|
Agler, M.T., Ruhe, J., Kroll, S., Morhenn, C., Kim, S.-T., Weigel, D., and Kemen, E.M. (2016). Microbial hub taxa link host and abiotic factors to plant microbiome variation. PLOS Biol. 14, e1002352.
Aguiar-Pulido, V., Huang, W., Suarez-Ulloa, V., Cickovski, T., Mathee, K., and Narasimhan, G. (2016). Metagenomics, metatranscriptomics, and metabolomics approaches for microbiome analysis: supplementary issue: bioinformatics methods and applications for big metagenomics data. Evol. Bioinform. 12, EBO. S36436.
Amann, R.I. (1995). In situ identification of micro-organisms by whole cell hybridization with rRNA-targeted nucleic acid probes. In Akkermans, A. D., Van Elsas, J. D., and De Bruijn, F. J., eds, Molecular microbial ecology manual. Springer, New York, NY, pp. 331-345.
Amann, R.I., Ludwig, W., and Schleifer, K.-H. (1995). Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol. Mol. Biol. Rev. 59, 143-169.
Aneja, M.K., Sharma, S., Fleischmann, F., Stich, S., Heller, W., Bahnweg, G., Munch, J.C., and Schloter, M. (2006). Microbial colonization of beech and spruce litter—influence of decomposition site and plant litter species on the diversity of microbial community. Microb. Ecol. 52, 127-135.
Antoun, H., Beauchamp, C.J., Goussard, N., Chabot, R., and Lalande, R. (1998). Potential of Rhizobium and Bradyrhizobium species as plant growth promoting rhizobacteria on non-legumes: effect on radishes (Raphanus sativus L.). In G. Hardarson and W. Broughton, eds, Molecular microbial ecology of the soil. Springer, New York, NY, pp. 57-67.
Araújo, A.S., Leite, L.F., Santos, V.B., and Carneiro, R.F. (2009). Soil microbial activity in conventional and organic agricultural systems. Sustainability 1, 268-276.
Barnawal, D., Bharti, N., Maji, D., Chanotiya, C.S., and Kalra, A. (2012). 1-Aminocyclopropane-1-carboxylic acid (ACC) deaminase-containing rhizobacteria protect Ocimum sanctum plants during waterlogging stress via reduced ethylene generation. Plant Physiol. Biochem. 58, 227-235.
Bünemann, E.K., Schwenke, G.D., and Van Zwieten, L. (2006). Impact of agricultural inputs on soil organisms—a review. Soil Res 44, 379-406.
Bachmann, G., and Kinzel, H. (1992). Physiological and ecological aspects of the interactions between plant roots and rhizosphere soil. Soil Biol. Biochem. 24, 543-552.
Banerjee, S., Kirkby, C.A., Schmutter, D., Bissett, A., Kirkegaard, J.A., and Richardson, A.E. (2016). Network analysis reveals functional redundancy and keystone taxa amongst bacterial and fungal communities during organic matter decomposition in an arable soil. Soil Bio. Biochem. 97, 188-198.
Baudoin, E., Benizri, E., and Guckert, A. (2002). Impact of growth stage on the bacterial community structure along maize roots, as determined by metabolic and genetic fingerprinting. Appl. Soil Ecol. 19, 135-145.
Benitez, M.S., Osborne, S.L., and Lehman, R.M. (2017). Previous crop and rotation history effects on maize seedling health and associated rhizosphere microbiome. Sci. Rep. 7, 15709.
Bernard, L., Mougel, C., Maron, P.A., Nowak, V., Lévêque, J., Henault, C., Haichar, F.e.Z., Berge, O., Marol, C., and Balesdent, J. (2007). Dynamics and identification of soil microbial populations actively assimilating carbon from 13C‐labelled wheat residue as estimated by DNA‐and RNA‐SIP techniques. Environ. Microbiol. 9, 752-764.
Bevacqua, R.F., and Mellano, V.J. (1994). Cumulative effects of sludge compost on crop yields and soil properties. Commun Soil Sci Plant Anal 25, 395-406.
Bhattacharyya, P.N., and Jha, D.K. (2012). Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World J. Microbiol. Biotechnol. 28, 1327-1350.
