跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.87) 您好!臺灣時間:2024/12/05 21:44
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:柯宇澤
研究生(外文):Yu-Tse Ko
論文名稱:過量表現OsADF3可提升水稻滲透壓逆境耐受性
論文名稱(外文):Overexpression of OsADF3 Confers Osmotic Stress Tolerance in Rice
指導教授:張孟基
指導教授(外文):Men-Chi Chang
口試委員:洪傳揚謝旭亮侯新龍鄭萬興
口試委員(外文):Chwan-Yang HongHsu-Liang HsiehShin-Lon HoWan-Hsing Cheng
口試日期:2020-07-16
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:農藝學研究所
學門:農業科學學門
學類:一般農業學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:71
中文關鍵詞:水稻肌動蛋白去聚合因子滲透壓逆境乾旱
外文關鍵詞:Oryza sativariceactin‐depolymerizing factorosmotic-induced drought stressRNA-seq
DOI:10.6342/NTU202002480
相關次數:
  • 被引用被引用:0
  • 點閱點閱:240
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
肌動蛋白去聚合因子 (Actin depolymerizing factor, ADF) 為調節植物肌動蛋白細胞骨架動態變化的重要蛋白。它會與絲狀的肌動蛋白結合,將其分解成球狀肌動蛋白。前人研究顯示,肌動蛋白去聚合因子具有調控花粉管生長、賀爾蒙分布、細胞極性等功能,卻很少有在非生物逆境下的相關研究。過去研究顯示水稻肌動蛋白去聚合因子家族中的OsADF3會被離層酸、乾旱與鹽逆境誘導。在阿拉伯芥中,過量表現水稻OsADF3,可使阿拉伯芥具有乾旱逆境的抗性,並提高水通道蛋白 (Aquaporin) 和脫水蛋白 (Dehydrin) 等耐旱相關基因的表現。為了進一步探討OsADF3在水稻中是否也有調控滲透壓或乾旱逆境抗性的功能,我們建立OsADF3的過量表現系,並且進行外表型分析,包括株高和根長,同時利用聚乙二醇 (PEG-6000) 滲透壓逆境模擬乾旱,調查活性氧族 (Reactive oxygen species, ROS)、丙二醛 (MDA)、離子滲漏程度與過氧化氫酶活性在轉殖株內的表現。此外也分析乾旱相關基因表現情形,並且利用RNA定序資料進行轉錄體分析。從外表型分析結果中,我們發現轉殖株之株高與對照組沒有顯著差異,但其根長顯著短於對照組。在PEG處理下,過量表現OsADF3水稻具有較強的耐受性。生理分析結果顯示,過量表現OsADF3可增加水稻滲透壓逆境下過氧化氫酶活性,並且減少活性氧族與丙二醛累積。在乾旱相關基因表現量與轉錄體分析中,我們發現過量表現OsADF3會提高OsDREB2A、OsbZIP23、OsDHN4、OsDHN8和脯胺酸合成基因OsP5CS1的表現,另外也會增加碳水化合物生合成、光合作用、碳固定等相關基因途徑之表現。這些結果顯示OsADF3會參與水稻對滲透壓逆境的調控,但其中詳細之分子機理仍有待進一步研究。
Actin‐depolymerizing factor (ADF) is an essential protein that regulates the actin cytoskeleton dynamics in the plant cells. ADF can bind to the filamentous actin (F-actin) and depolymerize it into globular actins (G-actin). Previous studies showed that ADF can participate in regulating plant pollen tube growth, hormone distribution, cell polarity, etc., but is hardly shown to associate with plant abiotic stress tolerance. Proteomic analysis ever showed that an individual member of the rice ADF family, OsADF3, can be induced by ABA, drought, and salt stress. Heterologous overexpression of OsADF3 in Arabidopsis thaliana can enhance drought resistance and increase the expression level of drought tolerant-related genes such as aquaporin and dehydrin. To further understand the role of OsADF3 in rice, we produced OsADF3 overexpression (OE) transgenic rice. Phenotypic analysis including plant height and root length was performed. Polyethylene glycol (PEG-6000) causing the osmotic potential change to mimic drought stress was used to investigate the accumulation of reactive oxygen species (ROS), malondialdehyde (MDA) content, ion leakage and catalase activity in OE rice. Besides, we also analyzed the expression of drought response-related genes and conducted RNA-seq analysis. Phenotypic analysis showed that the root length of the OE lines was significantly shorter than the wild type (WT). Under PEG treatment, the OE lines were more tolerant to osmotic-induced drought stress. The physiological analysis showed that the OE lines increased the activity of catalase under stress, and reduced the accumulation of ROS and MDA. Analysis of RNA-seq data and the expression of drought response-related genes revealed that the expression of OsDREB2A, OsbZIP23, OsDHN4, OsDHN8, and OsP5CS1 were upregulated in the OE lines. Also, the carbohydrate biosynthesis, photosynthesis, and carbon fixation pathway were all upregulated. Our result indicated that OsADF3 may be involved in the response of osmotic-induced drought stress generated by PEG. The detailed molecular mechanism remains to be clarified.
