跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.81) 您好!臺灣時間:2024/12/15 04:55
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:王玉青
研究生(外文):Yu-Ching Wang
論文名稱:不同規律運動族群於單次最大運動後血壓、血管硬度與血流動力學反應之差異研究
論文名稱(外文):The Comparison of Blood Pressure, Arterial Stiffness and Hemodynamics Indices Following an Acute Maximal Exercise between Groups of Different Exercise Habits
指導教授:林信甫林信甫引用關係
口試委員:林亮宇鄭浩民
口試日期:2020-04-14
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:運動設施與健康管理碩士學位學程
學門:民生學門
學類:運動休閒及休閒管理學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:49
中文關鍵詞:血流動力學規律運動阻力訓練運動後低血壓最大運動
外文關鍵詞:hemodynamicshabitual exerciseresistance trainingpost-exercise hypotensionmaximal exercise
DOI:10.6342/NTU202000840
相關次數:
  • 被引用被引用:1
  • 點閱點閱:247
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
背景:運動常作為血壓調控的非侵入式治療之一,相較於有氧運動長期被證實能夠改善心血管系統,過去研究指出阻力運動卻可能會對心血管系統帶來負面效應。運動前血壓值是運動後低血壓反應 (post-exercise hypotension, PEH) 中重要的調節因子 (moderator),顯示規律運動習慣造成的心血管安靜值差異,可能使運動後心血管反應有所差異。目的:探討不同規律運動習慣的族群進行最大腳踏車運動後,血壓及血流動力學各項指標的變化;並分析運動習慣的不同,是否造成最大運動引起之運動後低血壓反應會有所差異。方法:以橫斷式研究設計,共招募71位年齡介於20至40歲之健康成年人,依運動習慣分為無規律運動組 (N=33)、有氧訓練組 (N=17)、阻力訓練組 (N=21),進行腳踏車最大運動測試,並於運動前、運動後5分鐘、運動後15分鐘及30分鐘,進行血壓及橈、頸動脈波形測量。結果:阻力訓練組之安靜bSBP、cZc、cPf及rXSPI顯著高於其他兩組 (p< .05)。運動後任一時間點之bSBP與baPWV、cPf、rPeak_Pr、rRPI及rXSPI都呈中度相關 (r皆大於.3)。結論:長期規律阻力訓練確實可能使動脈硬度上升,且使部分血流動力學指標於最大運動後之反應有顯著差異。另外,動脈波形分析之水庫理論,與運動後血壓變化之相關性較高,顯示以水庫理論較能解釋運動後心血管變化情形。
Background: Exercise has been one of the non-invasive treatments for blood pressure regulation. Compared with aerobic exercise which has been proven to improve the cardiovascular function, resistance training may have an adverse impact on cardiovascular system. Pre-exercise blood pressure is an important moderator of post-exercise hypotension. It shows that different BP status, caused by different exercise habits, may bring differences in arterial responses after exercise. Purpose: To evaluate blood pressure, arterial stiffness, and hemodynamics following a maximal aerobic exercise test between groups having different exercise habits. Also, to investigate whether the difference of exercise habits would cause post-exercise hypotension variation after maximal aerobic exercise. Methods: We did a cross-sectional study in 71 healthy adults (aged 20-40 years) with different exercise habits, including the non-exercisers (NE, N = 33), regular aerobic trainers (RAT, N = 17) and regular resistance trainers (RRT, N = 21). Participants underwent an acute bout of graded maximal aerobic exercise. Blood pressure (BP), arterial stiffness, and arterial hemodynamics were measured at baseline, 5-, 15- and 30-min after exercise. Results: RRT group had significantly higher resting bSBP, cZc, cPf and rXSPI than the other groups (p < .05). baPWV, cPf, rPeak_Pr, rRPI and rXSPI showed a moderate correlation with bSBP any time after exercise (r > .3). Conclusion: Regularly engaging in RRT exercise has positive association with higher arterial stiffness. And it does show some differences in arterial hemodynamics responses after exercise between NE, RAT and RRT groups. Overall indices derived from arterial reservoir hemodynamics correlated better with the PEH compared to traditional wave reflection theory. Our research provides evidences supporting that arterial reservoir hemodynamics has proposed a more reasonable explanation for the observed BP changes after exercise.
