跳到主要內容

臺灣博碩士論文加值系統

(44.201.94.236) 您好!臺灣時間:2023/03/28 01:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:簡辰宇
研究生(外文):Chen-Yu Chien
論文名稱:使用轉換學習方法進行少量資源中文機器閱讀理解
論文名稱(外文):Low-Resource Chinese Machine Reading Comprehension Using A Transfer Learning Approach
指導教授:魏志平魏志平引用關係
指導教授(外文):Chih-Ping Wei
口試委員:吳家齊張詠淳
口試委員(外文):Chia-Chi WuYung-Chun Chang
口試日期:2020-07-15
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:資訊管理學研究所
學門:電算機學門
學類:電算機一般學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:英文
論文頁數:50
中文關鍵詞:機器閱讀理解轉換式學習領域適配
外文關鍵詞:machine reading comprehensiontransfer learningdomain adaptation
DOI:10.6342/NTU202003171
相關次數:
  • 被引用被引用:0
  • 點閱點閱:100
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
隨著語言模型預訓練技術的巨大進展,機器閱讀理解(MRC)研究有了顯著的進步,近年來深受重視。由於相關訓練資源較為充足,目前MRC的研究大多集中在英語的一般性應用領域。然而在少量訓練資源領域的MRC研究則較缺乏,但對許多特定領域(例如醫療保健/生物醫學應用)這類的需求其實很高。此外,針對中文MRC的研究也正在起步。本研究的主要目的是針對少量資源機器閱讀理解發展出一種可行的解決方案。並提出一種基於預訓練/微調語言建模結構的轉換學習方法,其中包括四種不同的微調方法:聯合(Joint)、依序(Cascade)、對抗式學習(Adversarial learning)及多任務學習(Multitask learning)訓練。這些微調方法是運用資源較為豐富的其他領域訓練數據來提高機器學習的成效。同時,本研究也進行了多種實驗來評估在不同條件下的成效,包括輔助訓練任務支持程度的不同、目標數據的大小變化、及使用不同的中文MRC評測標準進行測試。本研究結果證實,從資源相對較為豐富的領域取得數據,可以協助提高資源較為稀少的特定領域其機器學習成效;同時採用多任務訓練方法進行精細化處理,則可以最大化輔助數據集對於少量資源機器閱讀理解的支持,並可達到最佳的機器閱讀理解效能。
With huge advances in language model pre-training technology, machine reading comprehension (MRC) has been significantly improved and attracted a lot of research attention in recent years. Most research on MRC has focused on general-domain contexts in English, which relies on the adequacy of the training sources. MRC research in low-resource domains has not yet been well developed, but is highly demanded for many specific domains such as healthcare/biomedical applications. Besides, there is less research conducted in Chinese MRC. The purpose of this research is to develop a feasible solution for low-resource machine reading comprehension. In this research, we employ the transfer learning approach which is based on a pre-training/fine-tuning language modeling structure , and develop four different domain adaptation methods, including joint, cascade, adversarial, and multitask learning. The domain adaptation methods are employed to improve the effectiveness of MRC through the support of the training data from other domains with high resources. Various experiments are conducted to evaluate the effectiveness of different domain adaptation methods under various conditions, including different scales of support from the auxiliary tasks, limited sizes of target data, and tests in different Chinese MRC benchmarks. According to our evaluation results, the effectiveness of MRC in specific domains with low training resources can be improved through the support of the data from other domains with high resources, and the multitask training method for fine-tuning generally can maximize the support of the auxiliary data sets to low-resource machine reading comprehension tasks and achieve the best effectiveness of MRC.
