跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.175) 您好!臺灣時間:2024/12/09 20:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳湘盈
研究生(外文):Siang-Ying Chen
論文名稱:應用異重流二維層平均數值模式分析曾文水庫出水工之出流泥砂濃度及排砂效率
論文名稱(外文):Applying the two-dimensional (2D) layer-averaged turbidity current model to eastimate outlet sediment concentration and desilting efficiency in the Zengwen Reservoir
指導教授:余化龍余化龍引用關係蘇明道蘇明道引用關係
指導教授(外文):Hwa-Lung YuMING-DAW SU
口試委員:譚義績賴進松李豐佐
口試委員(外文):YIH-CHI TANJihn-Sung LaiFong-Zuo Lee
口試日期:2020-05-27
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:生物環境系統工程學研究所
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:116
中文關鍵詞:水庫防淤防淤隧道異重流數值模擬排砂效率
外文關鍵詞:Reservoir desiltingDesilting Tunneldensity currentNumerical modelventing efficiency
DOI:10.6342/NTU202001699
相關次數:
  • 被引用被引用:1
  • 點閱點閱:180
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
水庫防淤經營管理策略主要可分為集水區保育、水庫通砂減淤、回復水庫庫容,以及調適策略,其中水庫通砂減淤及回復水庫庫容則主要以水力排砂及機械清淤為主要工程技術。當水資源缺乏時,於水力排砂中,則以異重流排砂較較為常用;因此本研究透過水中浚渫方式,於曾文水庫防淤隧道入口端往庫區上游浚渫形成導流槽,且考量不同寬深的導流槽,擬集中及增加到達壩前異重流之渾水水體,進而達到增加防淤隧道排砂效率之目的。此外,本研究採用二維層平均數值模式(Two-dimensional layer-averaged model, 2DLAM),作為模擬異重流在曾文水庫運移之工具,並透過五場歷史洪水事件檢定驗證入庫渾水到達壩前之泥砂濃度,同時引用比較不同出流泥砂濃度迴歸經驗公式,率定曾文水庫出水工之出流泥砂濃度係數,作為改進2DLAM模式出流泥砂濃度計算方法之參考。本研究根據2DLAM模式演算結果發現導流槽往上游延伸長度越長或越寬,則防淤隧道排砂效率越大;但水位變化及導流槽深度變化,則對於排砂效率影響不大;當入流量越大,由於防淤隧道設計出流量有限之因素,因此大部分流量與泥砂量將經由溢洪道排出,此時反而會造成防淤隧道排砂效率降低。
Reservoir desilting operation and management strategies can be classified into four parts: water and soil conservation, reservoir sedimentation reduction, reservoir capacity restoration, and adjustment strategies. Among them, the outflow discharges from the reservoir and the restoration of the reservoir capacity are primarily based on hydraulic desiltation and mechanical dredging. The application of turbidity current venting in hydraulic desilation is commonly-used in the field cases, especially the reservoir water is valuable. In this study, the venting efficiency of the desilting tunnel has been investigated through various design guiding channels in the Zengwen Reservoir. In the guiding channel dredged in different sizes in front of the desilting tunnel, the turbidity current may travel along the guiding channel and reaches the dam. This study uses the numerical model, 2DLAM, as a tool to simulate the migration of turbidity current in the Zengwen Reservoir. Based on the data from five historical typhoon events, outflow sediment concentrations are simulated and compared with the measured data obtained from the physical model as well as the field. In addition, several empirical formulas have been quoted to estimate the outflow sediment concentration at various outlets. In the Zengwen Reservoir, the simulated sediment concentration at the intake of each outlet has been used as a reference for estimation of the outflow sediment concentration. According to the simulated results, the length and width of the guiding channel can affect the venting efficiency of the desilting tunnel. However, the changes in the reservoir water level and the depth of the guiding channel have little effects on venting efficiency. When inflow discharges increase and larger than that of the outflow design discharge, part of the outflow discharge will pass through the spillway and the reduction of the venting efficiency at desilting tunnel of the tunnel can be observed.