Blanco-Canqui, H., and Lal, R. (2009). Crop residue removal impacts on soil productivity and environmental quality. CRC Crit. Rev. Plant Sci. 28, 139-163.
Bonito, G., Reynolds, H., Robeson, M.S., Nelson, J., Hodkinson, B.P., Tuskan, G., Schadt, C.W., and Vilgalys, R. (2014). Plant host and soil origin influence fungal and bacterial assemblages in the roots of woody plants. Mol. Ecol. 23, 3356-3370.
Bulgarelli, D., Rott, M., Schlaeppi, K., Ver Loren van Themaat, E., Ahmadinejad, N., Assenza, F., Rauf, P., Huettel, B., Reinhardt, R., Schmelzer, E., Peplies, J., Gloeckner, F.O., Amann, R., Eickhorst, T., and Schulze-Lefert, P. (2012). Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota. Nature 488, 91-95.
Carson, K.C., Meyer, J.-M., and Dilworth, M. (2000). Hydroxamate siderophores of root nodule bacteria. Soil Biol. Biochem. 32, 11-21.
Cavaglieri, L., Orlando, J., and Etcheverry, M. (2009). Rhizosphere microbial community structure at different maize plant growth stages and root locations. Microbiol. Res. 164, 391-399.
Chao, A. (1984). Nonparametric estimation of the number of classes in a population. Scand Stat Theory Appl. 11, 265-270.
Chao, A., and Lee, S.-M. (1992). Estimating the number of classes via sample coverage. J Am Stat Assoc 87, 210-217.
Chao, A., and Yang, M.C. (1993). Stopping rules and estimation for recapture debugging with unequal failure rates. Biometrika 80, 193-201.
Chaparro, J.M., Badri, D.V., and Vivanco, J.M. (2014). Rhizosphere microbiome assemblage is affected by plant development. ISME J 8, 790-803.
Chaparro, J.M., Badri, D.V., Bakker, M.G., Sugiyama, A., Manter, D.K., and Vivanco, J.M. (2013). Root exudation of phytochemicals in Arabidopsis follows specific patterns that are developmentally programmed and correlate with soil microbial functions. PLoS One 8, e55731.
Chaudhry, V., Rehman, A., Mishra, A., Chauhan, P.S., and Nautiyal, C.S. (2012). Changes in bacterial community structure of agricultural land due to long-term organic and chemical amendments. Microb. Ecol. 64, 450-460.
Chiarini, L., Bevivino, A., Dalmastri, C., Nacamulli, C., and Tabacchioni, S. (1998). Influence of plant development, cultivar and soil type on microbial colonization of maize roots. Agric., Ecosyst. Environ. 8, 11-18.
Chávez-Romero, Y., Navarro-Noya, Y.E., Reynoso-Martínez, S.C., Sarria-Guzmán, Y., Govaerts, B., Verhulst, N., Dendooven, L., and Luna-Guido, M. (2016). 16S metagenomics reveals changes in the soil bacterial community driven by soil organic C, N-fertilizer and tillage-crop residue management. Soil Tillage Res. 159, 1-8.
Clark, M.S., Horwath, W.R., Shennan, C., and Scow, K.M. (1998). Changes in soil chemical properties resulting from organic and low‐input farming practices. Agron J 90, 662-671.
Cleveland, C.C., Nemergut, D.R., Schmidt, S.K., and Townsend, A.R. (2007). Increases in soil respiration following labile carbon additions linked to rapid shifts in soil microbial community composition. Biogeochemistry 82, 229-240.
Compant, S., Clément, C., and Sessitsch, A. (2010). Plant growth-promoting bacteria in the rhizo-and endosphere of plants: their role, colonization, mechanisms involved and prospects for utilization. Soil Biol. Biochem. 42, 669-678.
Compant, S., Duffy, B., Nowak, J., Clément, C., and Barka, E.A. (2005). Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Appl. Environ. Microbiol. 71, 4951-4959.
Edgar, R.C., Haas, B.J., Clemente, J.C., Quince, C., and Knight, R. (2011). UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27, 2194-2200.
