跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.89) 您好!臺灣時間:2024/12/12 02:38
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:許哲誠
研究生(外文):Che-Cheng Hsu
論文名稱:利用胎兒3D超音波影像計算臟器體積之研究
論文名稱(外文):Computing Fetal Organ Volume Using 3D Ultrasound Image
指導教授:張瑞峰張瑞峰引用關係
指導教授(外文):Ruey-Feng Chang
口試委員:陳啟禎羅崇銘
口試委員(外文):Chii-Jen ChenChung-Ming Lo
口試日期:2016-07-27
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:資訊工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:英文
論文頁數:30
中文關鍵詞:胎兒超音波器官大小電腦輔助診斷
外文關鍵詞:fetalultrasoundvolume diagnosis
DOI:10.6342/NTU202003806
相關次數:
  • 被引用被引用:0
  • 點閱點閱:144
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
隨著醫學影像發展,超音波診斷科技已成為孕婦檢查先天性胎兒畸形不可缺少的工具。然而,過去婦科醫生在產前檢查中使用二維超音波影像,無法提供更詳細的胎兒資訊。近年來隨著三維超音波篩查科技的發展,胎兒三維超音波可以提供全面的器官資訊來評估胎兒的狀態,胃體積的估計是確定胎兒狀態的一個重要特徵,準確的胃體積計算可以幫助婦科醫生做出决定,雖然三維超音波影像能提供更詳細的資訊,但超音波雜訊會影響婦科醫生診斷的準確性。此外,胃體積的估計是一個依賴婦科醫生的過程,不同的婦科醫生可能會有所不同。因此,在本研究中,我們提出一個全自動的電腦輔助體積估測系統,以協助婦科醫師獲得胎兒胃體積。該系統由圖像處理、胃區域定位和胃體積估計組成,在圖像處理中,採用了anisotropic和sigmoid濾波器來消除超音波雜訊,提高了影像的對比度,然後採用候選區域生成和胃選擇相結合的胃區域定位方法,對胃進行定位,分割出粗糙區域。最後,利用Level-set和體積計算相結合的胃體積估計方法,對胃區域進行細化,計算出寶貴的胃體積。由實驗結果,該系統對23例患者進行了處理,胃體積和胃直徑的總體準確率分別達到73.9%和82.6%。綜上所述,基於實驗結果,本系統可以為胎兒三維超音波數據提供可靠與精準的胎兒胃體積量測。它克服了人工操作對超音波結果解釋的局限性。
With the high development of medical imaging, the ultrasound (US) diagnostic technology has become an indispensable tool for pregnant women to check for congenital fetal abnormalities. However, in the past, gynecologists use two-dimensional US images in the prenatal examination, which cannot provide more detailed information with fetal. With the development of three- dimensional (3-D) US screening in recent, the fetus 3-D US could provide comprehensive organ information to evaluate the status of the fetus. The stomach volume estimation is a crucial feature for determining the fetus's status. The accuracy of stomach volume calculation can help the gynecologist make a decision. Although the 3-D US image can provide more detailed information, the US noise would affect the accuracy of gynecologist diagnosis. Moreover, the stomach volume estimation is the gynecologist-dependent process. The estimation result may be different by the different gynecologists. Therefore, in this study, a fully automatic computer-aided volume estimation system is proposed for helping the gynecologist to obtain the fetal stomach volume. The proposed system is composed of the image processing, the stomach region locating, and stomach volume estimation. In image processing, the anisotropic and sigmoid filters are used to eliminate the US noise and enhance the image contrast. Then, the stomach region locating composed of candidate region generation and stomach selection is employed to locate the stomach and segment out the rough region. Finally, the stomach volume estimation made up of the level-set method, and volume calculation is utilized to refine the stomach region and compute the precious stomach volume. In the experimental results, the proposed system is processed with 23 cases, and the overall accuracy of stomach volume and diameter achieve 73.9% and 82.6%. In conclusion, based on the experiment result, our system can offer reliable and precise fetal stomach volume measurements for fetal 3-D ultrasound data. It can overcome the limitation of manual operation to interpret ultrasound results.
口試委員會審定書 i
誌謝 ii
中文摘要 iii
ABSTRACT iv
CONTENTS vi
LIST OF FIGURES viii
LIST OF TABLES x
Chapter 1 Introduction 1
Chapter 2 Materials 3
2.1 Pregnant Woman and Fetal Characters 3
2.2 Data Acquisition 3
Chapter 3 Computing Fetal Organ Volume System 6
3.1 Image Pre-processing 8
3.1.1 Anisotropic Diffusion Filter 8
3.1.2 Sigmoid Filter Operation 9
3.2 Stomach Region Locating 10
3.2.1 Candidate Region Generation 10
3.2.1.1 Markov Random Field Analysis 10
3.2.1.2 Group Consolidation 12
3.2.1.3 Region Elimination 14
3.2.2 Stomach Selection 14
3.3 Calculating Stomach Volume 17
3.3.1 Level-set Method 17
3.3.2 Volume Computation 18
Chapter 4 Experiment Results and Discussion 20
4.1 Experiment Environment 20
4.2 Statistical Analysis Results 21
4.3 Discussion 25
Chapter 5 Conclusion and Future Works 28
REFERENCES 29
[1]U. M. Reddy, R. A. Filly, and J. A. Copel, "Prenatal imaging: ultrasonography and magnetic resonance imaging," (in eng), Obstet Gynecol, vol. 112, no. 1, pp. 145-57, Jul 2008, doi: 10.1097/01.AOG.0000318871.95090.d9.