誌謝 i
中文摘要 ii
Abstract iii
目錄 v
表目錄 viii
圖目錄 ix
附錄目錄 x
縮寫字對照表 xi
第一章 前言 1
第二章 前人研究 3
一、植物在乾旱逆境下之反應 3
1. 植物外觀型態變化 3
2. 植物生理生化反應 3
二、植物之耐旱機制 4
三、非生物逆境對植物細胞骨架之影響 6
四、植物肌動蛋白之功能 8
五、植物ADF家族介紹 9
六、植物ADF對逆境之調控 10
1. 生物性逆境 10
2. 非生物逆境 11
七、研究目的及動機 12
第三章 材料方法 13
一、植物材料與生長環境 13
二、滲透壓逆境處理條件 13
三、GUS活性染色分析 13
四、藥劑處理與肌動蛋白絲染色 14
1. 藥劑處理 14
2. 肌動蛋白絲染色 14
五、 RNA萃取與cDNA合成 15
六、基因表現分析 15
1. 半定量反轉錄聚合酶連鎖反應 (Reverse transcription PCR, RT-PCR) 15
2. 定量聚合酶連鎖反應 (Quantitative PCR, qPCR) 15
七、丙二醛含量測定 16
八、離子滲漏度測定 16
九、過氧化氫 (H2O2) 原位性染色 16
十、Catalase酵素活性測定 16
十一、RNA-seq與資料分析 17
十二、統計分析 17
第四章 結果 19
一、過量表現OsADF3轉植株之分子鑑定與功能分析 19
二、滲透壓逆境下OsADF3之表現量與表現位置 19
三、過量表現OsADF3與滲透壓逆境對水稻根延長部Actin排列變化之影響 19
四、過量表現OsADF3轉植株於滲透壓逆境下之生理性狀調查 20
1. 過量表現OsADF3影響水稻根系生長 20
2. 過量表現OsADF3減少水稻水分散失 21
3. 過量表現OsADF3降低水稻滲透壓逆境下ROS累積 21
4. 過量表現OsADF3增加水稻滲透壓逆境下抗氧化酵素活性 21
五、滲透壓逆境下過量表現OsADF3影響乾旱相關基因之表現 22
六、水稻OsADF3過量表現株之比較轉錄體分析 22
七、GO enrichment和KEGG pathway分析 23
第五章 討論 25
一、OsADF3對水稻根系生長之影響 25
二、OsADF3調控水稻滲透壓逆境耐受性之機制 26
三、OsADF3與其他ADFs家族基因之比較 29
四、水稻OsADF3過量表現株之比較轉錄體分析 30
第六章 結論 31
參考文獻 32
Abdrakhamanova, A., Wang, Q. Y., Khokhlova, L. & Nick, P. (2003). Is microtubule disassembly a trigger for cold acclimation? Plant and Cell Physiology 44(7): 676-686.
Andrianantoandro, E. & Pollard, T. D. (2006). Mechanism of actin filament turnover by severing and nucleation at different concentrations of ADF/cofilin. Molecular Cell 24(1): 13-23.
Anjum, S. A., Xie, X. Y., Wang, L.C., Saleem, M. F., Man, C. & Lei, W. (2011). Morphological, physiological and biochemical responses of plants to drought stress. African Journal of Agricultural Research 6(9): 2026-2032.
