跳到主要內容

臺灣博碩士論文加值系統

(44.201.94.236) 您好!臺灣時間:2023/03/24 11:36
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林冠穎
研究生(外文):Guan-Ying Lin
論文名稱:苗栗地區耕作模式與生育時期對水稻根部內共生菌相之影響
論文名稱(外文):Effect of field managements and growth stages on the rice root endophyte in Miaoli region
指導教授:林維怡
指導教授(外文):Wei-Yi Lin
口試委員:邱春火張皓巽
口試委員(外文):Chun-Huo ChiuHao-Xun Chang
口試日期:2020-07-07
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:農藝學研究所
學門:農業科學學門
學類:一般農業學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:84
中文關鍵詞:水稻根內共生菌16S核糖體RNA基因定序耕作方式生育階段
外文關鍵詞:rice root endophyte16s ribosomal rRNA gene sequencingcropping practicesgrowth stage
DOI:10.6342/NTU202003401
相關次數:
  • 被引用被引用:0
  • 點閱點閱:67
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
植物內共生微生物與作物生長發育密切相關,也會影響作物產量及品質,許多有益內共生微生物已被證實具有促進作物生長、增進作物逆境耐受性的能力。有鑑於慣行農業操作法在維繫農田土壤健康及生態多樣性的限制,以維持生產、生活及生態平衡為出發點的永續農法應運而生,然而不同農業操作是否會透過改變作物根圈及根內共生微生物的多樣性及組成,進而影響作物健康,目前瞭解有限;另一方面,有益微生物共生的時間點及族群結構關係著其對作物的效益,但內共生微生物群落組成是否會隨著作物發育時期的推進而產生變化,相關研究並不多。為瞭解耕作模式及生育時期對內共生菌組成的影響,本研究藉由16S核糖體RNA基因定序技術,在2018至2019年間3個期作,以苗栗縣苑裡鎮慣行及有機等2種管理水稻田為樣區,調查水稻根部內共生細菌群落組成,並於2019年兩個期作調查秧苗期和分蘗期根部內共生細菌群落之變化。結果顯示不同管理方式對水稻根內共生細菌α-多樣性並無顯著影響,但對菌相的組成在三個期作都具有顯著差異,而生育期的不同對水稻根部內共生細菌組成及β-多樣性的影響更為顯著,推測水稻隨發育階段演進,會透過改變根部代謝而營造出相對應的菌相組成。另外經由指標物種分析,鑑定出對生育期及管理方式敏感的OTUs,未來可再擴大檢視這些OTUs在水稻田的角色。本次試驗水稻雖來自相近區位,仍可見田間樣品受到區域環境因子的影響,建議未來可擴大樣區並進行長期的研究,以確認管理方式對於作物根內共生微生物組成及功能的影響。
Plant endophytic microorganisms have great impacts on crop growth, development and yield. Many beneficial endophytic microbes have been identified which can enhance the crop growth and stress tolerance. Because the conventional agricultural practices are not good for soil health and agricultural biodiversity, sustainable agricultural practices which aim to balance the crop production, people’s living and ecosystem attract more and more attention. However, little is known about the impacts of agricultural practices on crop health via modifying the diversity and composition of endophytic and rhizosphere microbial communities. On the other hand, the timing that the beneficial microbe association forms and their composition influence the benefits that crops receive. However, it is still unclear that whether endophyte composition and structure change temporally during plant growth and development. In order to address these questions, we examined rice root microbiome by using the 16S ribosomal RNA gene sequencing from 2018 to 2019. The samples from organic and conventional-cultivated rice fields in Yuanli Town, Miaoli County were harvested for investigating the composition of the rice root bacterial endophyte under different practices at two different growth stages. The results showed that different managements only affected the composition of bacterial endophyte but not α-diversity. However, the bacterial composition and β-diversity were significantly different between two growth stages. It is possible that the modification of metabolite accumulation during the growing season leads to the change of endophytic community structure. In addition, by performing indicator species analysis, several growth stage- and field management-sensitive OTUs were identified. Further studies are required to examine their role in rice fields. Although our experimental sites were very close, the variation between samples were still observed, suggesting the presence of local environmental effects. Thus, we suggest that more experimental sites and long-term research are needed in the future to dissect the impacts of cropping practices on root endophyte composition and function in crops.
致謝 I
摘要 II
Abstract III
目錄 V
圖目錄 VIII
表目錄 IX
附錄目錄 X
第1章 前言 1
1.1 永續農業 1
1.1 耕作模式與土壤性質 1
1.2 植物內共生微生物 2
1.2.1 植物內共生微生物對植物生長的效益 2
1.2.2 植物內共生微生物與耕作模式 3
1.2.3 植物生育期對根圈菌相之影響 4
1.3 植物根圈土壤及內共生微生物研究方法 4
1.3.1 傳統微生物分離培養法 5
1.3.2 土壤酶活性測定 5
1.3.3 次世代定序技術 5
1.3.4 利用次世代定序分析微生物群落多樣性 6
1.4 研究目的 7
第2章 材料及方法 9
2.1 樣品採集 9
2.2 田間施作方法 9
2.3 樣本採樣與處理 9
2.4 內共生細菌DNA萃取 10
2.5 16s rRNA基因次世代定序 11
2.5.1 16S rRNA基因聚合酶連鎖反應(polymerase chain reaction, PCR) 11
2.5.2 樣本基因體建庫及定序 11
2.5.3 定序資料處理 11
2.6 生物資訊分析 12
2.6.1 OTU聚類和物種注釋 12
2.6.2 樣品複雜度分析(α-多樣性;α-diversity) 12
2.6.3 樣本分組比較分析(β-多樣性;β-diversity) 13
2.6.4 環境因子分析 13
2.6.5 基因功能預測 13
2.6.6 敏感物種(OTUs)分析 13
2.6.7 熱圖(heatmap)製作 13
2.7 數據統計分析 14
第3章 結果 15
3.1 試驗取樣點環境概況 15
3.2 水稻根部內共生細菌群落組成與生育地土壤性質關係 16
3.3 水稻根部內共生細菌門組成在不同期作及管理方式下的差異 16
3.4 水稻根部內共生細菌群落組成在不同期作α-多樣性的差異 17
3.5 水稻根部內共生細菌群落組成在不同期作β-多樣性的差異 19
3.6 分析對管理方式及生育時期敏感的水稻內共生細菌指標OTUs 25
3.7 不同期作水稻根部內共生細菌群落的功能預測分析 26
第4章 討論 28
4.1 田間管理方式對水稻內共生細菌群落結構及功能的影響 28
4.2 生育期對水稻內共生細菌群落結構及功能的影響 30
4.3 生育期及田間管理方式的交互作用共同影響水稻內共生細菌相 33
4.4 田間管理方式對土壤特性及微生物相的影響 34
4.5 品種及氣候環境條件對根內共生菌相的影響 35
第5章 參考文獻 37
附錄 82
Agler, M.T., Ruhe, J., Kroll, S., Morhenn, C., Kim, S.-T., Weigel, D., and Kemen, E.M. (2016). Microbial hub taxa link host and abiotic factors to plant microbiome variation. PLOS Biol. 14, e1002352.

