|
Arjovsky, M., Chintala, S., and Bottou, L. (2017). Wasserstein GAN. arXiv preprint arXiv:1701.07875. Bajaj, P., Campos, D., Craswell, N., Deng, L., Gao, J., Liu, X., Majumder, R., McNamara, A., Mitra, B., Nguyen, T., et al. (2016). Ms marco: A human generated machine reading comprehension dataset. arXiv preprint arXiv:1611.09268. Beltagy, I., Lo, K., and Cohan, A. (2019). SciBERT: a pretrained language model for scientific text. arXiv preprint arXiv:1903.10676. Chung, Y. A., Lee, H. Y., and Glass, J. (2017). Supervised and unsupervised transfer learning for question answering. arXiv preprint arXiv:1711.05345. Conneau, A. and Lample, G. (2019).Cross-lingual language model pretraining. In Advances in Neural Information Processing Systems, pages 7059–7069. Cui, Y., Che, W., Liu, T., Qin, B., Wang, S., and Hu, G. (2019a). Cross-lingual machine reading comprehension. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages 1586–1595. Cui, Y., Che, W., Liu, T., Qin, B., Wang, S., and Hu, G. (2020). Revisiting pre-trained models for Chinese natural language processing. arXiv preprint arXiv:2004.13922. Cui, Y., Che, W., Liu, T., Qin, B., Yang, Z., Wang, S., and Hu, G. (2019b). Pre-training with whole word masking for Chinese BERT. arXiv preprint arXiv:1906.08101. Cui, Y., Liu, T., Che, W., Xiao, L., Chen, Z., Ma, W., Wang, S., and Hu, G. (2018). A span-extraction dataset for Chinese machine reading comprehension. arXiv preprint arXiv:1810.07366. Cui, Y., Liu, T., Chen, Z., Wang, S., and Hu, G. (2016). Consensus attention-based neural networks for chinese reading comprehension. arXiv preprint arXiv:1607.02250. Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. (2018). BERT: pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805. Gers, F. A., Schmidhuber, J., and Cummins, F. (1999). Learning to forget: Continual prediction with LSTM. In Proceedings of 1999 Ninth International Conference on Artificial Neural Networks Networks, volume 2, pages 850–855. Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., and Courville, A. (2017). Improved training of wasserstein gans. In Advances in Neural Information Processing Systems, pages 5767–5777. Hermann, K. M., Kocˇisky´, T., Grefenstette, E., Espeholt, L., Kay, W., Suleyman, M., and Blunsom, P. (2015). Teaching machines to read and comprehend. In Proceedings of the 28th International Conference on Neural Information Processing Systems, volume 1, pages 1693–1701. Huang, Z., Xu, W., and Yu, K. (2015). Bidirectional LSTM-CRF models for sequence tagging. arXiv preprint arXiv:1508.01991. Jin, Q., Dhingra, B., Liu, Z., Cohen, W. W., and Lu, X. (2019). PubMedQA: a dataset for biomedical research question answering. arXiv preprint arXiv:1909.06146. Joshi, M., Chen, D., Liu, Y., Weld, D. S., Zettlemoyer, L., and Levy, O. (2020). SpanBERT: improving pre-training by representing and predicting spans. Transactions of the Association for Computational Linguistics, 8:64–77. Lai, G., Xie, Q., Liu, H., Yang, Y., and Hovy, E. (2017). RACE: Large-scale reading comprehension dataset from examinations. arXiv preprint arXiv:1704.04683. Lan, Z. Z., Chen, M., Goodman, S., Gimpel, K., Sharma, P., and Soricut, R. (2019). ALBERT: a lite bert for self-supervised learning of language representations. arXiv preprint arXiv:1901.07291. Lee, C. H. and Lee, H. Y. (2019). Cross-lingual transfer learning for question answering. arXiv preprint arXiv:1907.06042. Lee, J., Yoon, W., Kim, S., Kim, D., Kim, S., So, C. H., and Kang, J. (2020). BioBERT: a pre-trained biomedical language representation model for biomedical text mining. Bioinformatics, 36(4):1234–1240. Liu, S., Zhang, X., Zhang, S., Wang, H., and Zhang, W. (2019a). Neural machine reading comprehension: Methods and trends. Applied Sciences, 9(18):3698. Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., Levy, O., Lewis, M., Zettlemoyer, L., and Stoyanov, V. (2019b). Roberta: A robustly optimized bert pretraining approach. arXiv preprint arXiv:1907.11692. Mikolov, T., Le, Q. V., and Sutskever, I. (2013a). Exploiting similarities among languages for machine translation. arXiv preprint arXiv:1309.4168. Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., and Dean, J. (2013b). Distributed representations of words and phrases and their compositionality. In Advances in neural information processing systems, pages 3111–3119. Rajpurkar, P., Jia, R., and Liang, P. (2018). Know what you don’t know: Unanswerable questions for SQuAD. arXiv preprint arXiv:1806.03822. Rajpurkar, P., Zhang, J., Lopyrev, K., and Liang, P. (2016). SQuAD: 100,000+ questions for machine comprehension of text. arXiv preprint arXiv:1606.05250. Shao, C. C., Liu, T., Lai, Y., Tseng, Y., and Tsai, S. (2018). DRCD: a Chinese machine reading comprehension dataset. arXiv preprint arXiv:1806.00920. Sun, C., Qiu, X., Xu, Y., and Huang, X. (2019). How to fine-tune BERT for text classification? In China National Conference on Chinese Computational Linguistics, pages 194–206. Springer. Suster, S. and Daelemans, W. (2018). CliCR: a dataset of clinical case reports for machine reading comprehension. arXiv preprint arXiv:1803.09720. Tsatsaronis, G., Balikas, G., Malakasiotis, P., Partalas, I., Zschunke, M., Alvers, M. R., Weissenborn, D., Krithara, A., Petridis, S., Polychronopoulos, D., Almirantis, Y., Pavlopoulos, J., Baskiotis, N., Gallinari, P., Artie´res, T., Ngomo, A. C. N., Heino, N., Gaussier, E., Barrio-Alvers, L., Schroeder, M., Androutsopoulos, I., and Paliouras, G. (2015). An overview of the bioasq large-scale biomedical semantic indexing and question answering competition. BMC Bioinformatics, 16(1):138. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. (2017). Attention is all you need. In Advances in neural information processing systems, pages 5998–6008. Wang, H., Gan, Z., Liu, X., Liu, J., Gao, J., and Wang, H. (2019). Adversarial domain adaptation for machine reading comprehension. arXiv preprint arXiv:1908.09209. Wu, Y., Schuster, M., Chen, Z., Le, Q. V., Norouzi, M., Macherey, W., Krikun, M., Cao, Y., Gao, Q., Macherey, K., et al. (2016). Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:1609.08144. Xu, L., Zhang, X., Li, L., Hu, H., Cao, C., Liu, W., Li, J., Li, Y., Sun, K., Xu, Y., et al. (2020). CLUE: A Chinese language understanding evaluation benchmark. arXiv preprint arXiv:2004.05986. Xu, Y., Liu, X., Shen, Y., Liu, J., and Gao, J. (2018). Multi-task learning with sample re-weighting for machine reading comprehension. arXiv preprint arXiv:1809.06963. Yang, W., Lu, W., and Zheng, V. (2017). A simple regularization-based algorithm for learning cross-domain word embeddings. In Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, pages 2898–2904. Association for Computational Linguistics. Yang, Z., Dai, Z., Yang, Y., Carbonell, J., Salakhutdinov, R. R., and Le, Q. V. (2019). Xlnet: Generalized autoregressive pretraining for language understanding. In Advances in neural information processing systems, pages 5753–5763. Zhang, Z., Yang, J., and Zhao, H. (2020). Retrospective reader for machine reading comprehension. arXiv preprint arXiv:2001.09694.
|