口試委員審定書 I
誌謝 III
中文摘要 V
Abstract VII
目錄 IX
圖目錄 XIII
表目錄 XVII
第一章 緒論 1
1.1. 研究動機 1
1.2. 研究目的 2
1.3. 文獻回顧 3
1.3.1. 數值模式 4
1.3.2. 數值解 5
1.4. 研究區域與資料 9
1.5. 研究方法與流程 13
第二章 理論基礎 15
2.1. 數值模式 15
2.2. 數值模式及數值解之出流泥砂濃度計算 19
2.2.1. 數值模式之出流泥砂濃度計算 19
2.2.2. 數值解之出流泥砂濃度計算 20
2.3. 評鑑指標 24
2.3.1. 均方根誤差(Root mean squared error, RMSE) 25
2.3.2. 效率係數(Coefficient of efficiency, CE) 25
2.3.3. 幾何平均數(Geometric Mean, GM) 25
第三章 數值模式的檢定驗證及出流泥砂濃度公式優選 27
3.1. 數值模式之檢定驗證 27
3.1.1. 模式網格與邊界條件 27
3.1.2. 檢定案例(2006年0609豪雨事件) 28
3.1.3. 檢定案例(卡玫基颱風) 30
3.1.4. 驗證案例(辛樂克颱風) 32
3.1.5. 驗證案例(薔蜜颱風) 33
3.1.6. 驗證案例(莫拉克颱風) 35
3.2. 出流泥砂濃度公式優選 37
3.2.1. 溢洪道出口 39
3.2.2. 發電放水口 43
3.2.1. 永久河道放水口 48
3.2.2. 防淤隧道 53
第四章 模式應用 58
4.1. 矩形導流槽寬度及水位對於排砂效率之影響 63
4.2. 矩形導流槽深度及水位對於排砂效率之影響 71
4.3. 矩形導流槽長度及水位對於排砂效率之影響 78
4.4. 水文條件及水位對於排砂效率之影響 84
第五章 結果與討論 95
5.1. 模式的檢定驗證成果 95
5.2. 出流泥砂濃度計算公式的適用性與優選結果說明 97
5.3. 防淤隧道前庫底矩形導流槽案例規劃之結果 99
第六章 結論與建議 108
6.1. 結論 108
6.2. 建議 110
參考文獻 111
1.Akiyama, J., & Stefan, H. G. (1984). Plunging flow into a reservoir: Theory. Journal of Hydraulic Engineering, 110(4), 484-499.
2.Akiyama, J., & Stefan, H. (1985). Turbidity current with erosion and deposition. Journal of Hydraulic Engineering, 111(12), 1473-1496.
3.Akiyama, J., & Stefan, H. G. (1988). Turbidity current simulation in a diverging channel. Water Resources Research, 24(4), 579-587.
4.Bohan, J. P., & Grace, J. L. (1970). Mechanics of stratified flow through orifices. Journal of the Hydraulics Division, 96(12), 2401-2416.
5.Bonnecaze, R. T., Huppert, H. E., & Lister, J. R. (1993). Particle-driven gravity currents. Journal of Fluid Mechanics, 250, 339-369.
6.Bradford, S. F., & Katopodes, N. D. (1999). Hydrodynamics of turbid underflows. I: Formulation and numerical analysis. Journal of hydraulic engineering, 125(10), 1006-1015.
7.Choi, S. U., & Garcia, M. H. (1995). Modeling of one-dimensional turbidity currents with a dissipative-Galerkin finite element method. Journal of Hydraulic Research, 33(5), 623-648.
8.Chung, S. W., & Lee, H. S. (2009). Characterization and modeling of turbidity density plume induced into stratified reservoir by flood runoffs. Water Science and Technology, 59(1), 47-55.
9.Chamoun, S., De Cesare, G., & Schleiss, A. J. (2018). Influence of operational timing on the efficiency of venting turbidity currents. Journal of Hydraulic Engineering, 144(9), 04018062.
10.De Cesare, G., Boillat, J. L., & Schleiss, A. J. (2006). Circulation in stratified lakes due to flood-induced turbidity currents. Journal of Environmental Engineering, 132(11), 1508-1517.
11.Ellison, T. H., & Turner, J. S. (1959). Turbulent entrainment in stratified flows. Journal of Fluid Mechanics, 6(3), 423-448.
12.Fukushima, Y., Parker, G., & Pantin, H. M. (1985). Prediction of ignitive turbidity currents in Scripps Submarine Canyon. Marine Geology, 67(1-2), 55-81.