Aguiar-Pulido, V., Huang, W., Suarez-Ulloa, V., Cickovski, T., Mathee, K., and Narasimhan, G. (2016). Metagenomics, metatranscriptomics, and metabolomics approaches for microbiome analysis: supplementary issue: bioinformatics methods and applications for big metagenomics data. Evol. Bioinform. 12, EBO. S36436.

Amann, R.I. (1995). In situ identification of micro-organisms by whole cell hybridization with rRNA-targeted nucleic acid probes. In Akkermans, A. D., Van Elsas, J. D., and De Bruijn, F. J., eds, Molecular microbial ecology manual. Springer, New York, NY, pp. 331-345.

Amann, R.I., Ludwig, W., and Schleifer, K.-H. (1995). Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol. Mol. Biol. Rev. 59, 143-169.

Aneja, M.K., Sharma, S., Fleischmann, F., Stich, S., Heller, W., Bahnweg, G., Munch, J.C., and Schloter, M. (2006). Microbial colonization of beech and spruce litter—influence of decomposition site and plant litter species on the diversity of microbial community. Microb. Ecol. 52, 127-135.

Antoun, H., Beauchamp, C.J., Goussard, N., Chabot, R., and Lalande, R. (1998). Potential of Rhizobium and Bradyrhizobium species as plant growth promoting rhizobacteria on non-legumes: effect on radishes (Raphanus sativus L.). In G. Hardarson and W. Broughton, eds, Molecular microbial ecology of the soil. Springer, New York, NY, pp. 57-67.

Araújo, A.S., Leite, L.F., Santos, V.B., and Carneiro, R.F. (2009). Soil microbial activity in conventional and organic agricultural systems. Sustainability 1, 268-276.

