跳到主要內容

臺灣博碩士論文加值系統

(44.201.92.114) 您好!臺灣時間:2023/03/31 12:16
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李允斌
研究生(外文):Yun-Pin Lee
論文名稱:在CMOS製程之應用於5G通訊之低功率與高線性度、高解析度Ka頻段切換式功率偵測系統
論文名稱(外文):Low Power, High Linearity and High Resolution Ka-band Switchable Power Detectors in CMOS Process for 5G Communication
指導教授:盧信嘉
指導教授(外文):Hsin-Chia Lu
口試委員:楊濠瞬張譽騰蔡政翰
口試委員(外文):Hao-Shun YangYu-Teng ChangJeng-Han Tsai
口試日期:2020-07-27
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:電子工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:124
中文關鍵詞:毫米波第五代通訊系統Ka 頻段功率偵測系統電流再利用技術可切換式變壓器開關控制史密特觸發器數位可變增益放大器
外文關鍵詞:millimeter wavefifth generation communication systemKa bandpower detector systemcurrent-reuse technologyswitchable transformerswitch controlSchmitt triggerdigital variable gain amplifier
DOI:10.6342/NTU202003301
相關次數:
  • 被引用被引用:0
  • 點閱點閱:166
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文主要研究行動通訊毫米波頻段的功率偵測系統,操作頻率為Ka頻段,以28 GHz作為系統的中心頻率,符合毫米波第五代通訊系統,應用於多輸入多輸出陣列天線的校正上,本論文將會提出兩顆晶片分別為低功耗功率偵測系統以及自動功率偵測系統,為了增加功率偵測系統的動態範圍,晶片中使用可切換變壓器與數位可變增益放大器架構使功率偵測系統有四種不同的轉移曲線。
本論文第一顆晶片先提出28 GHz低功耗之可切換功率偵測系統,使用TSMC 90 nm CMOS製程實現,設計過程中加入了電流再利用技術與雙變壓器耦合使放大器能於低功耗時產生足夠的增益,並採用可切換式變壓器,透過開關控制轉移曲線平移,提高靈敏度,於28 GHz下量測所得的功率偵測範圍為-42 dBm ~ 6 dBm,動態範圍為48 dB,靈敏度為25 mV/ dB以上,靜態功耗為10.8 mW。
第二顆晶片則提出28 GHz 具高線性度與高解析度自動切換功率偵測系統,使用TSMC 180 nm CMOS製程實現,採用改良史密特觸發器,可依輸入功率自動切換,數位可變增益放大器讓不同模式下的轉移曲線維持相同的線性度,於28 GHz下量測所得的功率偵測範圍為-39 dBm ~ 7 dBm,動態範圍為46 dB,靈敏度為40 mV/ dB以上,靜態直流功耗為36 mW。
最終本論文的晶片達成MIMO天線校正的規格,且能應用於家裡環境的5米距離,並能對陣列天線的波束場型有著更快速的校正,帶來極大的貢獻。
This thesis presents two power detector systems in Ka band with center frequency at 28 GHz. The power detector system will be applied to the calibration of antenna array at the millimeter wave band for fifth-generation communication system. This thesis will propose two chips as low-power power detector system and automatic power detector system. To increase the dynamic range of the detector system, switchable amplifiers and digital variable gain amplifier are used.
The first chip is a 28 GHz low-power switchable power detector system. Current-reuse technology and dual transformer coupling were used to enable the amplifier to generate sufficient gain at low power consumption. The switchable transformer shifts transfer curve through the switch to improve the sensitivity. At 28 GHz, the measured power detection range is from -42 dBm to 6 dBm and the dynamic range is 48 dB, the sensitivity is above 25 mV/dB, and the static DC power consumption is 10.8 mW.
The second chip is a 28 GHz high-linearity and high-resolution automatic switching power detector system, which uses a modified Schmitt trigger to implentment automatic switching. The measured power detection range is from -39 dBm to 7 dBm at 28 GHz, the dynamic range is 46 dB, the sensitivity is above 40 mV/dB, and the static DC power consumption is 36 mW.