Aroca, R. (2012). Plant responses to drought stress. From morphological to molecular features. Berlin: Springer-Verlag.
Baisakh, N. & Subudhi, P. K. (2009). Heat stress alters the expression of salt stress induced genes in smooth cordgrass (Spartina alterniflora L.). Plant Physiology and Biochemistry 47(3): 232-235.
Baisakh, N., Subudhi, P. K. & Varadwaj, P. (2008). Primary responses to salt stress in a halophyte, smooth cordgrass (Spartina alterniflora L.). Functional and Integrative Genomics 8(3): 287-300.
Bamburg, J. R. & Bray, D. (1987). Distribution and cellular localization of actin depolymerizing factor. The Journal of Cell Biology 105(6): 2817-2825.
Blanchoin, L., Boujemaa-Paterski, R., Henty, J. L., Khurana, P. & Staiger, C. J. (2010). Actin dynamics in plant cells: a team effort from multiple proteins orchestrates this very fast-paced game. Current Opinion in Plant Biology 13(6): 714-723.
Burgos-Rivera, B., Ruzicka, D. R., Deal, R. B., McKinney, E. C., King-Reid, L. & Meagher, R. B. (2008). ACTIN DEPOLYMERIZING FACTOR9 controls development and gene expression in Arabidopsis. Plant Molecular Biology 68(6): 619-632.
Carlier, M. F., Laurent, V., Santolini, J., Melki, R., Didry, D., Xia, G. X., Hong, Y., Chua, N. H. & Pantaloni, D. (1997). Actin depolymerizing factor (ADF/cofilin) enhances the rate of filament turnover: implication in actin-based motility. The Journal of Cell Biology 136(6): 1307-1322.
Chen, C. Y., Wong, E. I., Vidali, L., Estavillo, A., Hepler, P. K., Wu, H. M. & Cheung, A. Y. (2002). The regulation of actin organization by actin-depolymerizing factor in elongating pollen tubes. The Plant Cell 14(9): 2175-2190.
Chen, G., Liu, C., Gao, Z., Zhang, Y., Jiang, H., Zhu, L., Ren, D., Yu, L., Xu, G. & Qian, Q. (2017). OsHAK1, a high-affinity potassium transporter, positively regulates responses to drought stress in rice. Frontiers in Plant Science 8: 1885.
Danyluk, J., Carpentier, E. & Sarhan, F. (1996). Identification and characterization of a low temperature regulated gene encoding an actin-binding protein from wheat. FEBS letters 389(3): 324-327.
Daudi, A. & O’Brien, J. A. (2012). Detection of hydrogen peroxide by DAB staining in Arabidopsis leaves. Bio-Protocol 2(18): 1-4.
Deak, K. I. & Malamy, J. (2005). Osmotic regulation of root system architecture. The Plant Journal 43(1): 17-28.
Deeks, M. J. & Hussey, P. J. (2009). Plant actin biology. In Encyclopedia of Life Sciences. John Wiley & Sons, Chichester, UK.
Dong, C. H., Xia, G. X., Hong, Y., Ramachandran, S., Kost, B. & Chua, N. H. (2001a). ADF proteins are involved in the control of flowering and regulate F-actin organization, cell expansion, and organ growth in Arabidopsis. The Plant Cell 13(6): 1333-1346.
Dong, C. H., Kost, B., Xia, G., & Chua, N. H. (2001b). Molecular identification and characterization of the Arabidopsis AtADF1, AtADF5 and AtADF6 genes. Plant Molecular Biology 45(5): 517-527.
Dubouzet, J. G., Sakuma, Y., Ito, Y., Kasuga, M., Dubouzet, E. G., Miura, S., Seki, M., Shinozaki, K. & Yamaguchi‐Shinozaki, K. (2003). OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought‐, high‐salt‐and cold‐responsive gene expression. The Plant Journal 33(4): 751-763.
Esterbauer, H. & Cheeseman, K. H. (1990).[42] Determination of aldehydic lipid peroxidation products: malonaldehyde and 4-hydroxynonenal. In Methods in Enzymology, Vol. 186, 407-421: Elsevier.
Farooq, M., Wahid, A., Lee, D. J., Ito, O. & Siddique, K. H. (2009). Advances in drought resistance of rice. Critical Reviews in Plant Sciences 28(4): 199-217.