誌謝 ii
摘要 iii
Abstract iv
List of Figures viii
List of Tables x
Chapter 1 Introduction 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Research Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Research Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Chapter 2 Literature Review 6
2.1 Word Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1.1 Cross-Domain Word Representation . . . . . . . . . . . . . . . . . 7
2.2 Pre-trained Language Model . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.1 Enhanced Pre-trained Language Model . . . . . . . . . . . . . . . 8
2.2.2 Domain Specific Pre-trained Language Model . . . . . . . . . . . 9
2.3 Machine Reading Comprehension . . . . . . . . . . . . . . . . . . . . . . . 10
2.4 Machine Reading Comprehension on Specific Domains . . . . . . . . . . 12
2.4.1 Biomedical MRC . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4.2 MRC in Chinese . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4.3 Domain Adaptation on MRC . . . . . . . . . . . . . . . . . . . . . 13
Chapter 3 Methodology 15
3.1 Problem Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 NTUBI MRC Task and Dataset . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.3 Pre-trained Language Model . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.3.1 Pre-trained Language Model Selection . . . . . . . . . . . . . . . . 17
3.4 Domain Adaptation Methods . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.4.1 Joint Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.4.2 Cascade Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.4.3 Adversarial Training . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.4.4 Multitask Training . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Chapter 4 Experiments 25
4.1 Datasets and Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.2 Experiment Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.2.1 Model Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.2.2 Hyper Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.2.3 Benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.3 Results on Full-sized Datasets . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.3.1 Adversarial Training and Multitask Training . . . . . . . . . . . . 31
4.4 Effects of Different Support Scale from the Auxiliary Task . . . . . . . . . 32
4.5 Performance in Limited Target Size . . . . . . . . . . . . . . . . . . . . . . 34
4.5.1 Half of the Target Samples from NTUBI . . . . . . . . . . . . . . . 35
4.5.2 One Tenth of the Target Samples from NTUBI . . . . . . . . . . . 36
4.6 Evaluations on Other Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.6.1 Evaluations on Other Tasks with the Same Size of NTUBI . . . . 38
4.7 Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.7.1 Data Amount Requirements . . . . . . . . . . . . . . . . . . . . . . 41
4.7.2 Effect from Domain Differences . . . . . . . . . . . . . . . . . . . 41
4.7.3 Recommended Occasion of Adopting Proposed Transfer
Learning Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Chapter 5 Concluding Remarks and Further Work 43
References 45
Arjovsky, M., Chintala, S., and Bottou, L. (2017). Wasserstein GAN. arXiv preprint arXiv:1701.07875.
Bajaj, P., Campos, D., Craswell, N., Deng, L., Gao, J., Liu, X., Majumder, R., McNamara, A., Mitra, B., Nguyen, T., et al. (2016). Ms marco: A human generated machine reading comprehension dataset. arXiv preprint arXiv:1611.09268.
Beltagy, I., Lo, K., and Cohan, A. (2019). SciBERT: a pretrained language model for scientific text. arXiv preprint arXiv:1903.10676.
Chung, Y. A., Lee, H. Y., and Glass, J. (2017). Supervised and unsupervised transfer learning for question answering. arXiv preprint arXiv:1711.05345.
Conneau, A. and Lample, G. (2019).Cross-lingual language model pretraining. In Advances in Neural Information Processing Systems, pages 7059–7069.
Cui, Y., Che, W., Liu, T., Qin, B., Wang, S., and Hu, G. (2019a). Cross-lingual machine reading comprehension. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages 1586–1595.
Cui, Y., Che, W., Liu, T., Qin, B., Wang, S., and Hu, G. (2020). Revisiting pre-trained models for Chinese natural language processing. arXiv preprint arXiv:2004.13922.
Cui, Y., Che, W., Liu, T., Qin, B., Yang, Z., Wang, S., and Hu, G. (2019b). Pre-training with whole word masking for Chinese BERT. arXiv preprint arXiv:1906.08101.
Cui, Y., Liu, T., Che, W., Xiao, L., Chen, Z., Ma, W., Wang, S., and Hu, G. (2018). A span-extraction dataset for Chinese machine reading comprehension. arXiv preprint arXiv:1810.07366.
Cui, Y., Liu, T., Chen, Z., Wang, S., and Hu, G. (2016). Consensus attention-based neural networks for chinese reading comprehension. arXiv preprint arXiv:1607.02250.
Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. (2018). BERT: pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805.
Gers, F. A., Schmidhuber, J., and Cummins, F. (1999). Learning to forget: Continual prediction with LSTM. In Proceedings of 1999 Ninth International Conference on Artificial Neural Networks Networks, volume 2, pages 850–855.
Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., and Courville, A. (2017). Improved training of wasserstein gans. In Advances in Neural Information Processing Systems, pages 5767–5777.
Hermann, K. M., Kocˇisky´, T., Grefenstette, E., Espeholt, L., Kay, W., Suleyman, M., and Blunsom, P. (2015). Teaching machines to read and comprehend. In Proceedings of the 28th International Conference on Neural Information Processing Systems, volume 1, pages 1693–1701.
Huang, Z., Xu, W., and Yu, K. (2015). Bidirectional LSTM-CRF models for sequence tagging. arXiv preprint arXiv:1508.01991.
Jin, Q., Dhingra, B., Liu, Z., Cohen, W. W., and Lu, X. (2019). PubMedQA: a dataset for biomedical research question answering. arXiv preprint arXiv:1909.06146.
Joshi, M., Chen, D., Liu, Y., Weld, D. S., Zettlemoyer, L., and Levy, O. (2020). SpanBERT: improving pre-training by representing and predicting spans. Transactions of the Association for Computational Linguistics, 8:64–77.