口試委員會審定書 i
中文摘要 ii
Abstract iii
目錄 v
圖目錄 vii
表目錄 viii
第一章 緒論 1
第一節 問題背景 1
第二節 研究目的 6
第三節 研究假設 6
第二章 研究方法 7
第一節 實驗對象 7
第二節 實驗流程 9
第三節 實驗測量方法 10
第四節 統計方法 13
第三章 研究結果 14
第一節 受試者生理基本特徵 14
第二節 血壓及脈波傳導速率相關變化 14
第三節 動脈波形分析相關變化 17
第四節 皮爾森積差相關分析及多元羅吉斯迴歸分析 20
第四章 討論 22
第一節 最大運動後的生理變化 22
第二節 運動後血壓變化在各組間的差異 23
第三節 動脈硬度指標於運動後的變化 24
第四節 有無運動後低血壓者之運動後變化 30
第五節 相關性及迴歸分析 31
第五章 結論 32
第一節 結論 32
第二節 研究限制 32
第三節 未來研究建議 33
參考文獻 34
附錄一 IPAQ台灣活動量調查短版問卷 41
附錄二 45
附錄三 46
附錄四 47
一、中文文獻
王建楠, & 李璧伊. (2015). 缺乏身體活動之不良健康效應: 系統性回顧及統合分析. 中華職業醫學雜誌, 22(1), 9-19.
卓俊辰. (1990). 從運動生理學到預防醫學. 中華體育季刊, 3(4), 35-39. doi:10.6223/qcpe.0304.199003.2107
二、英文文獻
Ashor, A. W., Lara, J., Siervo, M., Celis-Morales, C., & Mathers, J. C. (2014). Effects of exercise modalities on arterial stiffness and wave reflection: a systematic review and meta-analysis of randomized controlled trials. PLoS One, 9(10), e110034. doi:10.1371/journal.pone.0110034
Atkinson, G., Cable, N. T., & George, K. (2005). The relationship between baseline blood pressure and magnitude of postexercise hypotension. Journal of Hypertension, 23(6), 1272-1273. doi:10.1097/01.hjh.0000170393.99697.7d
Baksi, A. J., Treibel, T. A., Davies, J. E., Hadjiloizou, N., Foale, R. A., Parker, K. H., . . . Hughes, A. D. (2009). A meta-analysis of the mechanism of blood pressure change with aging. Journal of the American College of Cardiology, 54(22), 2087-2092. doi:10.1016/j.jacc.2009.06.049
Bertovic, D. A., Waddell, T. K., Gatzka, C. D., Cameron, J. D., Dart, A. M., & Kingwell, B. A. (1999). Muscular strength training is associated with low arterial compliance and high pulse pressure. Hypertension, 33(6), 1385-1391. doi:10.1161/01.HYP.33.6.1385
Brown, M. J. (1999). Similarities and differences between augmentation index and pulse wave velocity in the assessment of arterial stiffness. QJM: An International Journal of Medicine, 92(10), 595-600. doi:10.1093/qjmed/92.10.595
Bunsawat, K., Ranadive, S. M., Lane‐Cordova, A. D., Yan, H., Kappus, R. M., Fernhall, B., & Baynard, T. (2017). The effect of acute maximal exercise on postexercise hemodynamics and central arterial stiffness in obese and normal‐weight individuals. Physiological Reports, 5(7), e13226. doi:10.14814/phy2.13226
Carpio-Rivera, E., Moncada-Jiménez, J., Salazar-Rojas, W., & Solera-Herrera, A. (2016). Acute effects of exercise on blood pressure: a meta-analytic investigation. Arquivos Brasileiros de Cardiologia, 106(5), 422-433. doi:10.5935/abc.20160064
Caspersen, C. J. (1989). Physical activity epidemiology: concepts, methods, and applications to exercise science. Exercise and Sport Sciences Reviews, 17(1), 423-473.
Cecelja, M., Jiang, B., McNeill, K., Kato, B., Ritter, J., Spector, T., & Chowienczyk, P. (2009). Increased wave reflection rather than central arterial stiffness is the main determinant of raised pulse pressure in women and relates to mismatch in arterial dimensions: a twin study. Journal of the American College of Cardiology, 54(8), 695-703.