Fedoroff, N. V., Battisti, D. S., Beachy, R. N., Cooper, P. J., Fischhoff, D. A., Hodges, C., Knauf, V. C., Lobell, D., Mazur, B. J. & Molden, D. (2010). Radically rethinking agriculture for the 21st century. Science 327(5967): 833-834.
Feng, Y., Liu, Q. & Xue, Q. (2006). Comparative study of rice and Arabidopsis actin-depolymerizing factors gene families. Journal of Plant Physiology 163(1): 69-79.
Fletcher, D. A. & Mullins, R. D. (2010). Cell mechanics and the cytoskeleton. Nature 463(7280): 485-492.
González-Schain, N., Dreni, L., Lawas, L. M., Galbiati, M., Colombo, L., Heuer, S., Jagadish, K. S. & Kater, M. M. (2016). Genome-wide transcriptome analysis during anthesis reveals new insights into the molecular basis of heat stress responses in tolerant and sensitive rice varieties. Plant and Cell Physiology 57(1): 57-68.
Gourlay, C. W. & Ayscough, K. R. (2005). The actin cytoskeleton: a key regulator of apoptosis and ageing? Nature Reviews Molecular Cell Biology 6(7): 583-589.
Gourlay, C. W., Carpp, L. N., Timpson, P., Winder, S. J. & Ayscough, K. R. (2004). A role for the actin cytoskeleton in cell death and aging in yeast. Journal of Cell Biology 164(6): 803-809.
Guo, Z., Ou, W., Lu, S. y. & Zhong, Q. (2006). Differential responses of antioxidative system to chilling and drought in four rice cultivars differing in sensitivity. Plant Physiology and Biochemistry 44(11-12): 828-836.
Hadiarto, T. & Tran, L. S. (2011). Progress studies of drought-responsive genes in rice. Plant Cell Reports 30(3): 297-310.
Henty-Ridilla, J. L., Li, J., Day, B. & Staiger, C. J. (2014). ACTIN DEPOLYMERIZING FACTOR4 regulates actin dynamics during innate immune signaling in Arabidopsis. Plant Cell 26(1): 340-352.
Henty-Ridilla, J. L., Shimono, M., Li, J., Chang, J. H., Day, B. & Staiger, C. J. (2013). The plant actin cytoskeleton responds to signals from microbe-associated molecular patterns. PLoS Pathogens 9(4): e1003290.
Hien, D. T., Jacobs, M., Angenon, G., Hermans, C., Thu, T. T., Son, L. V. & Roosens, N. H. (2003). Proline accumulation and Δ1-pyrroline-5-carboxylate synthetase gene properties in three rice cultivars differing in salinity and drought tolerance. Plant Science 165(5): 1059-1068.
Higaki, T., Sano, T. & Hasezawa, S. (2007). Actin microfilament dynamics and actin side-binding proteins in plants. Current Opinion in Plant Biology 10(6): 549-556.
Hsiao, A. S., Wang, K. & Ho, T. D. (2020). An intrinsically disordered protein interacts with the cytoskeleton for adaptive root growth under stress. Plant Physiology 183(2): 570-587.
Huang, Y. C., Huang, W. L., Hong, C. Y., Lur, H. S. & Chang, M. C. (2012). Comprehensive analysis of differentially expressed rice actin depolymerizing factor gene family and heterologous overexpression of OsADF3 confers Arabidopsis thaliana drought tolerance. Rice 5(1): 33.
Inada, N. (2017). Plant actin depolymerizing factor: actin microfilament disassembly and more. Journal of Plant Research 130(2): 227-238.
Inada, N., Higaki, T. & Hasezawa, S. (2016). Nuclear Function of Subclass I Actin-Depolymerizing Factor Contributes to Susceptibility in Arabidopsis to an Adapted Powdery Mildew Fungus. Plant Physiology 170(3): 1420-1434.
Iuchi, S., Kobayashi, M., Taji, T., Naramoto, M., Seki, M., Kato, T., Tabata, S., Kakubari, Y., Yamaguchi‐Shinozaki, K. & Shinozaki, K. (2001). Regulation of drought tolerance by gene manipulation of 9‐cis‐epoxycarotenoid dioxygenase, a key enzyme in abscisic acid biosynthesis in Arabidopsis. The Plant Journal 27(4): 325-333.