Edwards, J., Johnson, C., Santos-Medellin, C., Lurie, E., Podishetty, N.K., Bhatnagar, S., Eisen, J.A., and Sundaresan, V. (2015). Structure, variation, and assembly of the root-associated microbiomes of rice. Proc. Natl. Acad. Sci. U.S.A. 112, E911-920.
Egamberdieva, D., Wirth, S.J., Shurigin, V.V., Hashem, A., and Abd Allah, E.F. (2017). Endophytic bacteria improve plant growth, symbiotic performance of chickpea (Cicer arietinum L.) and induce suppression of root rot caused by fusarium solani under salt stress. Front. Microbiol. 8, 1887.
Emmett, B.D., Buckley, D.H., and Drinkwater, L.E. (2020). Plant growth rate and nitrogen uptake shape rhizosphere bacterial community composition and activity in an agricultural field. New Phytol 225, 960-973.
Esperschütz, J., Gattinger, A., Mäder, P., Schloter, M., and Fließbach, A. (2007). Response of soil microbial biomass and community structures to conventional and organic farming systems under identical crop rotations. FEMS Microbiol. Ecol. 61, 26-37.
Estrada-De Los Santos, P., Bustillos-Cristales, R.o., and Caballero-Mellado, J. (2001). Burkholderia, a genus rich in plant-associated nitrogen fixers with wide environmental and geographic distribution. Appl. Environ. Microbiol. 67, 2790-2798.
Fierer, N., Bradford, M.A., and Jackson, R.B. (2007). Toward an ecological classification of soil bacteria. Ecology 88, 1354-1364.
Fließbach, A., Oberholzer, H.-R., Gunst, L., and Mäder, P. (2007). Soil organic matter and biological soil quality indicators after 21 years of organic and conventional farming. Agric. Ecosyst. Environ. 118, 273-284.
Forchetti, G., Masciarelli, O., Izaguirre, M.J., Alemano, S., Alvarez, D., and Abdala, G. (2010). Endophytic bacteria improve seedling growth of sunflower under water stress, produce salicylic acid, and inhibit growth of pathogenic fungi. Curr. Microbiol. 61, 485-493.
Forsberg, K.J., Patel, S., Gibson, M.K., Lauber, C.L., Knight, R., Fierer, N., and Dantas, G. (2014). Bacterial phylogeny structures soil resistomes across habitats. Nature 509, 612-616.
Fukami, J., Cerezini, P., and Hungria, M. (2018). Azospirillum: benefits that go far beyond biological nitrogen fixation. AMB Express 8, 73.
Gamalero, E., and Glick, B.R. (2011). Mechanisms used by plant growth-promoting bacteria. In D.K. Maheshwari, ed, Bacteria in agrobiology: plant nutrient management. Springer, New York, NY, pp. 17-46.
Garland, J.L., and Mills, A.L. (1991). Classification and characterization of heterotrophic microbial communities on the basis of patterns of community-level sole-carbon-source utilization. Appl. Environ. Microbiol. 57, 2351-2359.
Germida, J.J., Siciliano, S.D., Renato de Freitas, J., and Seib, A.M. (1998). Diversity of root-associated bacteria associated with field-grown canola (Brassica napus L.) and wheat (Triticum aestivum L.). FEMS Microbiol. Ecol. 26, 43-50.
Gosling, P., and Shepherd, M. (2005). Long-term changes in soil fertility in organic arable farming systems in England, with particular reference to phosphorus and potassium. Agric. Ecosyst. Environ. 105, 425-432.
Gottel, N.R., Castro, H.F., Kerley, M., Yang, Z., Pelletier, D.A., Podar, M., Karpinets, T., Uberbacher, E., Tuskan, G.A., and Vilgalys, R. (2011). Distinct microbial communities within the endosphere and rhizosphere of Populus deltoides roots across contrasting soil types. Appl. Environ. Microbiol. 77, 5934-5944.
Gurusinghe, S., Brooks, T.L., Barrow, R.A., Zhu, X., Thotagamuwa, A., Dennis, P.G., Gupta, V.V., Vanniasinkam, T., and Weston, L.A. (2019). Technologies for the selection, culture and metabolic profiling of unique rhizosphere microorganisms for natural product discovery. Molecules 24, 1955.