Barnawal, D., Bharti, N., Maji, D., Chanotiya, C.S., and Kalra, A. (2012). 1-Aminocyclopropane-1-carboxylic acid (ACC) deaminase-containing rhizobacteria protect Ocimum sanctum plants during waterlogging stress via reduced ethylene generation. Plant Physiol. Biochem. 58, 227-235.

Bünemann, E.K., Schwenke, G.D., and Van Zwieten, L. (2006). Impact of agricultural inputs on soil organisms—a review. Soil Res 44, 379-406.

Bachmann, G., and Kinzel, H. (1992). Physiological and ecological aspects of the interactions between plant roots and rhizosphere soil. Soil Biol. Biochem. 24, 543-552.

Banerjee, S., Kirkby, C.A., Schmutter, D., Bissett, A., Kirkegaard, J.A., and Richardson, A.E. (2016). Network analysis reveals functional redundancy and keystone taxa amongst bacterial and fungal communities during organic matter decomposition in an arable soil. Soil Bio. Biochem. 97, 188-198.

Baudoin, E., Benizri, E., and Guckert, A. (2002). Impact of growth stage on the bacterial community structure along maize roots, as determined by metabolic and genetic fingerprinting. Appl. Soil Ecol. 19, 135-145.

Benitez, M.S., Osborne, S.L., and Lehman, R.M. (2017). Previous crop and rotation history effects on maize seedling health and associated rhizosphere microbiome. Sci. Rep. 7, 15709.

Bernard, L., Mougel, C., Maron, P.A., Nowak, V., Lévêque, J., Henault, C., Haichar, F.e.Z., Berge, O., Marol, C., and Balesdent, J. (2007). Dynamics and identification of soil microbial populations actively assimilating carbon from 13C‐labelled wheat residue as estimated by DNA‐and RNA‐SIP techniques. Environ. Microbiol. 9, 752-764.

Bevacqua, R.F., and Mellano, V.J. (1994). Cumulative effects of sludge compost on crop yields and soil properties. Commun Soil Sci Plant Anal 25, 395-406.

Bhattacharyya, P.N., and Jha, D.K. (2012). Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World J. Microbiol. Biotechnol. 28, 1327-1350.

Blanco-Canqui, H., and Lal, R. (2009). Crop residue removal impacts on soil productivity and environmental quality. CRC Crit. Rev. Plant Sci. 28, 139-163.

Bonito, G., Reynolds, H., Robeson, M.S., Nelson, J., Hodkinson, B.P., Tuskan, G., Schadt, C.W., and Vilgalys, R. (2014). Plant host and soil origin influence fungal and bacterial assemblages in the roots of woody plants. Mol. Ecol. 23, 3356-3370.

Bulgarelli, D., Rott, M., Schlaeppi, K., Ver Loren van Themaat, E., Ahmadinejad, N., Assenza, F., Rauf, P., Huettel, B., Reinhardt, R., Schmelzer, E., Peplies, J., Gloeckner, F.O., Amann, R., Eickhorst, T., and Schulze-Lefert, P. (2012). Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota. Nature 488, 91-95.

Carson, K.C., Meyer, J.-M., and Dilworth, M. (2000). Hydroxamate siderophores of root nodule bacteria. Soil Biol. Biochem. 32, 11-21.

Cavaglieri, L., Orlando, J., and Etcheverry, M. (2009). Rhizosphere microbial community structure at different maize plant growth stages and root locations. Microbiol. Res. 164, 391-399.

Chao, A. (1984). Nonparametric estimation of the number of classes in a population. Scand Stat Theory Appl. 11, 265-270.

Chao, A., and Lee, S.-M. (1992). Estimating the number of classes via sample coverage. J Am Stat Assoc 87, 210-217.

Chao, A., and Yang, M.C. (1993). Stopping rules and estimation for recapture debugging with unequal failure rates. Biometrika 80, 193-201.

Chaparro, J.M., Badri, D.V., and Vivanco, J.M. (2014). Rhizosphere microbiome assemblage is affected by plant development. ISME J 8, 790-803.

Chaparro, J.M., Badri, D.V., Bakker, M.G., Sugiyama, A., Manter, D.K., and Vivanco, J.M. (2013). Root exudation of phytochemicals in Arabidopsis follows specific patterns that are developmentally programmed and correlate with soil microbial functions. PLoS One 8, e55731.