Jelenska, J., Kang, Y. & Greenberg, J. T. (2014). Plant pathogenic bacteria target the actin microfilament network involved in the trafficking of disease defense components. Bioarchitecture 4(4-5): 149-153.
Jiang, C. J., Weeds, A. G. & Hussey, P. J. (1997). The maize actin‐depolymerizing factor, ZmADF3, redistributes to the growing tip of elongating root hairs and can be induced to translocate into the nucleus with actin. The Plant Journal 12(5): 1035-1043.
Kang, Y., Jelenska, J., Cecchini, N. M., Li, Y., Lee, M. W., Kovar, D. R. & Greenberg, J. T. (2014). HopW1 from Pseudomonas syringae disrupts the actin cytoskeleton to promote virulence in Arabidopsis. PLoS Pathogens 10(6): e1004232.
Kaur, G. & Asthir, B. (2015). Proline: a key player in plant abiotic stress tolerance. Biologia Plantarum 59(4): 609-619.
Khatun, K., Robin, A. H., Park, J. I., Kim, C. K., Lim, K. B., Kim, M. B., Lee, D. J., Nou, I. S. & Chung, M. Y. (2016). Genome-wide identification, characterization and expression profiling of ADF family genes in Solanum lycopersicum L. Genes (Basel) 7(10).
Kim, S.-R., Kim, Y. & An, G. (1993). Molecular cloning and characterization of anther-preferential cDNA encoding a putative actin-depolymerizing factor. Plant Molecular Biology 21(1): 39-45.
Komis, G., Apostolakos, P. & Galatis, B. (2002). Hyperosmotic stress-induced actin filament reorganization in leaf cells of Chlorophyton comosum. Journal of Experimental Botany 53(375): 1699-1710.
Laplaze, L., Benkova, E., Casimiro, I., Maes, L., Vanneste, S., Swarup, R., Weijers, D., Calvo, V., Parizot, B. & Herrera-Rodriguez, M. B. (2007). Cytokinins act directly on lateral root founder cells to inhibit root initiation. The Plant Cell 19(12): 3889-3900.
Lata, C. & Prasad, M. (2011). Role of DREBs in regulation of abiotic stress responses in plants. Journal of Experimental Botany 62(14): 4731-4748.
Lenka, S. K., Katiyar, A., Chinnusamy, V. & Bansal, K. C. (2011). Comparative analysis of drought‐responsive transcriptome in Indica rice genotypes with contrasting drought tolerance. Plant Biotechnology Journal 9(3): 315-327.
Li, X. B., Xu, D., Wang, X. L., Huang, G. Q., Luo, J., Li, D. D., Zhang, Z. T. & Xu, W. L. (2010). Three cotton genes preferentially expressed in flower tissues encode actin-depolymerizing factors which are involved in F-actin dynamics in cells. Journal of Experimental Botany 61(1): 41-53.
Lian, H. L., Yu, X., Ye, Q., Ding, X. S., Kitagawa, Y., Kwak, S. S., Su, W. A. & Tang, Z. C. (2004). The role of aquaporin RWC3 in drought avoidance in rice. Plant and Cell Physiology 45(4): 481-489.
Liu, C., Wu, Y. & Wang, X. (2012a). bZIP transcription factor OsbZIP52/RISBZ5: a potential negative regulator of cold and drought stress response in rice. Planta 235(6): 1157-1169.
Liu, S. G., Zhu, D. Z., Chen, G. H., Gao, X. Q. & Zhang, X. S. (2012b). Disrupted actin dynamics trigger an increment in the reactive oxygen species levels in the Arabidopsis root under salt stress. Plant Cell Reports 31(7): 1219-1226.
Luo, L. (2010). Breeding for water-saving and drought-resistance rice (WDR) in China. Journal of Experimental Botany 61(13): 3509-3517.
Ma, Y. Y., Song, W. Y., Liu, Z. H., Zhang, H. M., Guo, X. L., Shao, H. B. & Ni, F. T. (2009). The dynamic changing of Ca2+ cellular localization in maize leaflets under drought stress. Comptes Rendus Biologies 332(4): 351-362.