13.Firoozabadi, B., Farhanieh, B., & Rad, M. (2003). Hydrodynamics of two-dimensional, laminar turbid density currents. Journal of Hydraulic Research, 41(6), 623-630.
14.Fan, J. (2008). Stratified flow through outlets. Journal of Hydro-Environment Research, 2(1), 3-18.
15.Graf, W. H., & WH, G. (1983). The hydraulics of reservoir sedimentation.
16.Graf, W. H. (1984). Hydraulics of sediment transport. Water Resources Publication.
17.Garcıa, M. (1992). Turbidity currents. Encyclopedia of Earth System Science.
18.Huber, D. G. (1960). Irrotational motion of two fluid strata towards a line sink. Journal of the Engineering Mechanics Division, 86(4), 71-86.
19.Harleman, D. R., & Elder, R. A. (1965). Withdrawal from two-layer stratified flow. Journal of the Hydraulics Division, 91(4), 43-58.
20.Huber, D. G., & Reid, T. L. (1966). Experimental study of two-layered flow through a sink. Journal of the Hydraulics Division, 92(1), 31-41.
21.Hebbert, B., Patterson, J., Loh, I., & Imberger, J. (1979). Collie river underflow into the Wellington reservoir. Journal of Hydraulic Engineering, 105(5), 533-545.
22.Hocking, G. C., & Forbes, L. K. (1991). A note on the flow induced by a line sink beneath a free surface. The ANZIAM Journal, 32(3), 251-260.
23.Hocking, G. C. (1991). Critical withdrawal from a two-layer fluid through a line sink. Journal of engineering mathematics, 25(1), 1-11.
24.Hocking, G. C. (1995). Supercritical withdrawal from a two-layer fluid through a line sink. Journal of Fluid Mechanics, 297, 37-47.
25.Huang, C. C., Lai, Y. G., Lai, J. S., & Tan, Y. C. (2019). Field and numerical modeling study of turbidity current in Shimen Reservoir during typhoon events. Journal of Hydraulic Engineering, 145(5), 05019003.
26.Imran, J., Parker, G., & Katopodes, N. (1998). A numerical model of channel inception on submarine fans. Journal of Geophysical Research: Oceans, 103(C1), 1219-1238.
27.Jirka, G. H., & Katavola, D. S. (1979). Supercritical withdrawal from two-layered fluid systems: Part 2: Three-dimensional flow into round intake. Journal of Hydraulic Research, 17(1), 53-62.
28.Kondolf, G. M., Gao, Y., Annandale, G. W., Morris, G. L., Jiang, E., Zhang, J., ... & Hotchkiss, R. (2014). Sustainable sediment management in reservoirs and regulated rivers: Experiences from five continents. Earth's Future, 2(5), 256-280.
29.Lai, Y. G. (2008). SRH-2D version 2: Theory and user’s manual. Sedimentation and river hydraulics–two-dimensional river flow modeling, US department of interior, bureau of reclamation, november.
30.Lai, Y. G., & Greimann, B. P. (2010). Predicting contraction scour with a two-dimensional depth-averaged model. Journal of hydraulic research, 48(3), 383-387.
31.Lee, F. Z., Lai, J. S., Tan, Y. C., & Sung, C. C. (2014). Turbid density current venting through reservoir outlets. KSCE Journal of Civil Engineering, 18(2), 694-705.
32.Lai, Y. G., Huang, J., & Wu, K. (2015). Reservoir turbidity current modeling with a two-dimensional layer-averaged model. Journal of Hydraulic Engineering, 141(12), 04015029.
33.Lai, Y. G., & Wu, K. W. (2018). A numerical modeling study of sediment bypass tunnels at shihmen reservoir, Taiwan. Int. J. Hydro, 2, 72-81.
34.Murota, A., & Michioku, K. (1986). Analysis on selective withdrawal from three-layered stratified systems and its practical application. J. Hydrosci. Hydr. Eng., 4, 31-50.
35.Mahmood, K., & Mundial, B. (1987). Reservoir sedimentation: impact, extent, and mitigation.
36.Morris, G. L., & Fan, J. (1998). Reservoir sedimentation handbook: design and management of dams, reservoirs, and watersheds for sustainable use. McGraw Hill Professional.