Chaudhry, V., Rehman, A., Mishra, A., Chauhan, P.S., and Nautiyal, C.S. (2012). Changes in bacterial community structure of agricultural land due to long-term organic and chemical amendments. Microb. Ecol. 64, 450-460.

Chiarini, L., Bevivino, A., Dalmastri, C., Nacamulli, C., and Tabacchioni, S. (1998). Influence of plant development, cultivar and soil type on microbial colonization of maize roots. Agric., Ecosyst. Environ. 8, 11-18.

Chávez-Romero, Y., Navarro-Noya, Y.E., Reynoso-Martínez, S.C., Sarria-Guzmán, Y., Govaerts, B., Verhulst, N., Dendooven, L., and Luna-Guido, M. (2016). 16S metagenomics reveals changes in the soil bacterial community driven by soil organic C, N-fertilizer and tillage-crop residue management. Soil Tillage Res. 159, 1-8.

Clark, M.S., Horwath, W.R., Shennan, C., and Scow, K.M. (1998). Changes in soil chemical properties resulting from organic and low‐input farming practices. Agron J 90, 662-671.

Cleveland, C.C., Nemergut, D.R., Schmidt, S.K., and Townsend, A.R. (2007). Increases in soil respiration following labile carbon additions linked to rapid shifts in soil microbial community composition. Biogeochemistry 82, 229-240.

Compant, S., Clément, C., and Sessitsch, A. (2010). Plant growth-promoting bacteria in the rhizo-and endosphere of plants: their role, colonization, mechanisms involved and prospects for utilization. Soil Biol. Biochem. 42, 669-678.

Compant, S., Duffy, B., Nowak, J., Clément, C., and Barka, E.A. (2005). Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Appl. Environ. Microbiol. 71, 4951-4959.

Edgar, R.C., Haas, B.J., Clemente, J.C., Quince, C., and Knight, R. (2011). UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27, 2194-2200.

Edwards, J., Johnson, C., Santos-Medellin, C., Lurie, E., Podishetty, N.K., Bhatnagar, S., Eisen, J.A., and Sundaresan, V. (2015). Structure, variation, and assembly of the root-associated microbiomes of rice. Proc. Natl. Acad. Sci. U.S.A. 112, E911-920.

Egamberdieva, D., Wirth, S.J., Shurigin, V.V., Hashem, A., and Abd Allah, E.F. (2017). Endophytic bacteria improve plant growth, symbiotic performance of chickpea (Cicer arietinum L.) and induce suppression of root rot caused by fusarium solani under salt stress. Front. Microbiol. 8, 1887.

Emmett, B.D., Buckley, D.H., and Drinkwater, L.E. (2020). Plant growth rate and nitrogen uptake shape rhizosphere bacterial community composition and activity in an agricultural field. New Phytol 225, 960-973.

Esperschütz, J., Gattinger, A., Mäder, P., Schloter, M., and Fließbach, A. (2007). Response of soil microbial biomass and community structures to conventional and organic farming systems under identical crop rotations. FEMS Microbiol. Ecol. 61, 26-37.

Estrada-De Los Santos, P., Bustillos-Cristales, R.o., and Caballero-Mellado, J. (2001). Burkholderia, a genus rich in plant-associated nitrogen fixers with wide environmental and geographic distribution. Appl. Environ. Microbiol. 67, 2790-2798.

Fierer, N., Bradford, M.A., and Jackson, R.B. (2007). Toward an ecological classification of soil bacteria. Ecology 88, 1354-1364.

Fließbach, A., Oberholzer, H.-R., Gunst, L., and Mäder, P. (2007). Soil organic matter and biological soil quality indicators after 21 years of organic and conventional farming. Agric. Ecosyst. Environ. 118, 273-284.

Forchetti, G., Masciarelli, O., Izaguirre, M.J., Alemano, S., Alvarez, D., and Abdala, G. (2010). Endophytic bacteria improve seedling growth of sunflower under water stress, produce salicylic acid, and inhibit growth of pathogenic fungi. Curr. Microbiol. 61, 485-493.

Forsberg, K.J., Patel, S., Gibson, M.K., Lauber, C.L., Knight, R., Fierer, N., and Dantas, G. (2014). Bacterial phylogeny structures soil resistomes across habitats. Nature 509, 612-616.

Fukami, J., Cerezini, P., and Hungria, M. (2018). Azospirillum: benefits that go far beyond biological nitrogen fixation. AMB Express 8, 73.

