跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.171) 您好!臺灣時間:2024/12/09 09:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:關榮恩
研究生(外文):Jung-En Kuan
論文名稱:麵包蟲中腸分離菌株Pseudomonas nitroreducens之酯酶特性分析
論文名稱(外文):Characterization of an esterase of Pseudomonas nitroreducens from Tenebrio molitor mid-gut
指導教授:吳蕙芬
指導教授(外文):Whei-Fen Wu
口試委員:李佳音徐駿森林乃君羅凱尹
口試委員(外文):Jia-Yin LiJun-Sen XuNai-Jun LinKai-Yin Luo
口試日期:2020-05-26
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:農業化學研究所
學門:農業科學學門
學類:農業化學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:63
中文關鍵詞:假單孢菌屬硝酸根還原菌酯酶脂肪酶第四型脂肪酶
外文關鍵詞:Pseudomonas nitroreducensesterasetype IV lipaselipase
DOI:10.6342/NTU202004048
相關次數:
  • 被引用被引用:0
  • 點閱點閱:408
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究取麵包蟲(Tenebrio molitor)中腸道段中的共生菌,以甘油三丁酸酯作為單一碳源培養,篩選出可能帶有脂肪酶之菌株,將所得之菌種用16s核醣體去氧核醣核酸(16s rDNA)作為鑑定標準,比對資料庫並使用比對分析後知其為Pseudomonas nitroreducens,再從物種Pseudomonas nitroreducens的蛋白質資料庫中尋找可能為脂肪酶之α/β水解酶,以帶有限制酶酵素的切位和組胺酸標記的候選引子進行聚合酶連鎖反應,經限制酵素、接合酵素反應,建構以pET21a質體為載體的重組質體,以轉型作用送入大腸桿菌BL21(DE3)中用異丙基-β-D-硫代辦乳糖苷(IPTG)誘導,續用親和性管柱進行純化,發現洗脫後重組蛋白質可在甘油三丁酸(tributyrin)洋菜膠盤上產生降解圈。將純化過後的重組蛋白質進行酵素活性測試,以具有不同碳鍊長度的對─硝基苯酚酯類 (p-nitrophenyl ester)作為受質,偵測波長405 nm的吸光值來計算受質的分解狀況,藉此推估酵素活性。經實驗數據,重組蛋白質在溫度40℃、pH 8 時具有最高活性,且對於丁酸對─硝基苯酚酯 (p-nitrophenyl butyrate)分解效率最佳,在熱穩定性實驗中,當處理溫度大於50℃時,其活性下降劇烈。離子對活性影響分析中發現MgCl2和NH4Cl可提高酵素活性,MnSO4、NiSO4、CaCl2、ZnSO4、CoCl2、CuSO4、FeSO4、FeCl3 則會使活性降低,NaCl 則對於活性沒有顯著性的影響。有機溶劑和界面活性劑的添加方面,發現DMSO (Dimethyl sulfoxide)可幫助提升酵素活性,正己烷 (Hexane)、甲醇 (Methanol)、乙醇 (Ethanol)、丙酮 (Acetone)、異丙醇 (Isopropanol)、三氯甲烷 (Chloroform)、乙酸乙酯 (Ethyl acetate)會降低酵素活性,而甘油 (Glycerol)則不會對酵素有顯著的影響,界面活性劑方面,Triton x-100、Tween 80、 Tween 20、Brij35等界面活性劑皆會使酵素活性減少。經Lineweaver-Burk雙倒數作圖法,可得出之Km 值為0.488 (mM),Vmax為0.0644 (mM/min), kcat為3.01 (s-1),kcat / Km為6.17 (mM-1/s-1)。之後,經脂肪酶親緣性分析,LipD為第四型脂肪酶,為此蛋白質的分類依據,並探討其所具有之獨特的特性。
In this study, a symbiotic bacteria from yellow mealworm’s (Tenebrio molitor) mid-gut was isolated with characteristics of growth on minimal-tributyrin medium. After a PCR-amplification of its 16s rDNA, the resultant nucleotide sequences were then analyzed by schemes of the phylogeny trees. Accordingly, it was designated as Pseudomonas nitroreducens D-01. Next, by searching the lipolytic enzymes in its protein data bank, one of those potential lipolytic α/β hydrolases was identified, again using PCR-amplification and nucleotide-sequencing methods. To construct an expression of this lipolytic gene in plasmids, the target-gene primers were then designed, carrying the C-terminal his-tag sequences. Using the vector pET21a, a recombinant lipolytic hydrolase D gene with his-tag nucleotides was successfully cloned into it, of which the lipolytic D gene is under a control of the T7 promoter. After transformation of the resultant plasmids