( 您好!臺灣時間:2024/04/17 17:01
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::


研究生(外文):Kenrick Chin Kar Han
論文名稱(外文):Study of Solid/ Liquid Interface Effect on P(VDF-TrFE-CTFE)
指導教授(外文):Chih-Ting Lin
口試委員(外文):Jay ShiehChia-Hao Wu
外文關鍵詞:P(VDF-TrFE-CTFE)electrochemical charging effecthysteresis phenomenonreaction sites
  • 被引用被引用:0
  • 點閱點閱:146
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
定點照護檢驗系統(POCT)是下一代醫療保健系統的未來趨勢之一。因此,為定點照護檢驗系統開發的感測器應具有低成本,快速,方便使用,可攜帶和易於製造的特點。由於可攜帶和方便使用的目的,可繞式電化學感測器已經成為一個受矚目的發展方向。 在可繞式電化學感測器發展的各個方面中,固/液介面是其中一個應該著重探討的特性。為了探索固/液介面特性,本研究中使用了基於聚偏氟乙烯-三氟乙烯-三氟氯乙烯P(VDF-TrFE-CTFE)的電解質-絕緣體-半導體結構。實驗結果表明,P(VDF-TrFE-CTFE)EIS感測器存在漂移和磁滯現象,pH響應信號已被漂移反應所覆蓋。漂移和磁滯現象可歸因於電化學充電效應。 這可以解釋為當感測器與溶液接觸時,P(VDF-TrFE-CTFE)反應區與溶液中的陽離子進行質子化反應。此外,我們還研究了暴露時間,陽離子類型,離子濃度對磁滯現象的影響。 基於這項研究,評估材料反應區處於固/液介面狀態下的特性對於感測器應用上尤為重要。
Point-of-Care Testing (POCT) is one of the future trends in the next-generation healthcare system. Therefore, sensors developed for POCT should have characteristics of low-cost, rapid, user-friendly, portable and ease of fabrication. Due to the portable and user-friendly purposes, the flexible electrochemical sensor has become an interesting direction. In various aspects flexible electrochemical sensor development, solid/liquid interfaces are one of the important characteristics to be understood. To explore the solid/liquid interfaces in this study, P(VDF-TrFE-CTFE) based Electrolyte-Insulator-Semiconductor structure is used. The experiment results show that the P(VDF-TrFE-CTFE) EIS sensor existing drift and hysteresis phenomenon and the pH response signal has been covered by the drift. The drift and hysteresis phenomenon may be attributed to the electrochemical charging effect. This can be explained as the P(VDF-TrFE-CTFE) reaction sites having protonation by reacting with the cations in the exposure solution. In addition, we also investigated the exposed time, cation type, ion concentration effects on the hysteresis phenomenon. Based on this work, it is important to evaluate the material reaction-site characteristics at the solid/solution interface for sensor applications.
Abstract I
摘要 II
List of Figures V
List of Tables IX
Chapter 1 Introduction 1
1.1 Background 1
1.2 Point of Care Testing (POCT) 1
1.3 Electrochemical Sensor 2
1.4 Electrochemical Sensor Type 2
1.5 Motivation & Objective 3
1.6 Organization of the thesis 5
Chapter 2 Material & Theory Introduction 6
2.1 Ferroelectric Materials 6
2.1.1 Polymeric Ferroelectrics 6
2.2 Metal-Oxide-Semiconductor structure (MOS) 7
2.2.1 Electrolyte-Insulator-Semiconductor structure (EIS) 11
2.3 Electrical Double Layer (EDL) 12
2.4 Site-Binding Theory 15
2.4.1 Nernstian & Non-Nernstian Response 18
Chapter 3 Experiment Method 19
3.1 P(VDF-TrFE-CTFE) Solution Preparation 19
3.1.1 Materials 19
3.1.2 P(VDF-TrFE-CTFE) Solution Preparation 19
3.2 P(VDF-TrFE-CTFE) EIS Structure Sensor Fabrication 20
3.2.1 Wafer Cleaning 20
3.2.2 P(VDF-TrFE-CTFE) Sensing Membrane Deposition 21
3.2.3 Aluminium Back Contact Deposition 22
3.2.4 Sensing area Definition & Printed Circuit Board (PCB) bonding 23
3.3 P(VDF-TrFE-CTFE) Insulator-Metal Structure Fabrication 23
3.3.1 Wafer Cleaning 24
3.3.2 Metal Deposition 24
3.3.3 P(VDF-TrFE-CTFE) Membrane Deposition 24
3.4 Analyte Solution 25
3.5 Measurement Setup 26
3.5.1 Capacitance-Voltage (C-V) Measurement Setup 26
3.5.2 Surface Morphology Measurement Setup 27
Chapter 4 Results and Discussion 28
4.1 P(VDF-TrFE-CTFE) EIS Sensor pH response 28
4.2 P(VDF-TrFE-CTFE) EIS Sensor DI water & NaCl solution response 31
4.3 P(VDF-TrFE-CTFE) EIS Sensor Time-dependent Hysteresis Phenomenon 34
4.4 P(VDF-TrFE-CTFE) Thin Film Surface Morphology 44
4.5 P(VDF-TrFE-CTFE) Thin Film Surface Potential 46
Chapter 5 Conclusion 49
Reference 51
1. Hui Chen, Kengku Liu, Zhao Li, Ping Wang, Point of care testing for infectious diseases, Clinica Chimica Acta, Vol. 493, p. 138-147, 2019.