Maciver, S. K. & Hussey, P. J. (2002). The ADF/cofilin family: actin-remodeling proteins. Genome Biology 3(5): reviews3007. 3001.
Maehly, A. & Chance, B. (1954). Catalases and peroxidases. Methods of Biochemical Analysis 1: 357-424.
Miller, G., Honig, A., Stein, H., Suzuki, N., Mittler, R. & Zilberstein, A. (2009). Unraveling delta1-pyrroline-5-carboxylate-proline cycle in plants by uncoupled expression of proline oxidation enzymes. Journal of Biological Chemistry 284(39): 26482-26492.
Muller, J., Menzel, D. & Samaj, J. (2007). Cell-type-specific disruption and recovery of the cytoskeleton in Arabidopsis thaliana epidermal root cells upon heat shock stress. Protoplasma 230(3-4): 231-242.
Munné-Bosch, S. & Alegre, L. (2004). Die and let live: leaf senescence contributes to plant survival under drought stress. Functional Plant Biology 31(3): 203-216.
Nan, Q., Qian, D., Niu, Y., He, Y., Tong, S., Niu, Z., Ma, J., Yang, Y., An, L. & Wan, D. (2017). Plant actin-depolymerizing factors possess opposing biochemical properties arising from key amino acid changes throughout evolution. The Plant Cell 29(2): 395-408.
Nxele, X., Klein, A. & Ndimba, B. (2017). Drought and salinity stress alters ROS accumulation, water retention, and osmolyte content in sorghum plants. South African Journal of Botany 108: 261-266.
Oladosu, Y., Rafii, M. Y., Samuel, C., Fatai, A., Magaji, U., Kareem, I., Kamarudin, Z. S., Muhammad, I. i. & Kolapo, K. (2019). Drought resistance in rice from conventional to molecular breeding: a review. International Journal of Molecular Sciences 20(14): 3519.
Örvar, B. L., Sangwan, V., Omann, F. & Dhindsa, R. S. (2000). Early steps in cold sensing by plant cells: the role of actin cytoskeleton and membrane fluidity. The Plant Journal 23(6): 785-794.
Ouellet, F., Carpentier, E., Cope, M. J. T., Monroy, A. F. & Sarhan, F. (2001). Regulation of a wheat actin-depolymerizing factor during cold acclimation. Plant Physiology 125(1): 360-368.
Paez-Garcia, A., Sparks, J. A., de Bang, L. & Blancaflor, E. B. (2018).Plant actin cytoskeleton: new functions from old scaffold. In Concepts in Cell Biology-History and Evolution, 103-137: Springer.
Pollard, T. D. & Cooper, J. A. (1986). Actin and actin-binding proteins. A critical evaluation of mechanisms and functions. Annual Review of Biochemistry 55(1): 987-1035.
Pollard, T. D. & Cooper, J. A. (2009). Actin, a central player in cell shape and movement. Science 326(5957): 1208-1212.
Porter, K., Shimono, M., Tian, M. & Day, B. (2012). Arabidopsis Actin-Depolymerizing Factor-4 links pathogen perception, defense activation and transcription to cytoskeletal dynamics. PLoS Pathogens 8(11): e1003006.
Poukkula, M., Kremneva, E., Serlachius, M. & Lappalainen, P. (2011). Actin-depolymerizing factor homology domain: a conserved fold performing diverse roles in cytoskeletal dynamics. Cytoskeleton (Hoboken) 68(9): 471-490.
Qian, D., Zhang, Z., He, J., Zhang, P., Ou, X., Li, T., Niu, L., Nan, Q., Niu, Y., He, W., An, L., Jiang, K. & Xiang, Y. (2019). Arabidopsis ADF5 promotes stomatal closure by regulating actin cytoskeleton remodeling in response to ABA and drought stress. Journal of Experimental Botany 70(2): 435-446.
Quarrie, S. & Jones, H. G. (1977). Effects of abscisic acid and water stress on development and morphology of wheat. Journal of Experimental Botany 28(1): 192-203.
Rahman, A., Bannigan, A., Sulaman, W., Pechter, P., Blancaflor, E. B. & Baskin, T. I. (2007). Auxin, actin and growth of the Arabidopsis thaliana primary root. The Plant Journal 50(3): 514-528.
