跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.81) 您好!臺灣時間:2024/12/02 22:23
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蕭皓仁
研究生(外文):Hao-Jen Hsiao
論文名稱:使用動態視覺影像進行相對車速估測
論文名稱(外文):Vehicle Relative Speed Estimation with Dynamic Vision Sensor
指導教授:蔡欣穆
指導教授(外文):Hsin-Mu Tsai
口試委員:林忠緯林靖茹陳冠文
口試委員(外文):Chung-Wei LinChing-Ju LinKuan-Wen Chen
口試日期:2020-08-07
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:資訊工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:英文
論文頁數:46
中文關鍵詞:相對車速估算動態視覺感測器卷積神經網路
外文關鍵詞:vehicle speed estimationdynamic vision sensorconvolutional neural network
DOI:10.6342/NTU202003725
相關次數:
  • 被引用被引用:0
  • 點閱點閱:178
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
自近期智慧車輛的蓬勃發展以來,主動巡航控制系統(ACC)一直都是最受歡迎的先進駕駛輔助系統(ADAS)之一。近期許多研究想利用相機及電腦視覺技術來實現ACC,主要原因是可以擴展該相機去實現車上其他視覺相關的智能功能,此外價格也比光達低廉許多。然而常規相機只有較低的時間分辨率且缺乏計算相對車速的能力,這極大的限制了系統的效能。本論文提出了一相對車速估算模型,該模型基於動態視覺感測器及卷積神經網路。使用動態視覺感測器能解決常規相機字在高速行駛下遇到的許多問題,並且能夠進行縱向的運動估算。本系統的FPS達到40Hz,超越了一般車用都卜勒雷達。實驗結果顯示,相對車速估算的平均誤差低於1.4 km/h。
Since the recent flourish development of intelligent vehicles, Adaptive Cruise Control (ACC) has always been one of the most popular Advanced Driver Assistance System (ADAS). Many recent studies want to use single-camera and computer vision technology to implement ACC. The reason is that a camera can be expanded to implement other visual intelligent functions. Also, the expense of the camera is much lower than LiDAR. However,conventional camera lacks the ability to estimate relative speed and only has a low time resolution, which greatly limits the performance of the system.This thesis presents a vehicle relative speed estimation model based on Dynamic Vision Sensor (DVS) and convolutional neural network (CNN) for Adaptive Cruise Control. Also a visual sensor, DVS is an asynchronous cam-era with high temporal resolution and overcome many problems of conventional cameras in high-speed driving conditions. The key innovation of this work is that we use visual sensors for longitudinal motion estimation. More-over, we design two novel data augmentation methods specifically for DVS streaming data. The speed estimation FPS of our system can reach 40 Hz, surpassing Doppler radar-based systems. Experimental results show that error of speed estimation is less than 1.4 km/h.
口試委員會審定書 ii
誌謝 iii
摘要 iv
Abstract v
CHAPTER 1 Introduction 1
CHAPTER 2 Related Work 5
2.1 Vision-based Adaptive Cruise Control 5
2.2 Event-based deep learning 5
CHAPTER 3 Preliminary 7
3.1 Dynamic vision sensor 7
3.2 Event Encoding methods 9
3.2.1 Frequency events Encoding 9
3.2.2 Surface of active events Encoding 10
3.3 Convolutional Neural Network 11
3.3.1 Convolution layer 11
3.3.2 Global average pooling 12
CHAPTER 4 System Design 14
4.1 Overview 14
4.2 Event-Frame Encoder 16
4.2.1 Objection detection 17
4.2.2 Speed estimation 17
4.3 Object Detection Model 19
4.4 Event Frame Preprocessing 20
4.4.1 Coordinate Encoding 20
4.4.2 Centralization 21
4.5 Data Augmentation 23
4.5.1 Shift Sampling 24
4.5.2 Temporal Flip 25
4.5.3 Horizontal Flip 26
4.6 Speed Estimate Model 27
4.6.1 Quadrant Issue 27
CHAPTER 5 Implementation 30
5.1 DVS240 30
5.2 LiDAR 30
CHAPTER 6 Experiment 32
6.1 Data Set 32
6.1.1 Experimental Setup 32
6.1.2 Data Collection 32
6.2 Loss Function 33
6.3 Performance Metrics 33
6.4 Speed Estimate Model Evaluation 34
6.4.1 Effect of Adaptive Average Pooling 2×2 34
6.4.2 Effect of Preprocessing 36
6.4.3 Effect of Data Augmentation 38
6.4.4 Best performance model 40
6.4.5 Evaluate on other styles of vehicle 41
CHAPTER 7 Conclusion 43
Bibliography 44
[1]A. Amir, B. Taba, D. Berg, T. Melano, J. McKinstry, C. Di Nolfo, T. Nayak, A. Andreopoulos, G. Garreau, M. Mendoza, et al. A low power, fully event-based gesture recognition system. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 7243–7252, 2017.