2. Sandeep Kumar Vashist, Point-of-Care Diagnostics: Recent Advances and Trends. Biosensors, 7(4), p. 62, 2017.
3. Jung, W., Han, J., Choi, J.-W., & Ahn, C. H., Point-of-care testing (POCT) diagnostic systems using microfluidic lab-on-a-chip technologies. Microelectronic Engineering, 132, p. 46–57, 2015.
4. Luisa Torsi, Maria Magliulo, Kyriaki Manoli, and Gerardo Palazzo. Organic field-effect transistor sensors: a tutorial review. Chem. Soc. Rev., 42, 8612, 2013.
5. Agnieszka A.Zuber, Elizaveta Klantsataya, Akash Bachhuka, Comprehensive Nanoscience and Nanotechnology (Second Edition) Vol. 3, p. 105-126, 2019.
6. Michael J. Schöning, “Playing around” with Field-Effect Sensors on the Basis of EIS Structures, LAPS, and ISFETs, Sensors, Vol. 5, p. 126-138, 2005.
7. P. Bergveld, Development of an Ion-Sensitive Solid-State Device for Neurophysiological Measurements, IEEE Trans. Biomed. Eng., Vol. 17, p. 70, 1970.
8. L. Bousse, S. Mostarshed, B. van der Schoot, and N. F. de Rooij, Comparison of the hysteresis of Ta2O5 and Si3N4 pH-sensing insulators, Sens. Actuators B, Vol. 17, p. 157, 1994.
9. V. Jankovic and J. P. Chang, HfO2 and ZrO2–Based Microchemical Ion Sensitive Field Effect Transistor (ISFET) Sensors: Simulation & Experiment, J. Electrochem. Soc., Vol. 158, p. 115, 2011.
10. J. C. Chou and L. P. Liao, Study on pH at the point of zero charges of TiO2 pH ion-sensitive field-effect transistor made by the sputtering method, Thin Solid Films, Vol. 476, p. 157, 2005.
11. Wang, S., Chinnasamy, T., Lifson, M. A., Inci, F., & Demirci, U., Flexible Substrate-Based Devices for Point-of-Care Diagnostics. Trends in Biotechnology, 34(11), p. 909–921, 2016.
12. S. Kasap, P. Capper (Eds.), Springer Handbook of Electronic and Photonic Materials, p. 597-616, DOI 10.1007/978-3-319-48933-9_26
13. Heiji Kawai, The Piezoelectricity of Poly (vinylidene Fluoride). Japanese Journal of Applied Physics, 8(7), 975–976, 1969.
14. Lando, J.B.; Doll, W.W. The polymorphism of poly(vinylidene fluoride). I. The effect of head-to-head structure. J. Macromol. Sci. B, Vol. 2, p. 205–218, 1968.
15. Ueberschlag, P. PVDF piezoelectric polymer, Sensor Review, Vol. 21 No. 2, p. 118-126, 2001.
16. Vanessa F. Cardoso, Daniela M. Correia, Clarisse Ribeiro, Margarida M. Fernandes and Senentxu Lanceros-Méndez, Fluorinated Polymers as Smart Materials for Advanced Biomedical Applications, Polymers, Vol. 10, p. 161, 2018.