Robertson, J. M., Hubick, K. T., Yeung, E. C. & Reid, D. M. (1990). Developmental responses to drought and abscisic acid in sunflower roots: I. root growth, apical anatomy, osmotic adjustment. Journal of Experimental Botany 41(3): 325-327.
Rosales-Serna, R., Kohashi-Shibata, J., Acosta-Gallegos, J. A., Trejo-López, C., Ortiz-Cereceres, J. n. & Kelly, J. D. (2004). Biomass distribution, maturity acceleration and yield in drought-stressed common bean cultivars. Field Crops Research 85(2-3): 203-211.
Rosales, M. A., Maurel, C. & Nacry, P. (2019). Abscisic acid coordinates dose-dependent developmental and hydraulic responses of roots to water deficit. Plant Physiology 180(4): 2198-2211.
Rozycka, M., Khan, S., Lopez, I., Greenland, A. J. & Hussey, P. J. (1995). A Zea mays pollen cDNA encoding a putative actin-depolymerizing factor. Plant Physiology 107(3): 1011.
Salekdeh, G. H., Siopongco, J., Wade, L. J., Ghareyazie, B. & Bennett, J. (2002). Proteomic analysis of rice leaves during drought stress and recovery. PROTEOMICS: International Edition 2(9): 1131-1145.
Sangwan, V., Foulds, I., Singh, J. & Dhindsa, R. S. (2001). Cold‐activation of Brassica napus BN115 promoter is mediated by structural changes in membranes and cytoskeleton, and requires Ca2+ influx. The Plant Journal 27(1): 1-12.
Schuppler, U., He, P. H., John, P. C. & Munns, R. (1998). Effect of water stress on cell division and Cdc2-like cell cycle kinase activity in wheat leaves. Plant Physiology 117(2): 667-678.
Sengupta, S., Mangu, V., Sanchez, L., Bedre, R., Joshi, R., Rajasekaran, K. & Baisakh, N. (2019). An actin-depolymerizing factor from the halophyte smooth cordgrass, Spartina alterniflora (SaADF2), is superior to its rice homolog (OsADF2) in conferring drought and salt tolerance when constitutively overexpressed in rice. Plant Biotechnology Journal 17(1): 188-205.
Shao, H. B., Song, W. Y. & Chu, L. Y. (2008). Advances of calcium signals involved in plant anti-drought. Comptes Rendus Biologies 331(8): 587-596.
Shavrukov, Y., Kurishbayev, A., Jatayev, S., Shvidchenko, V., Zotova, L., Koekemoer, F., de Groot, S., Soole, K. & Langridge, P. (2017). Early flowering as a drought escape mechanism in plants: How can it aid wheat production? Frontiers in Plant Science 8: 1950.
Shehab, G. G., AHMED, O. K. & El-Beltagi, H. S. (2010). Effects of various chemical agents for alleviation of drought stress in rice plants (Oryza sativa L.). Notulae Botanicae Horti Agrobotanici Cluj-Napoca 38(1): 139-148.
Shinozaki, K. & Yamaguchi-Shinozaki, K. (2007). Gene networks involved in drought stress response and tolerance. Journal of Experimental Botany 58(2): 221-227.
Smith, L. G. & Oppenheimer, D. G. (2005). Spatial control of cell expansion by the plant cytoskeleton. Annual Review of Cell and Developmental Biology 21: 271-295.
Śniegowska-Świerk, K., Dubas, E. & Rapacz, M. (2015). Drought-induced changes in the actin cytoskeleton of barley (Hordeum vulgare L.) leaves. Acta Physiologiae Plantarum 37(4).
Spollen, W. G. & Sharp, R. E. (1991). Spatial distribution of turgor and root growth at low water potentials. Plant Physiology 96(2): 438-443.
Staiger, C. J. (2000). Signaling to the actin cytoskeleton in plants. Annual Review of Plant Biology 51(1): 257-288.
Staiger, C. J., Poulter, N. S., Henty, J. L., Franklin-Tong, V. E. & Blanchoin, L. (2010). Regulation of actin dynamics by actin-binding proteins in pollen. Journal of Experimental Botany 61(7): 1969-1986.
