跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.174) 您好!臺灣時間:2024/12/03 19:34
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:許曼軒
研究生(外文):Man-Shiuan Shiu
論文名稱:機器學習於外匯趨勢預測與交易策略之應用
論文名稱(外文):Foreign exchange rate trend forecasting and trading rules using machine learning
指導教授:曹承礎曹承礎引用關係盧信銘
指導教授(外文):Seng-Cho ChouHsin-Min Lu
口試委員:周子元
口試委員(外文):Tzy-Yuan Chou
口試日期:2020-07-10
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:資訊管理學研究所
學門:電算機學門
學類:電算機一般學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:60
中文關鍵詞:外匯預測技術指標經濟變數機器學習
外文關鍵詞:foreign exchange forecastingtechnical indicatorseconomic variablesmachine learning
DOI:10.6342/NTU202002318
相關次數:
  • 被引用被引用:0
  • 點閱點閱:459
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
外匯市場為最活躍的金融市場,每日的成交量非常龐大。外匯的波動深深地影響我們的生活,不論是對個人,或是對企業家,甚至影響了國家做經濟上的決策,因此,外匯的預測相當重要。希望能透過機器學習的技術,捕捉外匯市場的特性,做到更貼近的市場趨勢預估。
此篇研究選用的機器學習模型為隨機森林、xgboost演算法與長短期記憶模型,並藉此深入探討不同特徵對模型匯率趨勢預測的影響,如技術指標與總體經濟因子,與探究有無加入總體經濟因子對模型的影響程度。研究中,將探討如何利用機器學習的模型,來預測不同天數的外匯匯率市場趨勢,並採用相對應的交易策略,達到期望的投資績效。
The foreign exchange market is the most active financial market, and the daily trading volume is very large. The volatility of foreign exchange deeply affects our lives, whether it is for individuals, entrepreneurs, or even the government to make decisions. Therefore, forecasting foreign exchange is very important. We want to use machine learning technologies to capture the characteristics of the foreign exchange market and make predictions of the market trends.
The machine learning models used in this study are random forests, xgboost algorithm, and long short-term memory model, and use the model to explore the impact of different features on the model, such as technical indicators and economic factors, and explore the influence of economic factors on the model's prediction. In the study, we will explore how to use machine learning models to predict the market trend of foreign exchange rates on different days, and use corresponding trading strategies to achieve desired investment performance.
目 錄
口試委員審定書 i
致謝 ii
中文摘要 iii
英文摘要 iv
目錄 v
圖目錄 vii
表目錄 ix
第一章 諸論 1
第一節 研究動機 1
第二節 研究目的 2
第三節 研究流程與論文架構 2
第二章 文獻探討 4
第一節 外匯預測 4
第二節 技術指標 5
第三節 總體經濟因子 7
第三章 研究方法 12
第一節 研究對象與資料來源 12
第二節 資料前處理與特徵工程 13
第三節 外匯匯率趨勢標籤設定 28
第四節 模型預測 29
第五節 投資策略與績效評估 32
第四章 研究結果 33
第一節 模型預測結果 33
第二節 交易策略與回溯測試結果 42
第三節 模型預測結果之特徵探討 46
第五章 結論與未來方向 53
第一節 結論 53
第二節 未來方向 54
參考文獻 55
Aloui, R., Ben Aïssa, M. S., & Nguyen, D. K. (2013). Conditional dependence structure between oil prices and exchange rates: a copula-GARCH approach. Journal of International Money and Finance, 32, 719-738. doi: 10.1016/j.jimonfin.2012.06.006
Bank for International Settlements. (2019). Triennial Central Bank Survey - Foreign exchange turnover in April 2019. Monetary and Economic Department. Retrieved from https://www.bis.org/statistics/rpfx19_fx.pdf
Bollinger, J. (1992). Using bollinger bands. Stocks & Commodities, 10(2), 47-51.
Breiman, L. (2001). Random forests. Machine learning, 45(1), 5-32. doi: 10.1023/A:1010933404324
Capie, F., Mills, T. C., & Wood, G. (2005). Gold as a hedge against the dollar. Journal of International Financial Markets, Institutions and Money, 15(4), 343-352. doi:10.1016/j.intfin.2004.07.002
Chen, T., & Guestrin, C. (2016). XGBoost: A scalable tree boosting system. In B. Krishnapuram, & M. Shah (Chairs), Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 785-794). New York, NY: Association for Computing Machinery. doi: 10.1145/2939672.2939785
Ciner, C., Gurdgiev, C., & Lucey, B. M. (2013). Hedges and safe havens: An examination of stocks, bonds, gold, oil and exchange rates. International Review of Financial Analysis, 29, 202-211. doi: 10.1016/j.irfa.2012.12.001
Ding, L., & Vo, M. (2012). Exchange rates and oil prices: A multivariate stochastic volatility analysis. The Quarterly Review of Economics and Finance, 52(1), 15-37. doi: 10.1016/j.qref.2012.01.003
Fleming, J., Kirby, C., & Ostdiek, B. (1998). Information and volatility linkages in the stock, bond, and money markets. Journal of financial economics, 49(1), 111-137. doi: 10.1016/S0304-405X(98)00019-1
Gers, F. A., Schmidhuber, J., & Cummins, F. (2000). Learning to forget: Continual prediction with LSTM. Neural Computation,12(10), 2451-2471. doi: 10.1162/089976600300015015
Hirabayashi, A., Aranha, C., & Iba, H. (2009). Optimization of the trading rule in foreign exchange using genetic algorithm. In F. Rothlauf (Chair), Proceedings of the 11th Annual conference on Genetic and evolutionary computation (pp. 1529-1536). New York, NY: Association for Computing Machinery. doi: 10.1145/1569901.1570106
Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural computation, 9(8), 1735-1780. doi: 10.1162/neco.1997.9.8.1735
Intercontinental Exchange. US Dollar Index. Retrieved from https://www.theice.com/publicdocs/ICE_USDX_Brochure.pdf
Liu, C., Hou, W., & Liu, D. (2017). Foreign exchange rates forecasting with convolutional neural network. Neural Processing Letters, 46(3), 1095-1119. doi: 10.1007/s11063-017-9629-z
Murphy, J. (1999). Technical analysis of the financial markets: A comprehensive guide to trading methods and applications. New York, NY: New York Institute of Finance.
Ranjit, S., Shrestha, S., Subedi, S., & Shakya, S. (2018). Comparison of algorithms in foreign Exchange Rate Prediction. In 2018 IEEE 3rd International Conference on Computing, Communication and Security (ICCCS) (pp. 9-13). IEEE. doi: 10.1109/CCCS.2018.8586826
Reboredo, J. C. (2013). Is gold a safe haven or a hedge for the US dollar? Implications for risk management. Journal of Banking & Finance, 37(8), 2665-2676. doi: 10.1016/j.jbankfin.2013.03.020
Theofilatos, K., Likothanassis, S., & Karathanasopoulos, A. (2012). Modeling and trading the EUR/USD exchange rate using machine learning techniques. Engineering, Technology & Applied Science Research, 2(5), 269-272.
Wilder, J. W. (1978). New concepts in technical trading systems. Greensboro, NC: Trend Research.
徐維志(2015)。以隨機森林為模式之美金/歐元匯率交易預測研究(未出版之碩士論文)。輔仁大學統計資訊學系應用統計碩士在職專班,新北市。
戴月珍(2013)。美元兌新台幣匯率預測(未出版之碩士論文)。國立高雄應用科技大學金融資訊研究所,高雄市。
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