into Eescherichia coli BL21 (DE3), an IPTG inducer was used for the induction of the recombinant proteins. The protein products were then purified by metal-ion affinity column and the purified proteins were found capable of forming a clear zone on tributyrin agar plate. Shortly, its enzyme activities were determined by degradation of p-nitrophenyl ester(s) and the substantial yellow end-product, p-nitrophenol, was measured at O.D.405 nm. Specifically, this lipolytic enzyme efficiently targets p-nitrophenyl butyrate. As well, it shows the most reactive activities at 40℃, pH 8 in potassium phosphate buffer. In thermal stability assays, the activities of this enzyme dramatically drop when the temperature is above 50℃. In metal ion assays, MgCl2 and NH4Cl induce the enzyme activities while MnSO4, NiSO4, CaCl2, ZnSO4, CoCl2, CuSO4, FeSO4, and FeCl3 reduce its activities. Besides, NaCl has no effects on its enzyme activities. Most organic solvents decrease the activities of this enzyme such as hexane, methanol, ethanol, acetone, isopropanol, chloroform and ethyl acetate. However, its enzyme activities increase when DMSO exists. All the surfactants like Triton X-100, Tween 80, Tween 20, and Brij35 decrease its lipolytic activities. Using Lineweaver-Burk double reciprocal methods, the function of the enzyme kinetics were determined such as Km = 0.488 (mM), Vmax = 0.0644 (mM/min), and kcat = 3.01 (s-1), as well the total efficiency of kcat / Km is 6.17 (mM-1/s-1). Afterwards, based on the phylogenetic analyses, this lipolytic protein is classified to type IV lipase by its homologous conserved region in this lipase family.
中文摘要……………………………………………………………………...……...i
Abstract………………………………………………………………………….…..iii

壹、緒論………………………………………………………………………….......1
貳、材料及方法…………………………………………………………………….7
一、 實驗材料…………………………………………………………..………..7
1.實驗菌株及質體………………………………………………..…………7
2.藥品、酵素及引子…………………………………………..……………7
3.套組…………………………………………………………..……………7
4.實驗設備……………………………………………………..……………7
5.分析軟體…………………………………………………………..………8
二、 實驗方法…………………………………………………………..………..8
1.蟲體處理和篩菌………………………………………………..…………8
2.菌種鑑定…………………………………………………………………..9
3.基因處理…………………………………………………………………11
4.重組質體建立……………………………………………………………12
5.重組質體放大……………………………………………………………14
6.蛋白質表現及純化………………………………………………………15
7.酵素活性及特性測試……………………………………………………17
8.重組蛋白質親緣性分析…………………..…………………………..…19
參、結果……………………………..…………………………………..…………20
1.菌種篩選及其鑑定………………………………………………………20
2.篩選目標基因與選殖於pET21a載體……………………..……………20
3.重組蛋白質表現、純化及其生理活性測試……………………………21
4.測定酵素基質特異性……………………………………………………21
5.測定酵素最適pH值……………………………………….……………21
6.測試酵素最適反應溫度及熱穩定性…………………….……………...21
7.含陽離子下酵素反應活性測試…………………….…………………...22
8.含有機溶劑下酵素反應活性測試…………………….………………...22
9.含界面活性劑下反應活性測試…………………….…………………...22
10.酵素動力學測試及分析…………………….………………………….22
11.重組蛋白質親緣性分析…………………….………………………….23
12. 重組蛋白質結構預測及區塊活性分析…………………...……….…23