Cheng, H. M., Chuang, S. Y., Wang, J., Jr., Shih, Y. T., Wang, H. N., Huang, C. J., . . . Chen, C. H. (2016). Prognostic significance of mechanical biomarkers derived from pulse wave analysis for predicting long-term cardiovascular mortality in two population-based cohorts. International Journal of Cardiology, 215, 388-395. doi:10.1016/j.ijcard.2016.04.070
Climie, R. E., Srikanth, V., Beare, R., Keith, L. J., Fell, J., Davies, J. E., & Sharman, J. E. (2014). Aortic reservoir characteristics and brain structure in people with type 2 diabetes mellitus; a cross sectional study. Cardiovascular Diabetology, 13(1), 143.
Cortez-Cooper, M. Y., DeVan, A. E., Anton, M. M., Farrar, R. P., Beckwith, K. A., Todd, J. S., & Tanaka, H. (2005). Effects of high intensity resistance training on arterial stiffness and wave reflection in women. American Journal of Hypertension, 18(7), 930-934. doi:10.1016/j.amjhyper.2005.01.008
Cote, A. T., Bredin, S. S., Phillips, A. A., Koehle, M. S., & Warburton, D. E. (2015). Greater autonomic modulation during post-exercise hypotension following high-intensity interval exercise in endurance-trained men and women. European Journal of Applied Physiology, 115(1), 81-89. doi:10.1007/s00421-014-2996-5
Davies, J. E., Baksi, J., Francis, D. P., Hadjiloizou, N., Whinnett, Z. I., Manisty, C. H., . . . Hughes, A. D. (2010). The arterial reservoir pressure increases with aging and is the major determinant of the aortic augmentation index. American Journal of Physiology-Heart and Circulatory Physiology, 298(2), H580-H586. doi:10.1152/ajpheart.00875.2009
DeVan, A. E., Anton, M. M., Cook, J. N., Neidre, D. B., Cortez-Cooper, M. Y., & Tanaka, H. (2005). Acute effects of resistance exercise on arterial compliance. Journal of Applied Physiology, 98(6), 2287-2291. doi:10.1152/japplphysiol.00002.2005
Dujic, Ž., Ivancev, V., Valic Z., Bakovic, D., Marinovic-Terzic, I., Eterovic, D., & Wisloff, U. (2006). Postexercise hypotension in moderately trained athletes after maximal exercise. Medicine & Science in Sports & Exercise, 38(2), 318-322.
Edwards, D. G., & Lang, J. T. (2005). Augmentation index and systolic load are lower in competitive endurance athletes. American Journal of Hypertension, 18(5), 679-683. doi:10.1016/j.amjhyper.2004.11.028
Fagard, R. H., & Cornelissen, V. A. (2007). Effect of exercise on blood pressure control in hypertensive patients. European Journal of Cardiovascular Prevention & Rehabilitation, 14(1), 12-17. doi:10.1097/HJR.0b013e3280128bbb
Fecchio, R. Y., de Brito, L. C., Peçanha, T., & de Moraes Forjaz, C. L. (2020). Post-exercise hypotension and its hemodynamic determinants depend on the calculation approach. Journal of Human Hypertension, 1-8.
Figueroa, A., Vicil, F., & Sanchez-Gonzalez, M. A. (2011). Acute exercise with whole-body vibration decreases wave reflection and leg arterial stiffness. American Journal of Cardiovascular Disease, 1(1), 60.
Fitzgerald, W. (1981). Labile hypertension and jogging: New diagnostic tool or spurious discovery? British Medical Journal (Clinical Research Ed.), 282(6263), 542-544. doi:10.1136/bmj.282.6263.542
Heffernan, K. S., Edwards, D. G., Rossow, L., Jae, S. Y., & Fernhall, B. (2007). External mechanical compression reduces regional arterial stiffness. European Journal of Applied Physiology, 101(6), 735-741. doi:10.1007/s00421-007-0550-4
Heffernan, K. S., Jae, S. Y., Echols, G. H., Lepine, N. R., & Fernhall, B. O. (2007). Arterial stiffness and wave reflection following exercise in resistance-trained men. Medicine & Science in Sports & Exercise, 39(5), 842-848. doi:10.1249/mss.0b013e318031b03c
Heffernan, K. S., Yoon, E. S., Sharman, J. E., Davies, J. E., Shih, Y. T., Chen, C. H., & Jae, S. Y. (2013). Resistance exercise training reduces arterial reservoir pressure in older adults with prehypertension and hypertension. Hypertension Research, 36(5), 422. doi:10.1038/hr.2012.198
Isea, J. E., Piepoli, M., Adamopoulos, S., Pannarale, G., Sleight, P., & Coats, A. J. S. (1994). Time course of haemodynamic changes after maximal exercise. European Journal of Clinical Investigation, 24(12), 824-829.