[2]J. Bruna and S. Mallat. Invariant scattering convolution networks.IEEE transactions on pattern analysis and machine intelligence, 35(8):1872–1886, 2013.

[3]N. F. Chen. Pseudo-labels for supervised learning on dynamic vision sensor data,applied to object detection under ego-motion. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pages 644–653, 2018.

[4]K. He, X. Zhang, S. Ren, and J. Sun. Delving deep into rectifiers: Surpassing human-level performance on imagenet classification. In Proceedings of the IEEE international conference on computer vision, pages 1026–1034, 2015.

[5]B. K. Horn and B. G. Schunck. Determining optical flow. In Techniques and Applications of Image Understanding, volume 281, pages 319–331. International Society for Optics and Photonics, 1981.

[6]B. Huval, T. Wang, S. Tandon, J. Kiske, W. Song, J. Pazhayampallil, M. Andriluka,P. Rajpurkar, T. Migimatsu, R. Cheng-Yue, et al. An empirical evaluation of deep learning on highway driving.arXiv preprint arXiv:1504.01716, 2015.

[7]iniVation. DAVIS240 hardware support. https://inivation.com/wp-content/uploads/2019/08/DAVIS240.pdf.

[8]iniVation. DV (Dynamic Vision System). https://inivation.gitlab.io/dv/dv-docs/.

[9]R. Kanjee, A. K. Bachoo, and J. Carroll. Vision-based adaptive cruise control using pattern matching. In 2013 6th Robotics and Mechatronics Conference (RobMech),pages 93–98. IEEE, 2013.

[10]N. Kolotouros, G. Pavlakos, and K. Daniilidis. Convolutional mesh regression for single-image human shape reconstruction. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 4501–4510, 2019.

[11]X. Lagorce, G. Orchard, F. Galluppi, B. E. Shi, and R. B. Benosman. Hots: a hierarchy of event-based time-surfaces for pattern recognition.IEEE transactions on pattern analysis and machine intelligence, 39(7):1346–1359, 2016.

[12]P. Lichtsteiner, C. Posch, and T. Delbruck. A 128x128 120 db 15us latency asynchronous temporal contrast vision sensor.IEEE journal of solid-state circuits,43(2):566–576, 2008.

[13]M. Lin, Q. Chen, and S. Yan. Network in network.arXiv preprint arXiv:1312.4400,2013.

[14]J. Manderscheid, A. Sironi, N. Bourdis, D. Migliore, and V. Lepetit. Speed invariant time surface for learning to detect corner points with event-based cameras. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,pages 10245–10254, 2019.

[15]A. I. Maqueda, A. Loquercio, G. Gallego, N. García, and D. Scaramuzza. Event-based vision meets deep learning on steering prediction for self-driving cars. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,pages 5419–5427, 2018.

[16]E. Mueggler, C. Bartolozzi, and D. Scaramuzza. Fast event-based corner detection.2017.

[17]Z. Niu, M. Zhou, L. Wang, X. Gao, and G. Hua. Ordinal regression with multiple output cnn for age estimation. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 4920–4928, 2016.

[18]B. Ramesh, H. Yang, G. M. Orchard, N. A. Le Thi, S. Zhang, and C. Xiang. Dart:distribution aware retinal transform for event-based cameras.IEEE transactions on pattern analysis and machine intelligence, 2019.

[19]S. Ren, K. He, R. Girshick, and J. Sun. Faster r-cnn: Towards real-time object detection with region proposal networks. In Advances in neural information processing systems, pages 91–99, 2015.

[20]C. Shorten and T. M. Khoshgoftaar. A survey on image data augmentation for deep learning.Journal of Big Data, 6(1):60, 2019.

[21]A. Sironi, M. Brambilla, N. Bourdis, X. Lagorce, and R. Benosman. Hats: Histograms of averaged time surfaces for robust event-based object classification. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,pages 1731–1740, 2018.

[22]G. P. Stein, O. Mano, and A. Shashua. Vision-based acc with a single camera: boundson range and range rate accuracy. In IEEE IV2003 Intelligent Vehicles Symposium.Proceedings (Cat. No. 03TH8683), pages 120–125. IEEE, 2003.

[23]A. Z. Zhu, L. Yuan, K. Chaney, and K. Daniilidis. Ev-flownet: Self-supervised optical flow estimation for event-based cameras.arXiv preprint arXiv:1802.06898,2018.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top