17. Poghossian, A.; Schöning, M.J., Silicon-based chemical and biological field-effect sensors, in Encyclopedia of Sensors, Vol. 9, p. 463-733, 2006.
18. Maryam Hadji Abouzar, Detection of molecular interactions using field-effect-based capacitive devices, Humboldt University of Berlin, Berlin, Germany, 2011.
19. Sze, S.M., Physics of Semiconductor Devices, Wiley, New York, p. 197-213, 1981.
20. Blackburn, G.F., Biosensors: Fundamentals and Applications, Oxford University Press, Oxford, 1987.
21. B. E. Deal, Standardized terminology for oxide charges associated with thermally oxidized silicon, IEEE Transactions on Electron Devices, Vol. 27, no. 3, p. 606 - 608, 1980.
22. Bergveld P.; Sibbald, A., Analytical and Biomedical Applications of Ion-Selective Field-Effect Transistors, Elsevier, Amsterdam, 1988.
23. Grattarola, M.; Massobrio, G., Bioelectronics Handbook: MOSFETs, Biosensors and Neurons, McGraw-Hill, New York, 1998.
24. Bergveld, P., Thirty years of ISFETOLOGY: What happened in the past 30 years and what may happen in the next 30 years, Sens. Actuators B Vol. 88, p. 1-20, 2003.
25. Zhang, L. L., & Zhao, X. S. Carbon-based materials as supercapacitor electrodes. Chemical Society Reviews, 38(9), 2520, 2009.
26. Wang, Moran & Chen, Shiyi. On applicability of Poisson-Boltzmann equation for micro- and nanoscale electroosmotic flows. COMMUNICATIONS IN COMPUTATIONAL PHYSICS. Vol. 3, p. 1087-1099, 2008.
27. Tung-Ming Pan and Chia-Ying Tan, Influence of praseodymium content and postdeposition annealing on the structural and sensing characteristics of PrTixOy sensing films using the sol-gel spin-coating method, J. Mater. Chem. C, Vol. 4, p. 7436, 2016.
28. Jayant Krishna & Auluck, Kshitij & Funke, Mary & Anwar, Sharlin & Phelps, Joshua & Gordon, Philip & Rajwade, Shantanu & Kan, Edwin. Programmable ion-sensitive transistor interfaces. I. Electrochemical gating. Physical review. E, Statistical, nonlinear, and soft matter physics. 88. 012801. 10.1103/PhysRevE.88.012801, 2013.
29. Yusof, Khairul & Rahman, Rohanieza & Zulkefle, Muhammad & Herman, Sukreen & Abdullah, Wan Fazlida Hanim. EGFET pH Sensor Performance Dependence on Sputtered TiO2 Sensing Membrane Deposition Temperature. Journal of Sensors, 1-9. 10.1155/2016/7594531, 2016.
30. Liao, H.-K., Chi, L.-L., Chou, J.-C., Chung, W.-Y., Sun, T.-P., & Hsiung, S.-K. Study on pHpzc and surface potential of tin oxide gate ISFET. Materials Chemistry and Physics, 59(1), p. 6–11, 1999.
31. L. Bousse, N. F. De Rooij and P. Bergveld, Operation of chemically sensitive field-effect sensors as a function of the insulator-electrolyte interface, in IEEE Transactions on Electron Devices, Vol. 30, no. 10, p. 1263-1270, Oct. 1983.
32. 謝瀚萱, 發展鐿鈦氧化層EIS的生物感測器應用於基因突變檢測, 長庚大學電子工程學系, 2016.
33. D. E. Yates, S. Levine, and T. W. Healy, Site-binding model of the electrical double layer at the oxide/water interface, J. Chem. SOC. Faraday Trans., Vol. 70, p. 1807-1818, Nov. 1974.
34. J. A. Davis, R. 0. James, and J. 0. Leckie, Surface ionization and complexation at the oxide/water interface, J. Colloid Interface Sci., vol. 63, p. 480-499, Mar. 1978.
35. J. Westall and H. Hohl, A comparison of electrostatic models for the oxide/solution interface, Adv. Colloid Interface Sci., Vol. 12, p. 265-294, 1980.