Finally, two chips has reached the specifications for MIMO antenna calibration, and can be applied to a distance of 5 meters in the home environment, and it can correct the beam pattern of the array antenna more quickly.
口試委員會審定書 #
誌謝 i
摘要 ii
ABSTRACT iii
CONTENTS iv
LIST OF FIGURE i
LIST OF TABLES vii
Chapter 1 簡介 1
1.1 研究動機 1
1.2 文獻回顧 5
1.2.1 傳統功率偵測器架構 5
1.2.2 毫米波對數功率偵測系統 6
1.2.3 數位可調式增益放大器 7
1.3 論文貢獻 7
1.4 各章節重點介紹 9
Chapter 2 功率偵測器概論 11
2.1 功率偵測電路介紹 11
2.1.1 簡介 11
2.1.2 二極體功率偵測電路 11
2.1.3 外差功率偵測系統 13
2.1.4 串聯線性對數功率偵測系統 14
2.1.5 並聯加法對數功率偵測系統 16
2.2 功率偵測電路的參數介紹 18
2.2.1 轉移曲線(transfer curve) 18
2.2.2 線性度及線性誤差(log error) 19
2.2.3 最低可偵測功率(minimum detectable power) 19
2.2.4 動態範圍(dynamic range) 19
2.2.5 靈敏度(sensitivity) 20
2.3 整流器介紹 20
2.3.1 共源極回授源極退化整流器 20
2.3.2 毫米波共閘極功率偵測器 21
2.4 低功耗放大器介紹 24
2.4.1 變壓器轉導提升技術之共閘極放大器 24
2.4.2 雙重變壓器耦合與電流再利用技術之低雜訊放大器 26
2.5 可變增益放大器介紹 29
2.5.1 偏壓調控增益放大器 29
2.5.2 N型電導向可變增益放大器 30
2.5.3 數位控制可變增益放大器 32
2.6 比較器介紹 35
2.6.1 施密特觸發器 35
2.6.2 改良過後的施密特觸發器 37
Chapter 3 28 GHz低功耗之可切換功率偵測系統 39
3.1 簡介 39
3.2 設計流程 39
3.3 規格制訂 40
3.4 電路架構 41
3.5 毫米波共閘極功率偵測器 44
3.6 低功耗放大器與可切換式變壓器 48
3.7 電路佈局 56
3.8 整體電路模擬結果 57
3.9 特性比較 63
Chapter 4 28 GHz具高線性度與高解析度自動切換功率偵測系統 64
4.1 簡介 64
4.2 設計流程 64
4.3 規格制訂 65
4.4 電路架構 66
4.5 毫米波共閘極功率偵測器 69
4.6 數位可變增益放大器 72
4.7 施密特觸發器 80
4.8 電路佈局 83
4.9 整體電路模擬結果 84
4.10 特性比較 91
Chapter 5 量測結果 92
5.1 28 GHz低功耗之可切換功率偵測系統量測結果 92
5.1.1 印刷電路板設計 92
5.1.2 量測環境 94
5.1.3 S參數 96
5.1.4 輸入功率與輸出直流電壓轉移曲線 97
5.1.5 直流功耗 102
5.1.6 電路特性比較 102
5.1.7 晶片偵錯模擬修正 104
5.2 28 GHz具高線性度與高解析度自動切換功率偵測系統量測結果 109
5.2.1 印刷電路板設計 109
5.2.2 量測環境 111
5.2.3 S參數 111
5.2.4 輸出增益壓縮點 113
5.2.5 輸入輸出轉移曲線 114
5.2.6 直流功耗 116
5.2.7 晶片偵錯模擬修正 118
Chapter 6 結論 122
參考文獻 123
[1]Biswa P.S. Sahoo Ching-Chun Chou, Chung-Wei Weng, and Hung-Yu Wei, "Enabling millimeter-wave 5G Networks for massive IoT applications: a closer look at the issues impacting millimeter-waves in consumer devices under the 5G framework," IEEE Consumer Electronics Magazine, vol. 8, pp.49-54, Dec. 2018.