37.Morris, G. L., and J. Fan. 2010. Reservoir sedimentation handbook design and management of dams, reservoirs, and watersheds for sustainable use. New York: McGraw-Hil
38.Narwal, G. S., & Gupta, J. P. (2019). Sedimentation and flushing operation of pandoh reservoir. Water and energy international, 61(11), 52-56.
39.Oehy, C. D., & Schleiss, A. J. (2007). Control of turbidity currents in reservoirs by solid and permeable obstacles. Journal of Hydraulic Engineering, 133(6), 637-648.
40.Parker, G., Fukushima, Y., & Pantin, H. M. (1986). Self-accelerating turbidity currents. Journal of Fluid Mechanics, 171, 145-181.
41.Parker, G., Garcia, M., Fukushima, Y., & Yu, W. (1987). Experiments on turbidity currents over an erodible bed. Journal of Hydraulic Research, 25(1), 123-147.
42.Rodi, W. (1993). Turbulence models and their application in hydraulics. CRC Press.
43.Singh, B., & Shah, C. R. (1971). Plunging phenomenon of density currents in reservoirs. La Houille Blanche, (1), 59-64.
44.Savage, S. B., & Brimberg, J. (1975). Analysis of plunging phenomena in water reservoirs. Journal of Hydraulic Research, 13(2), 187-205.
45.Stacey, M. W., & Bowen, A. J. (1988). The vertical structure of turbidity currents and a necessary condition for self‐maintenance. Journal of Geophysical Research: Oceans, 93(C4), 3543-3553.
46.Kostic, S., & Parker, G. (2006). The response of turbidity currents to a canyon–fan transition: internal hydraulic jumps and depositional signatures. Journal of Hydraulic Research, 44(5), 631-653.
47.Turner, J. S. (1973) “Buoyancy effects in fluids”, Cambridge University Press, Cambridge, U.K.
48.Tuck, E. O., & Broeck, J. M. V. (1984). A cusp-like free-surface flow due to a submerged source or sink. The ANZIAM Journal, 25(4), 443-450.
49.Toniolo, H., & Parker, G. (2003, September). 1D numerical modeling of reservoir sedimentation. In Proceedings of the IAHR Symposium on River, Coastal and Estuarine Morphodynamics (pp. 457-468).
50.Toniolo, H., Parker, G., & Voller, V. (2007). Role of ponded turbidity currents in reservoir trap efficiency. Journal of Hydraulic Engineering, 133(6), 579-595.
51.Wen Shen, H. (1999). Flushing sediment through reservoirs. Journal of Hydraulic Research, 37(6), 743-757.
52.Wood, I. R., & Choo, K. (2000). An extension to the theory of steady selective withdrawal for a two layer fluid.
53.Wood, I. R. (2001). Extensions to the theory of selective withdrawal. Journal of Fluid Mechanics, 448, 315-333.
54.White, R. (2001). Evacuation of sediments from reservoirs. Thomas Telford.
55.Wu, W. (2004). Depth-averaged two-dimensional numerical modeling of unsteady flow and nonuniform sediment transport in open channels. Journal of hydraulic engineering, 130(10), 1013-1024.
56.Yu, W. S., Hsu, S. M., & Fan, K. L. (2004). Experiments on selective withdrawal of a codirectional two-layer flow through a line sink. Journal of Hydraulic Engineering, 130(12), 1156-1166.
57.Young, D. L., Lin, Q. H., & Murugesan, K. (2005). Two-dimensional simulation of a thermally stratified reservoir with high sediment-laden inflow. Journal of Hydraulic Research, 43(4), 351-365.
58.范家驊. (1959). 異重流運動的實驗研究., 水利學報 ,5(5),30-48.
59.范家驊. (2011). 異重流與泥砂工程實驗與設計. Zhong guo shui li shui dian chu ban she.
60.南區水資源局(2013). 曾文水庫庫區泥砂濃度觀測站建置及量測研判分析計畫. 國立臺灣大學.
61.錢寧, & 萬兆惠. (2003). 河流泥砂動力學.
62.許少華, 劉建榮, & 俞維昇. (2008). 選擇性引水發生下層單層流體流出之臨界條件. 中華水土保持學報, 39(3), 255-267.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