Hallmann, J., Quadt-Hallmann, A., Mahaffee, W., and Kloepper, J. (1997). Bacterial endophytes in agricultural crops. Can. J. Microbiol. 43, 895-914.
Haney, C.H., Samuel, B.S., Bush, J., and Ausubel, F.M. (2015). Associations with rhizosphere bacteria can confer an adaptive advantage to plants. Nat. Plants 1, 15051.
Hartman, K., van der Heijden, M.G.A., Wittwer, R.A., Banerjee, S., Walser, J.C., and Schlaeppi, K. (2018). Cropping practices manipulate abundance patterns of root and soil microbiome members paving the way to smart farming. Microbiome 6, 14.
Hartmann, M., and Widmer, F. (2006). Community structure analyses are more sensitive to differences in soil bacterial communities than anonymous diversity indices. Appl. Environ. Microbiol. 72, 7804-7812.
Hinsinger, P., Bengough, A.G., Vetterlein, D., and Young, I.M. (2009). Rhizosphere: biophysics, biogeochemistry and ecological relevance. Plant Soil 321, 117-152.
Hrynkiewicz, K., and Baum, C. (2012). The potential of rhizosphere microorganisms to promote the plant growth in disturbed soils. In Malik, Abdul, Grohmann, Elisabeth, Eds, Environmental protection strategies for sustainable development. Springer, New York, NY, pp. 35-64.
Ishaq, S.L., Johnson, S.P., Miller, Z.J., Lehnhoff, E.A., Olivo, S., Yeoman, C.J., and Menalled, F.D. (2017). Impact of cropping systems, soil inoculum, and plant species identity on soil bacterial community structure. Microb. Ecol. 73, 417-434.
Jenny, H. (1941) Factors of Soil Formation: A System of Quantitative Pedology. Dover Publications, New York, NY.
Jin, C.W., He, Y.F., Tang, C.X., Wu, P., and Zheng, S.J. (2006). Mechanisms of microbially enhanced Fe acquisition in red clover (Trifolium pratense L.). Plant Cell Environ 29, 888-897.
Kanehisa, M., Goto, S., Sato, Y., Kawashima, M., Furumichi, M., and Tanabe, M. (2014). Data, information, knowledge and principle: back to metabolism in KEGG. Nucleic Acids Res 42, D199-D205.
Karthikeyan, B., Joe, M.M., Islam, M.R., and Sa, T.J.S. (2012). ACC deaminase containing diazotrophic endophytic bacteria ameliorate salt stress in Catharanthus roseus through reduced ethylene levels and induction of antioxidative defense systems. Symbiosis 56, 77-86.
Kennedy, A., and Smith, K. (1995). Soil microbial diversity and the sustainability of agricultural soils. Plant Soil 170, 75-86.
Kong, Z., Mohamad, O.A., Deng, Z., Liu, X., Glick, B.R., and Wei, G. (2015). Rhizobial symbiosis effect on the growth, metal uptake, and antioxidant responses of Medicago lupulina under copper stress. Environ. Sci. Pollut. Res. 22, 12479-12489.
Konstantinidis, K.T., and Tiedje, J.M. (2005). Genomic insights that advance the species definition for prokaryotes. Proc. Natl. Acad. Sci. U.S.A. 102, 2567-2572.
Langille, M.G., Zaneveld, J., Caporaso, J.G., McDonald, D., Knights, D., Reyes, J.A., Clemente, J.C., Burkepile, D.E., Thurber, R.L.V., and Knight, R. (2013). Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat. Biotechnol. 31, 814.
Li, R., Khafipour, E., Krause, D.O., Entz, M.H., de Kievit, T.R., and Fernando, W.D. (2012). Pyrosequencing reveals the influence of organic and conventional farming systems on bacterial communities. PLoS One 7, e51897.
Lipiec, J., and Gliński, J. (2011). Rhizosphere. In J. Gliński, J. Horabik, and J. Lipiec, eds, Encyclopedia of agrophysics. Springer, Netherlands, pp. 705-709.