Stanga, J., Neal, C., Vaughn, L., Baldwin, K. & Jia, G. (2009).Signaling in plant gravitropism. In Signaling in plants, 209-237: Springer.
Teng, K., Li, J., Liu, L., Han, Y., Du, Y., Zhang, J., Sun, H. & Zhao, Q. (2014). Exogenous ABA induces drought tolerance in upland rice: the role of chloroplast and ABA biosynthesis-related gene expression on photosystem II during PEG stress. Acta Physiologiae Plantarum 36(8): 2219-2227.
Tian, M., Chaudhry, F., Ruzicka, D. R., Meagher, R. B., Staiger, C. J. & Day, B. (2009). Arabidopsis actin-depolymerizing factor AtADF4 mediates defense signal transduction triggered by the Pseudomonas syringae effector AvrPphB. Plant Physiology 150(2): 815-824.
Verma, G., Dhar, Y. V., Srivastava, D., Kidwai, M., Chauhan, P. S., Bag, S. K., Asif, M. H. & Chakrabarty, D. (2017). Genome-wide analysis of rice dehydrin gene family: Its evolutionary conservedness and expression pattern in response to PEG induced dehydration stress. PLoS ONE 12(5): e0176399.
Wang, C., Zhang, L., Yuan, M., Ge, Y., Liu, Y., Fan, J., Ruan, Y., Cui, Z., Tong, S. & Zhang, S. (2010). The microfilament cytoskeleton plays a vital role in salt and osmotic stress tolerance in Arabidopsis. Plant Biology (Stuttg) 12(1): 70-78.
Wani, S. H., Singh, N. B., Haribhushan, A. & Mir, J. I. (2013). Compatible solute engineering in plants for abiotic stress tolerance-role of glycine betaine. Current Genomics 14(3): 157.
Wasteneys, G. O. & Yang, Z. (2004). New views on the plant cytoskeleton. Plant Physiology 136(4): 3884-3891.
Werner, T., Nehnevajova, E., Köllmer, I., Novák, O., Strnad, M., Krämer, U. & Schmülling, T. (2010). Root-specific reduction of cytokinin causes enhanced root growth, drought tolerance, and leaf mineral enrichment in Arabidopsis and tobacco. The Plant Cell 22(12): 3905-3920.
Xiang, Y., Tang, N., Du, H., Ye, H. & Xiong, L. (2008). Characterization of OsbZIP23 as a key player of the basic leucine zipper transcription factor family for conferring abscisic acid sensitivity and salinity and drought tolerance in rice. Plant Physiology 148(4): 1938-1952.
Xiong, L., Schumaker, K. S. & Zhu, J.-K. (2002). Cell signaling during cold, drought, and salt stress. The Plant Cell 14(suppl 1): S165-S183.
Yamaguchi-Shinozaki, K. & Shinozaki, K. (2005). Organization of cis-acting regulatory elements in osmotic-and cold-stress-responsive promoters. Trends in Plant Science 10(2): 88-94.
Yue, B., Xue, W., Xiong, L., Yu, X., Luo, L., Cui, K., Jin, D., Xing, Y. & Zhang, Q. (2006). Genetic basis of drought resistance at reproductive stage in rice: separation of drought tolerance from drought avoidance. Genetics 172(2): 1213-1228.
Zhan, A., Schneider, H. & Lynch, J. P. (2015). Reduced lateral root branching density improves drought tolerance in maize. Plant Physiology 168(4): 1603-1615.
Zhang, B., Hua, Y., Wang, J., Huo, Y., Shimono, M., Day, B. & Ma, Q. (2017). TaADF4, an actin‐depolymerizing factor from wheat, is required for resistance to the stripe rust pathogen Puccinia striiformis f. sp. tritici. The Plant Journal 89(6): 1210-1224.
Zhang, J., Jia, W., Yang, J. & Ismail, A. M. (2006). Role of ABA in integrating plant responses to drought and salt stresses. Field Crops Research 97(1): 111-119.
Zhao, S., Jiang, Y., Zhao, Y., Huang, S., Yuan, M., Zhao, Y. & Guo, Y. (2016). CASEIN KINASE1-LIKE PROTEIN2 regulates actin filament stability and stomatal closure via phosphorylation of actin depolymerizing factor. The Plant Cell 28(6): 1422-1439.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