肆、討論……………………………………………………………………………24
伍、結論……………………………………………………………………………29
陸、參考文獻…………………………………..…………………………………30
柒、表…………………………………………………………………….…………34
捌、圖……………………………………………………….………………………37
玖、附錄……………………………………………………….…….……………..52

表次
表一、本篇使用之菌株…………………………………………………..……..........34
表二、本篇使用之質體…………………………………………………..……..........34
表三、本篇所使用之引子………………………………………….……..…...…......35
表四、Braford檢量線………………………………………………….……............36
表五、活性測試檢量線…………………………………………………….…..........36

圖次
圖一、16s rDNA親緣性分析………………………………………………….…….37
圖二、目標基因篩選結果……………………………………………….……....…..38
圖三、重組蛋白質表現及純化………………………………………….……….….39
圖四、酵素基質特異性測試………………………………………………………...41
圖五、最適反應pH值測試…………………………………………………………42
圖六、最適反應溫度測試…………………………………………………………...43
圖七、熱穩定性測試…………………………………………………………………44
圖八、含陽離子條件下反應活性測試………………………………………………45
圖九、含有機溶劑條件下反應活性測試……………………………………………46
圖十、含界面活性劑條件下反應活性測試…………………………………………47
圖十一、酵素動力學測試及分析……………………………………………………48
圖十二、脂肪酶親緣性分析…………………………………………………..…….49
圖十三、重組蛋白質結構預測………………………………………………………50
圖十四、重組蛋白質和其他bHSL保守序列比較………………………………..51

附錄次
附錄一、基質特異性測試……………………………………………………....……52
附錄二、最佳pH值測試…………………………………………….………………53
附錄三、最適反應溫度測試…………………………………..………….….....……54
附錄四、熱穩定性測試………………………………………………………………55
附錄五、含陽離子下活性測試………………………………………………………56
附錄六、含有機溶劑下活性測試……………………………………………………58
附錄七、含界面活性劑下活性測試…………………………………………………60
附錄八、本篇之候選蛋白質…………………………………………………………61
附錄九、LipD之核酸及胺基酸序列………………………………..………………62

附圖次
附圖一、Pseudomonas nitroreducens電顯圖………………………………....………2
附圖二、脂肪酶二級結構圖……………………………………….………………….3
附圖三、脂肪酶蓋子及界面示意圖…………………………..………….….....…..…3
附圖四、小鼠HSL (Hormone sensitive lipase)………………………………………..5
附圖五、人類HSL和四種bHSL (bacterial HSL)的保守區域比較………………….5
附圖六、本研究所分離之重組蛋白LipD二級結構示意圖………………………..27
附圖七、人類胰脂酶二級結構示意圖………………………………………………28
附圖八、Geotrichum candidum脂肪酶二級結構示意圖……………………………28
1. Anzai, Y., Kim, H., Park, J.Y., Wakabayashi, H., and Oyaizu, H. (2000). Phylogenetic affiliation of the pseudomonads based on 16S rRNA sequence. Int J Syst Evol Microbiol 50 Pt 4, 1563-1589.
2. Arpigny, J.L., and Jaeger, K.E. (1999). Bacterial lipolytic enzymes: classification and properties. Biochem J 343 Pt 1, 177-183.
3. Beer, H.D., Wohlfahrt, G., McCarthy, J.E., Schomburg, D., and Schmid, R.D. (1996). Analysis of the catalytic mechanism of a fungal lipase using computer-aided design and structural mutants. Protein Eng 9, 507-517.
4. Bergmann, F., and Rimon, S. (1958). The effect of pH variations on the activities of esterase. Biochem J 70, 339-344.
5. Boratyn GM, Thierry-Mieg J, Thierry-Mieg D, Busby B, Madden T.L. (2019) "Magic-BLAST, an accurate RNA-seq aligner for long and short reads." BMC Bioinformatics. 25, 20:405.
6. Bordes, F., Barbe, S., Escalier, P., Mourey, L., Andre, I., Marty, A., and Tranier, S. (2010). Exploring the conformational states and rearrangements of Yarrowia lipolytica Lipase. Biophys J 99, 2225-2234.