Lundberg, D.S., Lebeis, S.L., Paredes, S.H., Yourstone, S., Gehring, J., Malfatti, S., Tremblay, J., Engelbrektson, A., Kunin, V., Del Rio, T.G., Edgar, R.C., Eickhorst, T., Ley, R.E., Hugenholtz, P., Tringe, S.G., and Dangl, J.L. (2012). Defining the core Arabidopsis thaliana root microbiome. Nature 488, 86-90.
Lynch, J., and Whipps, J. (1990). Substrate flow in the rhizosphere. Plant Soil 129, 1-10.
Marag, P.S., and Suman, A. (2018). Growth stage and tissue specific colonization of endophytic bacteria having plant growth promoting traits in hybrid and composite maize (Zea mays L.). Microbiol. Res. 214, 101-113.
Marasco, R., Rolli, E., Ettoumi, B., Vigani, G., Mapelli, F., Borin, S., Abou-Hadid, A.F., El-Behairy, U.A., Sorlini, C., Cherif, A., Zocchi, G., and Daffonchio, D. (2012). A drought resistance-promoting microbiome is selected by root system under desert farming. PLoS One 7, e48479.
Marques, J.M., da Silva, T.F., Vollú, R.E., de Lacerda, J.R.M., Blank, A.F., Smalla, K., and Seldin, L. (2015). Bacterial endophytes of sweet potato tuberous roots affected by the plant genotype and growth stage. Appl. Soil Ecol. 96, 273-281.
Marquez-Santacruz, H., Hernandez-Leon, R., Orozco-Mosqueda, M.d.C., Velazquez-Sepulveda, I., and Santoyo, G. (2010). Diversity of bacterial endophytes in roots of Mexican husk tomato plants (Physalis ixocarpa) and their detection in the rhizosphere. Genet. Mol. Res. 9, 2372-2380.
Marschner, H., Römheld, V., and Cakmak, I. (1987). Root‐induced changes of nutrient availability in the rhizosphere. J. Plant Nutr. 10, 1175-1184.
Marschner, P., Crowley, D., and Yang, C.H. (2004). Development of specific rhizosphere bacterial communities in relation to plant species, nutrition and soil type. Plant Soil 261, 199-208.
Mehnaz, S., and Lazarovits, G. (2006). Inoculation effects of Pseudomonas putida, Gluconacetobacter azotocaptans, and Azospirillum lipoferum on corn plant growth under greenhouse conditions. Microb. Ecol. 51, 326-335.
Monokrousos, N., Papatheodorou, E., Diamantopoulos, J., and Stamou, G. (2006). Soil quality variables in organically and conventionally cultivated field sites. Soil Biol. Biochem. 38, 1282-1289.
Morgan Ernest, S., and Brown, J.H. (2001). Homeostasis and compensation: the role of species and resources in ecosystem stability. Ecology 82, 2118-2132.
Nannipieri, P., Ascher, J., Ceccherini, M., Landi, L., Pietramellara, G., and Renella, G. (2003). Microbial diversity and soil functions. Eur. J. Soil Sci. 54, 655-670.
Navarro-Noya, Y.E., Gómez-Acata, S., Montoya-Ciriaco, N., Rojas-Valdez, A., Suárez-Arriaga, M.C., Valenzuela-Encinas, C., Jiménez-Bueno, N., Verhulst, N., Govaerts, B., and Dendooven, L. (2013). Relative impacts of tillage, residue management and crop-rotation on soil bacterial communities in a semi-arid agroecosystem. Soil Biol. Biochem. 65, 86-95.
Novara, A., Catania, V., Tolone, M., Gristina, L., Laudicina, V.A., and Quatrini, P. (2020). Cover crop impact on soil organic carbon, nitrogen dynamics and microbial diversity in a Mediterranean semiarid vineyard. Sustainability 12, 3256.
Pascault, N., Ranjard, L., Kaisermann, A., Bachar, D., Christen, R., Terrat, S., Mathieu, O., Lévêque, J., Mougel, C., and Henault, C. (2013). Stimulation of different functional groups of bacteria by various plant residues as a driver of soil priming effect. Ecosystems 16, 810-822.