36. T. W. Healy and L. R. White, Ionizable ‘surface group models of aqueous interfaces, Adv. Colloid Interface Sci., Vol. 9, p. 303-345, 1978.
37. W. Smit and C.L.M. Holten, Zeta-potential and radiotracer adsorption measurements on EFG a-A1203 Single Crystals in NaBr solutions, J. Colloid Interface Sci., Vol. 78, p. 1-14, 1980.
38. K. Dousma, A colloidal chemical study of the formation of iron oxyhydroxide, Ph.D. dissertation, Rijksuniversiteit te Utrecht, Utrecht, 1979.
39. Hazarika, Chinmayee & Sharma, Santanu, Survey on Ion Sensitive Field Effect Transistor from the View Point of pH Sensitivity and Drift. Indian Journal of Science and Technology. Vol. 10, p. 1-18, 2017.
40. B. I. Shklovskii, Screening of a macroion by multivalent ions: Correlation-induced inversion of charge, Phys. Rev. E, Vol. 60, p. 5802, 1999.
41. Frank H. J. van der Heyden, Derek Stein, Koen Besteman, Serge G. Lemay, and Cees Dekker, Charge Inversion at High Ionic Strength Studied by Streaming Currents, Phys. Rev. Lett.96, 224502, 2006.
42. Hansvan den Vlekkert, Luc Bousse, Nico de Rooij, The temperature dependence of the surface potential at the Al2O3/electrolyte interface, Journal of Colloid and Interface Science, Vol. 122, Issue 2, p. 336-345, 1988.
43. A.van den Berg, P.Bergveld, D.N.Reinhoudt, E.J.Sudhölter, Sensitivity control of ISFETs by chemical surface modification, Sensors and Actuators, Vol. 8, Issue 2, p. 129-148, 1985.
44. Massobrio G, Martinoia S, Grattarola M. Use of SPICE for modeling silicon-based chemical sensors. Sensors and Materials. 6(2):p. 101–23, 1994.
45. Bergveld P. Thirty years of ISFETOLOGY: What happened in the past 30 years and what may happen in the next 30 years, Sensors and Actuators B: Chemical, 88(1):p. 1–20, 2003.
46. Van Hal RE, Eijkel JC, Bergveld P. A general model to describe the electrostatic potential at electrolyte oxide interfaces. Advances in Colloid and Interface Science, 69(1-3):p. 31–62, 1996.
47. Chun-Lin Hou and Joseph Ya-min Lee, "The capacitance-voltage characteristics of metal-ferroelectric-insulator-silicon structures for non-volatile memory applications," 12th International Conference on Semiconducting and Insulating Materials, 2002. SIMC-XII-2002., Smolenice Castle, Slovakia, p. 181-184, 2002.
48. Nicollian, E. H., Berglund, C. N., Schmidt, P. F., & Andrews, J. M., Electrochemical Charging of Thermal SiO2 Films by Injected Electron Currents. Journal of Applied Physics, 42(13), p. 5654–5664. 1971.
49. Alexey Tarasov, Mathias Wipf, Ralph L. Stoop, Kristine Bedner, Wangyang Fu, Vitaliy A. Guzenko, Oren Knopfmacher, Michel Calame, Christian Schönenberger, Understanding the Electrolyte Background for Biochemical Sensing with Ion-Sensitive Field-Effect Transistors, ACS Nano 6 (10), p. 9291-9298, 2012
50. Lei Wang, Rui Miao, Xudong Wang, Yongtao Lv, Xiaorong Meng, Yongzhe Yang, Danxi Huang, Ling Feng, Ziwen Liu, and Kai Ju, Fouling Behavior of Typical Organic Foulants in Polyvinylidene Fluoride Ultrafiltration Membranes: Characterization from Microforces, Environmental Science & Technology, 47 (8), p. 3708-3714, 2013.
51. Xudong Wang, Miao Zhou, Xiaorong Meng, Lei Wang, Danxi Huang, Effect of protein on PVDF ultrafiltration membrane fouling behavior under different pH conditions: interface adhesion force and XDLVO theory analysis, Front. Environ. Sci. Eng, 2016.
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
第一頁 上一頁 下一頁 最後一頁 top