Kaltreider, N. L., & Meneely, G. R. (1940). The effect of exercise on the volume of the blood. The Journal of Clinical Investigation, 19(4), 627-634.
Kum, F., & Karalliedde, J. (2010). Critical appraisal of the differential effects of antihypertensive agents on arterial stiffness. Integrated Blood Pressure Control, 3, 63.
Lieber, A., Millasseau, S., Bourhis, L., Blacher, J., Protogerou, A., Levy, B. I., & Safar, M. E. (2010). Aortic wave reflection in women and men. American Journal of Physiology-Heart and Circulatory Physiology, 299(1), 236-242. doi:10. 1152/ajpheart.00985.2009
MacDonald, J. R. (2002). Potential causes, mechanisms, and implications of post exercise hypotension. Journal of Human Hypertension, 16(4), 225. doi:10.1038/sj.jhh.1001377
Mérillon, J. P., Ennezat, P. V., Guiomard, A., Masquet-Gourgon, C., Aumont, M. C., & Gourgon, R. (2014). Left ventricular performance is closely related to the physical properties of the arterial system: Landmark clinical investigations in the 1970s and 1980s. Archives of Cardiovascular Diseases, 107(10), 554-562. doi:10.1016/j.acvd.2014.08.001
Miyachi, M. (2013). Effects of resistance training on arterial stiffness: a meta-analysis. British Journal of Sports Medicine, 47(6), 393-396. doi:10.1136/bjsports-2012-090488
Miyachi, M., Kawano, H., Sugawara, J., Takahashi, K., Hayashi, K., Yamazaki, K., & Tanaka, H. (2004). Unfavorable effects of resistance training on central arterial compliance: a randomized intervention study. Circulation, 110(18), 2858-2863. doi:10.1161/01.CIR.0000146380.08401.99
Munir, S. M., Jiang, B., Guilcher, A., Brett, S., Redwood, S., Marber, M. S., & Chowienczyk, P. (2008). Exercise reduces arterial pressure augmentation through vasodilation of muscular arteries in humans. American Journal of Physiology-Heart and Circulatory Physiology., 294(4), H1645-H1650. doi:10.1152/ajpheart.01171.2007
Murgo, J. P., Westerhof, N., Giolma, J. P., & Altobelli, S. A. (1981). Effects of exercise on aortic input impedance and pressure wave forms in normal humans. Circulation Research, 48(3), 334-343. doi:10.1161/01.RES.48.3.334
Nichols, W. W. (2005). Clinical measurement of arterial stiffness obtained from noninvasive pressure waveforms. American Journal of Hypertension, 18(S1), 3S-10S. doi:10.1016/j.amjhyper.2004.10.009
Nichols, W. W., Denardo, S. J., Wilkinson, I. B., McEniery, C. M., Cockcroft, J., & O'Rourke, M. F. (2008). Effects of arterial stiffness, pulse wave velocity, and wave reflections on the central aortic pressure waveform. The Journal of Clinical Hypertension, 10(4), 295-303. doi:10.1111/j.1751-7176.2008.04746.x
Nieman, D., Dew, D., & Krasen, P. (2013). Gender difference in the acute influence of a 2-hour run on arterial stiffness in trained runners. Research in Sports Medicine, 21(1), 66-77. doi:10.1080/15438627.2012.738445
O'Rourke, M. F., Pauca, A., & Jiang, X. J. (2001). Pulse wave analysis. British Journal of Clinical Pharmacology, 51(6), 507-522. doi:10.1046/j.0306-5251.2001.01400.x
Parker, K. H., Alastruey, J., & Stan, G. B. (2012). Arterial reservoir excess pressure and ventricular work. Medical & Biological Engineering & Computing, 50(4), 419-424. doi:10.1007/s11517-012-0872-1
Parks, J. C., Marshall, E. M., Tai, Y. L., & Kingsley, J. D. (2019). Free-weight versus weight machine resistance exercise on pulse wave reflection and aortic stiffness in resistance-trained individuals. European Journal of Sport Science, 1-9. doi:10.1080/17461391.2019.1685007
Peres, D., Mourot, L., Ménétrier, A., Bouhaddi, M., Degano, B., Regnard, J., & Tordi, N. (2018). Intermittent versus constant aerobic exercise in middle-aged males: Acute effects on arterial stiffness and factors influencing the changes. European Journal of Applied Physiolog, 118, 1625-1633. doi:doi.org/10.1007/s00421-018-3893-0
Pescatello, L. S., Franklin, B. A., Fagard, R., Farquhar, W. B., Kelley, G. A., & Ray, C. A. (2004). Exercise and hypertension. Medicine & Science in Sports & Exercise, 36(3), 533-553. doi:10.1249/01.MSS.0000115224.88514.3A
Pescatello, L. S., & Kulikowich, J. M. (2001). The aftereffects of dynamic exercise on ambulatory blood pressure. Medicine & Science in Sports & Exercise, 33(11), 1855-1861.