Peiffer, J.A., Spor, A., Koren, O., Jin, Z., Tringe, S.G., Dangl, J.L., Buckler, E.S., and Ley, R.E. (2013). Diversity and heritability of the maize rhizosphere microbiome under field conditions. Proc. Natl. Acad. Sci. U.S.A. 110, 6548-6553.
Philippot, L., Raaijmakers, J.M., Lemanceau, P., and Van Der Putten, W.H. (2013). Going back to the roots: the microbial ecology of the rhizosphere. Nat. Rev. Microbiol. 11, 789-799.
Rahalkar, M.C., and Pandit, P. (2018). Genome-based insights into a putative novel Methylomonas species (strain Kb3), isolated from an Indian rice field. Gene Rep. 13, 9-13.
Reddy, M., Ilao, R.I., and Faylon, P.S. (2014). Recent advances in biofertilizers and biofungicides (PGPR) for sustainable agriculture. Cambridge Scholars Publishing. Cambridge, UK
Reganold, J.P., Elliott, L.F., and Unger, Y.L. (1987). Long-term effects of organic and conventional farming on soil erosion. Nature 330, 370-372.
Rodriguez, P.A., Rothballer, M., Chowdhury, S.P., Nussbaumer, T., Gutjahr, C., and Falter-Braun, P. (2019). Systems biology of plant-microbiome interactions. Mol Plant 12, 804-821.
Roesti, D., Gaur, R., Johri, B., Imfeld, G., Sharma, S., Kawaljeet, K., and Aragno, M. (2006). Plant growth stage, fertiliser management and bio-inoculation of arbuscular mycorrhizal fungi and plant growth promoting rhizobacteria affect the rhizobacterial community structure in rain-fed wheat fields. Soil Biol. Biochem. 38, 1111-1120.
Santoyo, G., Moreno-Hagelsieb, G., Orozco-Mosqueda Mdel, C., and Glick, B.R. (2016). Plant growth-promoting bacterial endophytes. Microbiol Res 183, 92-99.
Segata, N., and Huttenhower, C. (2011). Toward an efficient method of identifying core genes for evolutionary and functional microbial phylogenies. PLoS One 6, e24704.
Sekine, M., Ichikawa, T., Kuga, N., Kobayashi, M., Sakurai, A., and Syōno, K. (1988). Detection of the IAA biosynthetic pathway from tryptophan via indole-3-acetamide in Bradyrhizobium spp. Plant Cell Physiol. 29, 867-874.
Sessitsch, A., Hardoim, P., Döring, J., Weilharter, A., Krause, A., Woyke, T., Mitter, B., Hauberg-Lotte, L., Friedrich, F., and Rahalkar, M. (2012). Functional characteristics of an endophyte community colonizing rice roots as revealed by metagenomic analysis. Mol. Plant Microbe Interact. 25, 28-36.
Shannon, C.E. (1948). A mathematical theory of communication. Bell Syst. Tech. J. 27, 379-423.
Shiralipour, A., McConnell, D.B., and Smith, W.H. (1992). Physical and chemical properties of soils as affected by municipal solid waste compost application. Biomass Bioenergy 3, 261-266.
Sikora, L., and Yakovchenko, V. (1996). Soil organic matter mineralization after compost amendment. Soil Sci Soc Am J 60, 1401-1404.
Simpson, E.H. (1949). Measurement of diversity. Nature 163, 688-688.
Snel, B., Bork, P., and Huynen, M.A. (1999). Genome phylogeny based on gene content. Nat. Genet. 21, 108-110.
Sturz, A., and Nowak, J. (2000). Endophytic communities of rhizobacteria and the strategies required to create yield enhancing associations with crops. Appl. Soil Ecol. 15, 183-190.
Sudhakar, P., Chattopadhyay, G., Gangwar, S., and Ghosh, J. (2000). Effect of foliar application of Azotobacter, Azospirillum and Beijerinckia on leaf yield and quality of mulberry (Morus alba). J. Agric. Sci. 134, 227-234.
