ev-flownet: Self-supervised optical flow estimation for event-based cameras.arXiv preprint arXiv:1802.06898,2018.
|