Pescatello, L. S., Riebe, D., & Thompson, P. D. (2014). ACSM's guidelines for exercise testing and prescription: Lippincott Williams & Wilkins.
Piepoli, M., Coats, A. J., Adamopoulos, S., Bernardi, L., Feng, Y. H., Conway, J., & Sleight, P. (1993). Persistent peripheral vasodilation and sympathetic activity in hypotension after maximal exercise. Journal of Applied Physiology, 75(4), 1807-1814. doi:10.1152/jappl.1993.75.4.1807
Schroeder, E. C., Ranadive, S. M., Yan, H., Lane-Cordova, A. D., Kappus, R. M., Cook, M. D., & Fernhall, B. (2019). Effect of acute maximal exercise on vasodilatory function and arterial stiffness in African-American and white adults. Journal of Hypertension, 37(6), 1262-1268. doi:10.1097/HJH.0000000000002049
Schultz, M. G., Davies, J. E., Roberts-Thomson, P., Black, J. A., Hughes, A. D., & Sharman, J. E. (2013). Exercise central (aortic) blood pressure is predominantly driven by forward traveling waves, not wave reflection. Hypertension, 62(1), 175-182. doi:10.1161/HYPERTENSIONAHA.111.00584
Shadwick, R. E. (1999). Mechanical design in arteries. Journal of Experimental Biology, 202(23), 3305-3313.
Storer, T. W., Davis, J. A., & Caiozzo, V. J. (1990). Accurate prediction of VO2max in cycle ergometry. Medicine & Science in Sports & Exercise, 22(5), 704-712. doi:10.1249/00005768-199010000-00024
Sutton-Tyrrell, K., Najjar, S. S., Boudreau, R. M., Venkitachalam, L., Kupelian, V., Simonsick, E. M., & Pahor, M. (2005). Elevated aortic pulse wave velocity, a marker of arterial stiffness, predicts cardiovascular events in well-functioning older adults. Circulation, 111(25), 3384-3390. doi:10.1161/CIRCULATIONAHA.104.483628
Vlachopoulos, C., O'Rourke, M., & Nichols, W. W. (2011). McDonald's blood flow in arteries: theoretical, experimental and clinical principles: CRC press.
Wang, J. J., O'Brien, A. B., Shrive, N. G., Parker, K. H., & Tyberg, J. V. (2003). Time-domain representation of ventricular-arterial coupling as a windkessel and wave system. American Journal of Physiology-Heart and Circulatory Physiology, 284(4), H1358-H1368. doi:10.1152/ajpheart.00175.2002
Wang, K. L., Cheng, H. M., Sung, S. H., Chuang, S. Y., Li, C. H., Spurgeon Harold, A., . . . Chen, C. H. (2010). Wave reflection and arterial stiffness in the prediction of 15-year all-cause and cardiovascular mortalities: a community-based study. Hypertension, 55(3), 799-805. doi:10.1161/HYPERTENSIONAHA.109.139964
Whelton, S. P., Chin, A., Xin, X., & He, J. (2002). Effect of aerobic exercise on blood pressure: a meta-analysis of randomized, controlled trials. Annals of Internal Medicine, 136(7), 493-503. doi:10.7326/0003-4819-136-7-200204020-00006
Yan, H., Ranadive, S. M., Heffernan, K. S., Lane, A. D., Kappus, R. M., Cook, M. D., . . . Fernhall, B. (2014). Hemodynamic and arterial stiffness differences between African-Americans and Caucasians after maximal exercise. American Journal of Physiology-Heart and Circulatory Physiology, 306(1), H60-H68. doi:10.1152/ajpheart.00710.2013
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top