Trapp, M.A., Kai, M., Mithofer, A., and Rodrigues-Filho, E. (2015). Antibiotic oxylipins from Alternanthera brasiliana and its endophytic bacteria. Phytochemistry 110, 72-82.
Ul Hassan, T., and Bano, A. (2015). The stimulatory effects of L-tryptophan and plant growth promoting rhizobacteria (PGPR) on soil health and physiology of wheat. J. Soil Sci. Plant Nutr. 15, 190-201.
Van den Berghe, C., and Hue, N. (1999). Liming potential of composts applied to an acid oxisol in Burundi. Compost Sci. Util. 7, 40-46.
van der Heijden, M.G., and Hartmann, M. (2016). Networking in the plant microbiome. PLoS Biol. 14, e1002378.
Vessey, J.K. (2003). Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255, 571-586.
Walters, W.A., Jin, Z., Youngblut, N., Wallace, J.G., Sutter, J., Zhang, W., González-Peña, A., Peiffer, J., Koren, O., and Shi, Q. (2018). Large-scale replicated field study of maize rhizosphere identifies heritable microbes. Proc Natl Acad Sci India Sect B Biol Sci 115, 7368-7373.
Wang, E., and Martinez-Romero, E. (2000). Sesbania herbacea–Rhizobium huautlense nodulation in flooded soils and comparative characterization of S. herbacea-nodulating rhizobia in different environments. Microb. Ecol. 40, 25-32.
Wemheuer, F., Kaiser, K., Karlovsky, P., Daniel, R., Vidal, S., and Wemheuer, B. (2017). Bacterial endophyte communities of three agricultural important grass species differ in their response towards management regimes. Sci. Rep. 7, 40914.
Wemheuer, F., Berkelmann, D., Wemheuer, B., Daniel, R., Vidal, S., and Bisseleua Daghela, H.B. (2020). Agroforestry management systems drive the composition, diversity, and function of fungal and bacterial endophyte communities in Theobroma Cacao leaves. Microorganisms 8, 405.
Winding, A., and Hendriksen, N.B. (1997). Biolog substrate utilisation assay for metabolic fingerprints of soil bacteria: incubation effects. In Insam, Heribert, Rangger, Andrea, Eds, Microbial communities. Springer, New York, NY, pp. 195-205.
Wu, T., Chellemi, D.O., Martin, K.J., Graham, J.H., and Rosskopf, E.N. (2007). Discriminating the effects of agricultural land management practices on soil fungal communities. Soil Biol. Biochem. 39, 1139-1155.
Xia, Y., DeBolt, S., Dreyer, J., Scott, D., and Williams, M.A. (2015). Characterization of culturable bacterial endophytes and their capacity to promote plant growth from plants grown using organic or conventional practices. Front. Plant Sci. 6, 490.
Yaish, M.W., Al-Lawati, A., Jana, G.A., Patankar, H.V., and Glick, B.R. (2016). Impact of soil salinity on the structure of the bacterial endophytic community identified from the roots of caliph medic (Medicago truncatula). PLoS One 11, e0159007.
Yang, J., Kloepper, J.W., and Ryu, C.-M. (2009). Rhizosphere bacteria help plants tolerate abiotic stress. Trends Plant Sci. 14, 1-4.
Yang, Y., Wang, N., Guo, X., Zhang, Y., and Ye, B. (2017). Comparative analysis of bacterial community structure in the rhizosphere of maize by high-throughput pyrosequencing. PLoS One 12, e0178425.
Zaneveld, J.R., Lozupone, C., Gordon, J.I., and Knight, R. (2010). Ribosomal RNA diversity predicts genome diversity in gut bacteria and their relatives. Nucleic Acids Res. 38, 3869-3879.
Zhalnina, K., Louie, K.B., Hao, Z., Mansoori, N., da Rocha, U.N., Shi, S., Cho, H., Karaoz, U., Loque, D., Bowen, B.P., Firestone, M.K., Northen, T.R., and Brodie, E.L. (2018). Dynamic root exudate chemistry and microbial substrate preferences drive patterns in rhizosphere microbial community assembly. Nat. Microbiol. 3, 470-480.
|