Gamalero, E., and Glick, B.R. (2011). Mechanisms used by plant growth-promoting bacteria. In D.K. Maheshwari, ed, Bacteria in agrobiology: plant nutrient management. Springer, New York, NY, pp. 17-46.

Garland, J.L., and Mills, A.L. (1991). Classification and characterization of heterotrophic microbial communities on the basis of patterns of community-level sole-carbon-source utilization. Appl. Environ. Microbiol. 57, 2351-2359.

Germida, J.J., Siciliano, S.D., Renato de Freitas, J., and Seib, A.M. (1998). Diversity of root-associated bacteria associated with field-grown canola (Brassica napus L.) and wheat (Triticum aestivum L.). FEMS Microbiol. Ecol. 26, 43-50.

Gosling, P., and Shepherd, M. (2005). Long-term changes in soil fertility in organic arable farming systems in England, with particular reference to phosphorus and potassium. Agric. Ecosyst. Environ. 105, 425-432.

Gottel, N.R., Castro, H.F., Kerley, M., Yang, Z., Pelletier, D.A., Podar, M., Karpinets, T., Uberbacher, E., Tuskan, G.A., and Vilgalys, R. (2011). Distinct microbial communities within the endosphere and rhizosphere of Populus deltoides roots across contrasting soil types. Appl. Environ. Microbiol. 77, 5934-5944.

Gurusinghe, S., Brooks, T.L., Barrow, R.A., Zhu, X., Thotagamuwa, A., Dennis, P.G., Gupta, V.V., Vanniasinkam, T., and Weston, L.A. (2019). Technologies for the selection, culture and metabolic profiling of unique rhizosphere microorganisms for natural product discovery. Molecules 24, 1955.

Hallmann, J., Quadt-Hallmann, A., Mahaffee, W., and Kloepper, J. (1997). Bacterial endophytes in agricultural crops. Can. J. Microbiol. 43, 895-914.

Haney, C.H., Samuel, B.S., Bush, J., and Ausubel, F.M. (2015). Associations with rhizosphere bacteria can confer an adaptive advantage to plants. Nat. Plants 1, 15051.

Hartman, K., van der Heijden, M.G.A., Wittwer, R.A., Banerjee, S., Walser, J.C., and Schlaeppi, K. (2018). Cropping practices manipulate abundance patterns of root and soil microbiome members paving the way to smart farming. Microbiome 6, 14.

Hartmann, M., and Widmer, F. (2006). Community structure analyses are more sensitive to differences in soil bacterial communities than anonymous diversity indices. Appl. Environ. Microbiol. 72, 7804-7812.

Hinsinger, P., Bengough, A.G., Vetterlein, D., and Young, I.M. (2009). Rhizosphere: biophysics, biogeochemistry and ecological relevance. Plant Soil 321, 117-152.

Hrynkiewicz, K., and Baum, C. (2012). The potential of rhizosphere microorganisms to promote the plant growth in disturbed soils. In Malik, Abdul, Grohmann, Elisabeth, Eds, Environmental protection strategies for sustainable development. Springer, New York, NY, pp. 35-64.

Ishaq, S.L., Johnson, S.P., Miller, Z.J., Lehnhoff, E.A., Olivo, S., Yeoman, C.J., and Menalled, F.D. (2017). Impact of cropping systems, soil inoculum, and plant species identity on soil bacterial community structure. Microb. Ecol. 73, 417-434.

Jenny, H. (1941) Factors of Soil Formation: A System of Quantitative Pedology. Dover Publications, New York, NY.

Jin, C.W., He, Y.F., Tang, C.X., Wu, P., and Zheng, S.J. (2006). Mechanisms of microbially enhanced Fe acquisition in red clover (Trifolium pratense L.). Plant Cell Environ 29, 888-897.

Kanehisa, M., Goto, S., Sato, Y., Kawashima, M., Furumichi, M., and Tanabe, M. (2014). Data, information, knowledge and principle: back to metabolism in KEGG. Nucleic Acids Res 42, D199-D205.

Karthikeyan, B., Joe, M.M., Islam, M.R., and Sa, T.J.S. (2012). ACC deaminase containing diazotrophic endophytic bacteria ameliorate salt stress in Catharanthus roseus through reduced ethylene levels and induction of antioxidative defense systems. Symbiosis 56, 77-86.

Kennedy, A., and Smith, K. (1995). Soil microbial diversity and the sustainability of agricultural soils. Plant Soil 170, 75-86.