[2]W. Lee et al., "Fetal growth parameters and birth weight: their relationship to neonatal body composition," (in eng), Ultrasound Obstet Gynecol, vol. 33, no. 4, pp. 441-6, Apr 2009, doi: 10.1002/uog.6317.
[3]I. Goldstein, E. A. Reece, S. Yarkoni, M. Wan, J. L. J. Green, and J. C. Hobbins, "Growth of the fetal stomach in normal pregnancies," Obstetrics and Gynecology, Article vol. 70, no. 4, pp. 641-644, 1987. [Online]. Available: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0023198358&partnerID=40&md5=952bb02293c74a24acd12a891ea59409.
[4]T. Hata, H. Tanaka, J. Noguchi, E. Inubashiri, T. Yanagihara, and S. Kondoh, "Three-Dimensional Sonographic Volume Measurement of the Fetal Stomach," Ultrasound in Medicine & Biology, vol. 36, no. 11, pp. 1808-1812, 2010/11/01/ 2010, doi: https://doi.org/10.1016/j.ultrasmedbio.2010.06.013.
[5] B. Rahmatullah, A. T. Papageorghiou, and J. A. Noble, "Image Analysis Using Machine Learning: Anatomical Landmarks Detection in Fetal Ultrasound Images," in 2012 IEEE 36th Annual Computer Software and Applications Conference, 16-20 July 2012 2012, pp. 354-355, doi: 10.1109/COMPSAC.2012.52.
[6]G. Zhang, C. Zhang, and H. Zhang, "Improved K-means algorithm based on density Canopy," Knowledge-Based Systems, vol. 145, pp. 289-297, 2018/04/01/ 2018, doi: https://doi.org/10.1016/j.knosys.2018.01.031.
[7]F. Forbes and N. Peyrard, "Hidden Markov random field model selection criteria based on mean field-like approximations," (in English), Ieee T Pattern Anal, vol. 25, no. 9, pp. 1089-1101, Sep 2003, doi: Doi 10.1109/Tpami.2003.1227985.
[8]J. A. Sethian, Level set methods : evolving interfaces in geometry, fluid mechanics, computer vision, and materials science (Cambridge monographs on applied and computational mathematics, no. 3). Cambridge: Cambridge University Press, 1996, pp. xviii, 218 p.
[9]J. A. Sethian, Level set methods and fast marching methods : evolving interfaces in computational geometry, fluid mechanics, computer vision, and materials science, 2nd ed. (Cambridge monographs on applied and computational mathematics, no. 3). Cambridge, U.K. ; New York: Cambridge University Press, 1999, pp. xx, 378 p.
[10] C. Chinrungrueng and P. Toonkum, "Real-time speckle reduction and coherence enhancement of ultrasound images based on anisotropic Savitzky-Golay filters," in Systems, Man and Cybernetics, 2004 IEEE International Conference on, 10-13 Oct. 2004 2004, vol. 3, pp. 2994-2998 vol.3, doi: 10.1109/ICSMC.2004.1400789.
[11] C. Kundu, "Enhancement of textural features in normal & diseased ultra sonogram of liver by Gaussian smoothing," in Computer Engineering and Technology (ICCET), 2010 2nd International Conference on, 16-18 April 2010 2010, vol. 6, pp. V6-409-V6-413, doi: 10.1109/ICCET.2010.5486168.
[12] M. Saeidi, S. A. Motamedi, A. Behrad, B. Saeidi, R. Saeidi, and R. Saeidi, "Noise reduction of consecutive images using a new adaptive weighted averaging filter," in IEEE Workshop on Signal Processing Systems Design and Implementation, 2005., 2-4 Nov. 2005 2005, pp. 455-460, doi: 10.1109/SIPS.2005.1579912.
[13]P. Perona and J. Malik, "Scale-space and edge detection using anisotropic diffusion," Ieee T Pattern Anal, vol. 12, no. 7, pp. 629-639, 1990, doi: 10.1109/34.56205.
[14]W. K. Moon, Y. W. Shen, C. S. Huang, L. R. Chiang, and R. F. Chang, "Computer-aided diagnosis for the classification of breast masses in automated whole breast ultrasound images," (in eng), Ultrasound Med Biol, vol. 37, no. 4, pp. 539-48, Apr 2011, doi: S0301-5629(11)00033-0 [pii] 10.1016/j.ultrasmedbio.2011.01.006.
[15]J. Kutarnia and P. Pedersen, "A Markov random field approach to group-wise registration/mosaicing with application to ultrasound," Medical Image Analysis, vol. 24, no. 1, pp. 106-124, 2015/08/01/ 2015, doi: https://doi.org/10.1016/j.media.2015.05.011.
[16]S. Ribes et al., "Automatic Segmentation of Breast MR Images Through a Markov Random Field Statistical Model," IEEE Transactions on Medical Imaging, vol. 33, no. 10, pp. 1986-1996, 2014, doi: 10.1109/TMI.2014.2329019.
[17] R. Rahmatullah, M. A. Ma'sum, Aprinaldi, P. Mursanto, and B. Wiweko, "Automatic fetal organs segmentation using multilayer super pixel and image moment feature," in Advanced Computer Science and Information Systems (ICACSIS), 2014 International Conference on, 18-19 Oct. 2014 2014, pp. 420-426, doi: 10.1109/ICACSIS.2014.7065883.
[18]W. Gander, G. H. Golub, and R. Strebel, "Least-squares fitting of circles and ellipses," BIT Numerical Mathematics, vol. 34, no. 4, pp. 558-578, 1994/12/01 1994, doi: 10.1007/BF01934268.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