7. Bradford, M.M., 1976. A rapid and snesitive method for the quantitation of microgram quantities of peotien utilizing the principle of protein-dye binding. Anal. Biochem 72, 248-254.
8. Brandon, A.M., Gao, S.H., Tian, R., Ning, D., Yang, S.S., Zhou, J., Wu, W.M., and Criddle, C.S. (2018). Biodegradation of polyethylene and plastic mixtures in mealworms (Larvae of Tenebrio molitor) and effects on the gut microbiome. Environ Sci Technol 52, 6526-6533.
9. Brocca, S., Secundo, F., Ossola, M., Alberghina, L., Carrea, G., and Lotti, M. (2003). Sequence of the lid affects activity and specificity of Candida rugosa lipase isoenzymes. Protein Sci 12, 2312-2319.
10. Langin, D., Laurell, H., Holst, L.S., Belfrage, B., and Holm, C. (1993). Gene organization and primary structure of human hormone-sensitive lipase: possible significance of a sequence homology with a lipase of Moraxella TA144, an antarctic bacterium. Proc Natl Acad Sci 90, 4897-4901.
11. Dayhoff, M.O., Schwartz, R.M., and Orcutt, B.C. (1978). A model of evolutionary change in proteins Atlas of protein sequence and structure 5, 345-352.
12. Edwards, U., Rogall, T., Blocker, H., Emde, M., and Bottger, E.C. (1989). Isolation and direct complete nucleotide determination of entire genes. Characterization of a gene coding for 16S ribosomal RNA. Nucleic Acids Res 17, 7843-7853.
13 Gasteiger E., Gattiker A., Hoogland C., Ivanyi I., Appel R.D., Bairoch A. (2003). ExPASy: the proteomics server for in-depth protein knowledge and analysis Nucleic Acids Res. 31:3784-3788.
14.Guerrand, D. (2017). Lipases industrial applications: focus on food and agroindustries. Oilseeds & fats Crops and Lipids 24.
15. Hernandez, M., Villalobos, P., Morgante, V., Gonzalez, M., Reiff, C., Moore, E., and Seeger, M. (2008). Isolation and characterization of a novel simazine-degrading bacterium from agricultural soil of central Chile, Pseudomonas sp. MHP41. FEMS Microbiol Lett 286, 184-190.
16. Huang, S.L., Chen, H., Hu, A., Tuan, N.N., and Yu, C.P. (2014). Draft Genome Sequence of Pseudomonas nitroreducens Strain TX1, Which Degrades Nonionic Surfactants and Estrogen-Like Alkylphenols. Genome Announc 2.
17. Iizuka, H., and komagata, K. (1964). Microbiological studies on petroleum and natural gas I. Determination of hydrocarbon-utilizing bacteria J Gem Appl Microbiol 10.
18. Iyer, R., Iken, B., and Damania, A. (2017). Genome of Pseudomonas nitroreducens DF05 from dioxin contaminated sediment downstream of the San Jacinto River waste pits reveals a broad array of aromatic degradation gene determinants. Genom Data 14, 40-43.
19.Kim, T.D. (2017). Bacterial Hormone-Sensitive Lipases (bHSLs): Emerging enzymes for biotechnological applications. J Microbiol Biotechnol 27, 1907-1915.
20. Krintel, C., Klint, C., Lindvall, H., Morgelin, M., and Holm, C. (2010). Quarternary structure and enzymological properties of the different hormone-sensitive lipase (HSL) isoforms. PLoS One 5, e11193.
21.Kumar, S., Stecher, G., and Tamura, K. (2016). MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33, 1870-1874.
22. Lampidonis, A.D., Rogdakis, E., Voutsinas, G.E., and Stravopodis, D.J. (2011). The resurgence of Hormone-Sensitive Lipase (HSL) in mammalian lipolysis. Gene 477, 1-11.
23. Lang, E., Griese, B., Sproer, C., Schumann, P., Steffen, M., and Verbarg, S. (2007). Characterization of 'Pseudomonas azelaica' DSM 9128, leading to emended descriptions of Pseudomonas citronellolis Seubert 1960 (Approved Lists 1980) and Pseudomonas nitroreducens Iizuka and Komagata 1964 (Approved Lists 1980), including Pseudomonas multiresinivorans as its later heterotypic synonym. Int J Syst Evol Microbiol 57, 878-882.