Kong, Z., Mohamad, O.A., Deng, Z., Liu, X., Glick, B.R., and Wei, G. (2015). Rhizobial symbiosis effect on the growth, metal uptake, and antioxidant responses of Medicago lupulina under copper stress. Environ. Sci. Pollut. Res. 22, 12479-12489.

Konstantinidis, K.T., and Tiedje, J.M. (2005). Genomic insights that advance the species definition for prokaryotes. Proc. Natl. Acad. Sci. U.S.A. 102, 2567-2572.

Langille, M.G., Zaneveld, J., Caporaso, J.G., McDonald, D., Knights, D., Reyes, J.A., Clemente, J.C., Burkepile, D.E., Thurber, R.L.V., and Knight, R. (2013). Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat. Biotechnol. 31, 814.

Li, R., Khafipour, E., Krause, D.O., Entz, M.H., de Kievit, T.R., and Fernando, W.D. (2012). Pyrosequencing reveals the influence of organic and conventional farming systems on bacterial communities. PLoS One 7, e51897.

Lipiec, J., and Gliński, J. (2011). Rhizosphere. In J. Gliński, J. Horabik, and J. Lipiec, eds, Encyclopedia of agrophysics. Springer, Netherlands, pp. 705-709.

Lundberg, D.S., Lebeis, S.L., Paredes, S.H., Yourstone, S., Gehring, J., Malfatti, S., Tremblay, J., Engelbrektson, A., Kunin, V., Del Rio, T.G., Edgar, R.C., Eickhorst, T., Ley, R.E., Hugenholtz, P., Tringe, S.G., and Dangl, J.L. (2012). Defining the core Arabidopsis thaliana root microbiome. Nature 488, 86-90.

Lynch, J., and Whipps, J. (1990). Substrate flow in the rhizosphere. Plant Soil 129, 1-10.

Marag, P.S., and Suman, A. (2018). Growth stage and tissue specific colonization of endophytic bacteria having plant growth promoting traits in hybrid and composite maize (Zea mays L.). Microbiol. Res. 214, 101-113.

Marasco, R., Rolli, E., Ettoumi, B., Vigani, G., Mapelli, F., Borin, S., Abou-Hadid, A.F., El-Behairy, U.A., Sorlini, C., Cherif, A., Zocchi, G., and Daffonchio, D. (2012). A drought resistance-promoting microbiome is selected by root system under desert farming. PLoS One 7, e48479.

Marques, J.M., da Silva, T.F., Vollú, R.E., de Lacerda, J.R.M., Blank, A.F., Smalla, K., and Seldin, L. (2015). Bacterial endophytes of sweet potato tuberous roots affected by the plant genotype and growth stage. Appl. Soil Ecol. 96, 273-281.

Marquez-Santacruz, H., Hernandez-Leon, R., Orozco-Mosqueda, M.d.C., Velazquez-Sepulveda, I., and Santoyo, G. (2010). Diversity of bacterial endophytes in roots of Mexican husk tomato plants (Physalis ixocarpa) and their detection in the rhizosphere. Genet. Mol. Res. 9, 2372-2380.

Marschner, H., Römheld, V., and Cakmak, I. (1987). Root‐induced changes of nutrient availability in the rhizosphere. J. Plant Nutr. 10, 1175-1184.

Marschner, P., Crowley, D., and Yang, C.H. (2004). Development of specific rhizosphere bacterial communities in relation to plant species, nutrition and soil type. Plant Soil 261, 199-208.

Mehnaz, S., and Lazarovits, G. (2006). Inoculation effects of Pseudomonas putida, Gluconacetobacter azotocaptans, and Azospirillum lipoferum on corn plant growth under greenhouse conditions. Microb. Ecol. 51, 326-335.

Monokrousos, N., Papatheodorou, E., Diamantopoulos, J., and Stamou, G. (2006). Soil quality variables in organically and conventionally cultivated field sites. Soil Biol. Biochem. 38, 1282-1289.

Morgan Ernest, S., and Brown, J.H. (2001). Homeostasis and compensation: the role of species and resources in ecosystem stability. Ecology 82, 2118-2132.

Nannipieri, P., Ascher, J., Ceccherini, M., Landi, L., Pietramellara, G., and Renella, G. (2003). Microbial diversity and soil functions. Eur. J. Soil Sci. 54, 655-670.

Navarro-Noya, Y.E., Gómez-Acata, S., Montoya-Ciriaco, N., Rojas-Valdez, A., Suárez-Arriaga, M.C., Valenzuela-Encinas, C., Jiménez-Bueno, N., Verhulst, N., Govaerts, B., and Dendooven, L. (2013). Relative impacts of tillage, residue management and crop-rotation on soil bacterial communities in a semi-arid agroecosystem. Soil Biol. Biochem. 65, 86-95.