[2]毫米波 (Millimeter Wave)頻帶之戰. Available: https://www.ni.com/zh-tw/innovations/white-papers/16/mmwave--the-battle-of-the-bands.html.
[3]R. Thandaish. Prabu, M. Benisha, V. Thulasi. Bai, and V. Yokesh, "Millimeter wave for 5G mobile communication application," in 2016 2nd International Conference on Advances in Electrical, Electronics, Information, Communication and Bio-Informatics (AEEICB), Feb. 2016, pp. 236-240.
[4]M. Fakharzadeh, M.-R. Nezhad-Ahmadi, B. Biglarbegian, J. Ahmadi-Shokouh, and S. Safavi-Naeini, "CMOS phased array transceiver technology for 60 GHz wireless applications," IEEE Transactions on Antennas and Propagation, vol. 58, no. 4, pp. 1093-1104, Jan. 2010.
[5]Zhriun. Hu, V. T. Vo, and A. A. Rezazadeh, "High tangential signal sensitivity GaAs planar doped barrier diodes for microwave/millimeter-wave power detector applications," IEEE Microwave and Wireless Components Letters, vol. 15, no. 3, pp. 150-152, Mar. 2005.
[6]Daekeun. Yoon, Namhyung. Kim, Kiryong. Song, Jungsoo. Kim, Seung. Jae. Oh, and Jae-Sung. Rieh, "D-band heterodyne integrated imager in a 65-nm CMOS technology," IEEE Microwave and Wireless Components Letters, vol. 25, no. 3, pp. 196-198, Jan. 2015.
[7]S. N. Rubin, "A wide-band UHF logarithmic amplifier," IEEE Journal of Solid-State Circuits, vol. 1, no. 2, pp. 74-81, Dec. 1966.
[8]Chien-Chang. Chou, Wen-Chian. Lai, Yi-Kai Hsiao, and Huey-Ru Chuang, "60-GHz CMOS Doppler radar sensor with integrated V-band power detector for clutter monitoring and automatic clutter-cancellation in noncontact vital-signs sensing," IEEE Transactions on Microwave Theory and Techniques, vol. 66, no. 3, pp. 1635-1643, Dec. 2017.
[9]S. Kim, H.-C. Kim, D.-H. Kim, S. Jeon, M. Kim, and J.-S. Rieh, "58–72 GHz CMOS wideband variable gain low-noise amplifier," Electronics Letters, vol. 47, no. 16, pp. 904-906, Aug. 2011.
[10]Y.-T. Chang and H.-C. Lu, "A V -Band Low-Power Digital Variable-Gain Low-Noise Amplifier Using Current-Reused Technique With Stable Matching and Maintained OP1dB," IEEE Transactions on Microwave Theory and Techniques, vol. 67, no. 11, pp. 4404-4417, Sep. 2019.
[11]Mustafa Baris Dinc, "Design and fabrication of a detector logarithmic video amplifier," MS. Thesis, Natural and Applied Sciences of Middle East Technical University, Turkey, 2011.
[12]Boris Moret, Eric Kerherve, and Vincent Knopik, "Non-invasive highly integrated transformer power detector for self-healing PA in 130nm H9SOI-FEM CMOS technology," in 2016 11th European Microwave Integrated Circuits Conference (EuMIC), Oct. 2016, pp. 113-116.
[13]Kihyun Kim and Youngwoo Kwon, "A broadband logarithmic power detector in 0.13-μm CMOS," IEEE Microwave and Wireless Components Letters, vol. 23, no. 9, pp. 498-500, Aug. 2013.
[14]Ayssar. Serhan, Estelle. Lauga-Larroze, and Jean-Michel Fournier, "Common-base/common-gate millimeter-wave power detectors," IEEE Transactions on Microwave Theory and Techniques, vol. 63, no. 12, pp. 4483-4491, Nov. 2015.