24. Lass, A., Zimmermann, R., Oberer, M., and Zechner, R. (2011). Lipolysis - a highly regulated multi-enzyme complex mediates the catabolism of cellular fat stores. Prog Lipid Res 50, 14-27.
25. Max Lafontan, and Dominique Langin. (2009). Lipolysis and lipid mobilization in human adipose tissue. Prog Lipid Res 48, 275-297.
26. Murrieta-Pazos, I., Marlair, G., Benaissa, W., Nonus, M., Len, C., Miokono, E.H., Thiebault, N., Garcia, J., Narcy, B., Triquenaux, C., et al. (2015). Corrosive properties of liquid fractions issued from lignocellulosic biomass pretreatment with imidazolium-based ionic liquids : towards a scale up of biorefinery strategy. IberoAmerican meeting on ionic liquids.
27. Park, J.B., Choi, W.H., Kim, S.H., Jin, H.J., Han, Y.S., Lee, Y.S., and Kim, N.J. (2014). Developmental characteristics of Tenebrio molitor larvae (Coleoptera: Tenebrionidae) in different instars. Int J Ind Entomol 28, 5-9.
28. R Core Team (2013). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.
29. Rauwerdink, A., and Kazlauskas, R. (2015). How the same core catalytic machinery catalyzes 17 different reactions: the serine-histidine-aspartate catalytic triad of α/β-hydrolase fold enzymes. ACS Catal 5, 6153-6176.
30. Reis, P., Holmberg, K., Watzke, H., Leser, M.E., and Miller, R. (2009). Lipases at interfaces: a review. Adv Colloid Interface Sci 147-148, 237-250.
31. Schmidt, J., Wei, R., Oeser, T., Belisario-Ferrari, M.R., Barth, M., Then, J., and Zimmermann, W. (2016). Effect of Tris, MOPS, and phosphate buffers on the hydrolysis of polyethylene terephthalate films by polyester hydrolases. FEBS Open Bio 6, 919-927.
32 . Schrag, J.D., and Cygler, M. (1997). Lipases and α/β hydrolase fold. Methods in Enzymology 284, 85-107.
33. Siemianowska, E., Kosewska, A., Aljewicz, M., Skibniewska, K.A., Polak-Juszczak, L., Jarocki, A., and Jędras, M. (2013). Larvae of mealworm (Tenebrio molitor L.) as European novel food Agricultural Sciences 4, 287-291.
34. Smith, A.J., Sanders, M.A., Juhlmann, B.E., Hertzel, A.V., and Bernlohr, D.A. (2008). Mapping of the hormone-sensitive lipase binding site on the adipocyte fatty acid-binding protein (AFABP). Identification of the charge quartet on the AFABP/aP2 helix-turn-helix domain. J Biol Chem 283, 33536-33543.
35. Smith, L.C., Faustinella, F., and Chan, L. (1992). Lipases: three-dimensional structure and mechanism of action. Current Opinion in Structural Biology 2, 490-496.
36. Stackebrandt, E., and Liesack, W. (1993). Nucleic acids and classification. Handbook of new bacterial systematics, 152-189.
37. Waterhouse, A., Bertoni, M., Bienert, S., Studer, G., Tauriello, G., Gumienny, R., Heer, F.T., de Beer, T.A.P., Rempfer, C., Bordoli, L., Lepore, R., Schwede, T. (2018). SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res. 46, W296-W303.
38 Yang, Y., Yang, J., Wu, W.M., Zhao, J., Song, Y., Gao, L., Yang, R., and Jiang, L. (2015). Biodegradation and mineralization of polystyrene by plastic-eating mealworms: Part 1. Chemical and physical characterization and isotopic tests. Environ Sci Technol 49, 12080-12086.
39. Yao, J., Zhang, G., Wu, Q., Chen, G.Q., and Zhang, R. (1999). Production of polyhydroxyalkanoates by Pseudomonas nitroreducens. Antonie Van Leeuwenhoek 75, 345-349.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top