Novara, A., Catania, V., Tolone, M., Gristina, L., Laudicina, V.A., and Quatrini, P. (2020). Cover crop impact on soil organic carbon, nitrogen dynamics and microbial diversity in a Mediterranean semiarid vineyard. Sustainability 12, 3256.

Pascault, N., Ranjard, L., Kaisermann, A., Bachar, D., Christen, R., Terrat, S., Mathieu, O., Lévêque, J., Mougel, C., and Henault, C. (2013). Stimulation of different functional groups of bacteria by various plant residues as a driver of soil priming effect. Ecosystems 16, 810-822.

Peiffer, J.A., Spor, A., Koren, O., Jin, Z., Tringe, S.G., Dangl, J.L., Buckler, E.S., and Ley, R.E. (2013). Diversity and heritability of the maize rhizosphere microbiome under field conditions. Proc. Natl. Acad. Sci. U.S.A. 110, 6548-6553.

Philippot, L., Raaijmakers, J.M., Lemanceau, P., and Van Der Putten, W.H. (2013). Going back to the roots: the microbial ecology of the rhizosphere. Nat. Rev. Microbiol. 11, 789-799.

Rahalkar, M.C., and Pandit, P. (2018). Genome-based insights into a putative novel Methylomonas species (strain Kb3), isolated from an Indian rice field. Gene Rep. 13, 9-13.

Reddy, M., Ilao, R.I., and Faylon, P.S. (2014). Recent advances in biofertilizers and biofungicides (PGPR) for sustainable agriculture. Cambridge Scholars Publishing. Cambridge, UK

Reganold, J.P., Elliott, L.F., and Unger, Y.L. (1987). Long-term effects of organic and conventional farming on soil erosion. Nature 330, 370-372.

Rodriguez, P.A., Rothballer, M., Chowdhury, S.P., Nussbaumer, T., Gutjahr, C., and Falter-Braun, P. (2019). Systems biology of plant-microbiome interactions. Mol Plant 12, 804-821.

Roesti, D., Gaur, R., Johri, B., Imfeld, G., Sharma, S., Kawaljeet, K., and Aragno, M. (2006). Plant growth stage, fertiliser management and bio-inoculation of arbuscular mycorrhizal fungi and plant growth promoting rhizobacteria affect the rhizobacterial community structure in rain-fed wheat fields. Soil Biol. Biochem. 38, 1111-1120.

Santoyo, G., Moreno-Hagelsieb, G., Orozco-Mosqueda Mdel, C., and Glick, B.R. (2016). Plant growth-promoting bacterial endophytes. Microbiol Res 183, 92-99.

Segata, N., and Huttenhower, C. (2011). Toward an efficient method of identifying core genes for evolutionary and functional microbial phylogenies. PLoS One 6, e24704.

Sekine, M., Ichikawa, T., Kuga, N., Kobayashi, M., Sakurai, A., and Syōno, K. (1988). Detection of the IAA biosynthetic pathway from tryptophan via indole-3-acetamide in Bradyrhizobium spp. Plant Cell Physiol. 29, 867-874.

Sessitsch, A., Hardoim, P., Döring, J., Weilharter, A., Krause, A., Woyke, T., Mitter, B., Hauberg-Lotte, L., Friedrich, F., and Rahalkar, M. (2012). Functional characteristics of an endophyte community colonizing rice roots as revealed by metagenomic analysis. Mol. Plant Microbe Interact. 25, 28-36.

Shannon, C.E. (1948). A mathematical theory of communication. Bell Syst. Tech. J. 27, 379-423.

Shiralipour, A., McConnell, D.B., and Smith, W.H. (1992). Physical and chemical properties of soils as affected by municipal solid waste compost application. Biomass Bioenergy 3, 261-266.

Sikora, L., and Yakovchenko, V. (1996). Soil organic matter mineralization after compost amendment. Soil Sci Soc Am J 60, 1401-1404.

Simpson, E.H. (1949). Measurement of diversity. Nature 163, 688-688.

Snel, B., Bork, P., and Huynen, M.A. (1999). Genome phylogeny based on gene content. Nat. Genet. 21, 108-110.

Sturz, A., and Nowak, J. (2000). Endophytic communities of rhizobacteria and the strategies required to create yield enhancing associations with crops. Appl. Soil Ecol. 15, 183-190.