[15]Weiqiang Lu, Chenxi Zhao, Yiming Yu, Zhengdong Jiang, Yunqiu Wu, Huihua Liu, and Kai Kang, "A Ku-band CMOS LNA with transformer feedforward gm-boosting technique," in 2016 IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications (IMWS-AMP), Oct. 2016, pp. 1-3.
[16]Sunwoo. Kong, Hui Dong Lee, Moon-Sik Lee, and Bonghyuk. Park, "A V-band current-reused LNA with a double-transformer-coupling technique," IEEE Microwave and Wireless Components Letters, vol. 26, no. 11, pp. 942-944, Oct. 2016.
[17]B. Razavi, RF Microelectronics, 2nd ed. Paul Boger, 2011.
[18]I. M. Filanovsky and H. Baltes, "CMOS Schmitt trigger design," IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, vol. 41, no. 1, pp. 46-49, Jan. 1994.
[19]Ambika. Prasad. Shah, Nandakishor. Yadav, Ankur Beohar, and Santosh Kumar Vishvakarma, "Process variation and NBTI resilient schmitt trigger for stable and reliable circuits," IEEE Transactions on Device and Materials Reliability, vol. 18, no. 4, pp. 546-554, Aug. 2018.
[20]B. L. Dokic, "CMOS Schmitt triggers," in IEE Proceedings G-Electronic Circuits and Systems, vol. 131, no. 5, pp. 197-202, Oct. 1984.
[21]Jaewon. Choi, Jongsoo Lee, Yao Xi, Seong-Sik Myoung, Sanghyun Baek, Dae Hyu Kwon, Quang-Diep Bui, Jaehun Lee, Dongjin Oh, and Thomas Byunghak Cho, "Wide dynamic-range CMOS RMS power detector," IEEE Transactions on Microwave Theory and Techniques, vol. 64, no. 3, pp. 868-880, Feb. 2016.
[22]Y. Melamed, A. Even-Chen, and Solon. J. Spiegel, "Systematic design of RSSI and logarithmic amplifiers circuits," in 2009 IEEE International Conference on Microwaves, Communications, Antennas and Electronics Systems, Jan. 2009, pp. 1-4.
[23]Janne-Wha Wu, Kai-Cheng Hsu, Chin-Ho To, Sheng-Wen Chen, Ching-Wen Tang, and Ying-Zong Juang, "A linear-in-dB radio-frequency power detector," in 2011 IEEE MTT-S International Microwave Symposium(IMS), Aug. 2011, pp. 1-4.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
1. 應用於5G毫米波通訊系統採用線性器與自動調整偏壓技術及中和技術以優化線性度及效率之CMOS功率放大器
2. 使用旋轉單元電場向量法進行相位陣列天線系統校正
3. CMOS製程下應用於5G通訊Ka頻段切換式功率偵測器
4. 應用於 5G 毫米波通訊系統採用差動有預失真線性器和自動適性偏壓技術及轉導補償技術以優化線性度及效率之CMOS功率放大器
5. 使用CMOS製程之60 GHz WiGig接收機與D頻段訊號源設計
6. 使用CMOS製程應用於5G通訊毫米波頻段與Ka頻段衛星接收系統相移器晶片
7. 應用於V頻段之高增益次諧波降頻器與高鏡像訊號抑制之單邊帶升頻器
8. 應用傳輸偶極天線陣列之調變技術以實現在旋轉錯位及位移錯位下穩定的無線供電網路系統
9. 應用於毫米波接收訊號強度指示系統之可切換對數功率偵測器晶片
10. 使用雙向可變增益放大器實現Ka頻段主動式雙向向量合成相移器
11. 微波多層被動電路之佈局對電路檢查的後段與立體圖形多使用者介面
12. 使用0-π可變增益放大器實現Ka頻段主動式向量和式相移器
13. 應用於V頻段之低功耗小面積之單邊帶升頻器與應用於5G毫米波頻段之低本地端驅動功率之I/Q降頻器
14. 非同步時脈之以零點交越偵測器為基礎的增量型三角積分類比數位轉換器的分析與設計
15. 應用於5G通訊系統之互補式差動壓控振盪器與電流再利用四相位壓控振盪器