Lai, G., Xie, Q., Liu, H., Yang, Y., and Hovy, E. (2017). RACE: Large-scale reading comprehension dataset from examinations. arXiv preprint arXiv:1704.04683.
Lan, Z. Z., Chen, M., Goodman, S., Gimpel, K., Sharma, P., and Soricut, R. (2019). ALBERT: a lite bert for self-supervised learning of language representations. arXiv preprint arXiv:1901.07291.
Lee, C. H. and Lee, H. Y. (2019). Cross-lingual transfer learning for question answering. arXiv preprint arXiv:1907.06042.
Lee, J., Yoon, W., Kim, S., Kim, D., Kim, S., So, C. H., and Kang, J. (2020). BioBERT: a pre-trained biomedical language representation model for biomedical text mining. Bioinformatics, 36(4):1234–1240.
Liu, S., Zhang, X., Zhang, S., Wang, H., and Zhang, W. (2019a). Neural machine reading comprehension: Methods and trends. Applied Sciences, 9(18):3698.
Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., Levy, O., Lewis, M., Zettlemoyer, L., and Stoyanov, V. (2019b). Roberta: A robustly optimized bert pretraining approach. arXiv preprint arXiv:1907.11692.
Mikolov, T., Le, Q. V., and Sutskever, I. (2013a). Exploiting similarities among languages for machine translation. arXiv preprint arXiv:1309.4168.
Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., and Dean, J. (2013b). Distributed representations of words and phrases and their compositionality. In Advances in neural information processing systems, pages 3111–3119.
Rajpurkar, P., Jia, R., and Liang, P. (2018). Know what you don’t know: Unanswerable questions for SQuAD. arXiv preprint arXiv:1806.03822.
Rajpurkar, P., Zhang, J., Lopyrev, K., and Liang, P. (2016). SQuAD: 100,000+ questions for machine comprehension of text. arXiv preprint arXiv:1606.05250.
Shao, C. C., Liu, T., Lai, Y., Tseng, Y., and Tsai, S. (2018). DRCD: a Chinese machine reading comprehension dataset. arXiv preprint arXiv:1806.00920.
Sun, C., Qiu, X., Xu, Y., and Huang, X. (2019). How to fine-tune BERT for text classification? In China National Conference on Chinese Computational Linguistics, pages 194–206. Springer.
Suster, S. and Daelemans, W. (2018). CliCR: a dataset of clinical case reports for machine reading comprehension. arXiv preprint arXiv:1803.09720.
Tsatsaronis, G., Balikas, G., Malakasiotis, P., Partalas, I., Zschunke, M., Alvers, M. R., Weissenborn, D., Krithara, A., Petridis, S., Polychronopoulos, D., Almirantis, Y., Pavlopoulos, J., Baskiotis, N., Gallinari, P., Artie´res, T., Ngomo, A. C. N., Heino, N., Gaussier, E., Barrio-Alvers, L., Schroeder, M., Androutsopoulos, I., and Paliouras, G. (2015). An overview of the bioasq large-scale biomedical semantic indexing and question answering competition. BMC Bioinformatics, 16(1):138.
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. (2017). Attention is all you need. In Advances in neural information processing systems, pages 5998–6008.
Wang, H., Gan, Z., Liu, X., Liu, J., Gao, J., and Wang, H. (2019). Adversarial domain adaptation for machine reading comprehension. arXiv preprint arXiv:1908.09209.
Wu, Y., Schuster, M., Chen, Z., Le, Q. V., Norouzi, M., Macherey, W., Krikun, M., Cao, Y., Gao, Q., Macherey, K., et al. (2016). Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:1609.08144.
Xu, L., Zhang, X., Li, L., Hu, H., Cao, C., Liu, W., Li, J., Li, Y., Sun, K., Xu, Y., et al. (2020). CLUE: A Chinese language understanding evaluation benchmark. arXiv preprint arXiv:2004.05986.
Xu, Y., Liu, X., Shen, Y., Liu, J., and Gao, J. (2018). Multi-task learning with sample re-weighting for machine reading comprehension. arXiv preprint arXiv:1809.06963.
Yang, W., Lu, W., and Zheng, V. (2017). A simple regularization-based algorithm for learning cross-domain word embeddings. In Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, pages 2898–2904. Association for Computational Linguistics.
Yang, Z., Dai, Z., Yang, Y., Carbonell, J., Salakhutdinov, R. R., and Le, Q. V. (2019). Xlnet: Generalized autoregressive pretraining for language understanding. In Advances in neural information processing systems, pages 5753–5763.
Zhang, Z., Yang, J., and Zhao, H. (2020). Retrospective reader for machine reading comprehension. arXiv preprint arXiv:2001.09694.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