Sudhakar, P., Chattopadhyay, G., Gangwar, S., and Ghosh, J. (2000). Effect of foliar application of Azotobacter, Azospirillum and Beijerinckia on leaf yield and quality of mulberry (Morus alba). J. Agric. Sci. 134, 227-234.

Trapp, M.A., Kai, M., Mithofer, A., and Rodrigues-Filho, E. (2015). Antibiotic oxylipins from Alternanthera brasiliana and its endophytic bacteria. Phytochemistry 110, 72-82.

Ul Hassan, T., and Bano, A. (2015). The stimulatory effects of L-tryptophan and plant growth promoting rhizobacteria (PGPR) on soil health and physiology of wheat. J. Soil Sci. Plant Nutr. 15, 190-201.

Van den Berghe, C., and Hue, N. (1999). Liming potential of composts applied to an acid oxisol in Burundi. Compost Sci. Util. 7, 40-46.

van der Heijden, M.G., and Hartmann, M. (2016). Networking in the plant microbiome. PLoS Biol. 14, e1002378.

Vessey, J.K. (2003). Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255, 571-586.

Walters, W.A., Jin, Z., Youngblut, N., Wallace, J.G., Sutter, J., Zhang, W., González-Peña, A., Peiffer, J., Koren, O., and Shi, Q. (2018). Large-scale replicated field study of maize rhizosphere identifies heritable microbes. Proc Natl Acad Sci India Sect B Biol Sci 115, 7368-7373.

Wang, E., and Martinez-Romero, E. (2000). Sesbania herbacea–Rhizobium huautlense nodulation in flooded soils and comparative characterization of S. herbacea-nodulating rhizobia in different environments. Microb. Ecol. 40, 25-32.

Wemheuer, F., Kaiser, K., Karlovsky, P., Daniel, R., Vidal, S., and Wemheuer, B. (2017). Bacterial endophyte communities of three agricultural important grass species differ in their response towards management regimes. Sci. Rep. 7, 40914.

Wemheuer, F., Berkelmann, D., Wemheuer, B., Daniel, R., Vidal, S., and Bisseleua Daghela, H.B. (2020). Agroforestry management systems drive the composition, diversity, and function of fungal and bacterial endophyte communities in Theobroma Cacao leaves. Microorganisms 8, 405.

Winding, A., and Hendriksen, N.B. (1997). Biolog substrate utilisation assay for metabolic fingerprints of soil bacteria: incubation effects. In Insam, Heribert, Rangger, Andrea, Eds, Microbial communities. Springer, New York, NY, pp. 195-205.

Wu, T., Chellemi, D.O., Martin, K.J., Graham, J.H., and Rosskopf, E.N. (2007). Discriminating the effects of agricultural land management practices on soil fungal communities. Soil Biol. Biochem. 39, 1139-1155.

Xia, Y., DeBolt, S., Dreyer, J., Scott, D., and Williams, M.A. (2015). Characterization of culturable bacterial endophytes and their capacity to promote plant growth from plants grown using organic or conventional practices. Front. Plant Sci. 6, 490.

Yaish, M.W., Al-Lawati, A., Jana, G.A., Patankar, H.V., and Glick, B.R. (2016). Impact of soil salinity on the structure of the bacterial endophytic community identified from the roots of caliph medic (Medicago truncatula). PLoS One 11, e0159007.

Yang, J., Kloepper, J.W., and Ryu, C.-M. (2009). Rhizosphere bacteria help plants tolerate abiotic stress. Trends Plant Sci. 14, 1-4.

Yang, Y., Wang, N., Guo, X., Zhang, Y., and Ye, B. (2017). Comparative analysis of bacterial community structure in the rhizosphere of maize by high-throughput pyrosequencing. PLoS One 12, e0178425.

Zaneveld, J.R., Lozupone, C., Gordon, J.I., and Knight, R. (2010). Ribosomal RNA diversity predicts genome diversity in gut bacteria and their relatives. Nucleic Acids Res. 38, 3869-3879.

Zhalnina, K., Louie, K.B., Hao, Z., Mansoori, N., da Rocha, U.N., Shi, S., Cho, H., Karaoz, U., Loque, D., Bowen, B.P., Firestone, M.K., Northen, T.R., and Brodie, E.L. (2018). Dynamic root exudate chemistry and microbial substrate preferences drive patterns in rhizosphere microbial community assembly. Nat. Microbiol. 3, 470-480.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top