跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.175) 您好!臺灣時間:2024/12/09 21:09
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:曾上恩
研究生(外文):Shang-En Tseng
論文名稱:以主動式學習引導次級解析輔助特徵圖案擺置
論文名稱(外文):Sub-Resolution Assist Feature Insertion Guided by Active Learning
指導教授:江蕙如江蕙如引用關係
指導教授(外文):Hui-Ru Jiang
口試委員:張耀文方劭云王鈺強
口試委員(外文):Yao-Wen ChangShao-Yun FangYu-Chiang Wang
口試日期:2020-06-18
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:電子工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:英文
論文頁數:45
中文關鍵詞:製造可行性設計次級解析輔助特徵主動式學習高斯過程變分自編碼器
外文關鍵詞:Design for ManufacturabilitySub-Resolution Assist FeatureActive LearningGaussian ProcessVariational Auto Encoder
DOI:10.6342/NTU202001068
相關次數:
  • 被引用被引用:0
  • 點閱點閱:180
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
隨著半導體製程技術的演進,特徵尺寸已遠小於曝光光源波長,迫使成像明顯偏離原來的設計圖案。因此光學微影解析度增強技術在製造可行性領域中益發重要。其中,次級解析輔助特徵圖案的擺置能有效提高目標圖案的焦深及其製程視窗的品質。為了突破業界慣用的以模型為基礎的高計算成本以及以準則為基礎的過大的查找表,近期研究多專注於使用機器學習的預測來減少計算時間。然而,現有機器學習模型的表現高度仰賴足夠的訓練樣本,在先進製程中,雖有龐大的解空間,但僅有少量標記資料。雖然可以透過收集更多的樣本來解決,但決定樣本資訊性的訣竅仍鮮少被討論。在本篇論文中,我們的貢獻有三:一、提出新穎的基於變分自動編碼器的主動式學習框架來主動選擇具資訊性的樣本並減少所需的標記資料量。二、提出區域性同心圓取樣表示法避免資訊丟失。三、提出聚類法決定最終次級解析輔助特徵圖案的擺置。實驗結果顯示,我們提出的框架僅使用40%的訓練樣本即能達到較現有方法優異的製程變異帶寬與邊緣放置誤差。
As the feature size keeps shrinking in the modern semiconductor manufacturing process, resolution enhancement techniques (RETs) are crucial to improve the manufacturing yield. Sub-resolution assist feature (SRAF) insertion is one of the RETs that can improve the target pattern printability and lithographic process window. Model-based SRAF generation achieves a high accuracy but with a high computational cost, while rule-based SRAF insertion may require a huge look-up table to handle complex patterns. Thus, recent works focus on reducing runtime by using machine-learning based models, and they rely on sufficient training samples to generalize the trained models and achieve high performance. Nevertheless, in advanced lithography, we may have a huge solution space but may have few labeled training samples. Although we can simply gather more samples, it is difficult to determine the most informative samples. Therefore, in this thesis, our contributions are threefold: First, we propose an active learning framework based on Variational Auto Encoders (VAEs) to actively select informative samples used to trained our model to guide the SRAF insertion. Second, we propose a region-based concentric circle area sampling representation to avoid information loss. Third, we propose a clustering-based scheme to determine the final placement of SRAFs. Experimental results demonstrate that, compared with state-of-the-art works, our framework uses 40% training samples and improves process variation (PV) band and edge placement error (EPE).
Acknowledgements iii
Abstract (Chinese) iv
Abstract vi
List of Tables x
List of Figures xi
Chapter 1. Introduction 1
1.1 SRAF Insertion 1
1.2 Previous Works 3
1.3 Motivation 4
1.4 Our Contributions 4
1.5 Thesis Organization 5
Chapter 2. Preliminaries 6
2.1 Evaluation Metrics 6
2.2 Active Learning 7
2.3 Gaussian Process 9
2.4 Variational Auto Encoder 9
2.5 Problem Formulation 11
Chapter 3. Methodology 12
3.1 Overview 12
3.2 Data Preparation 13
3.2.1 SRAF Label Extraction 13
3.2.2 CCAS Feature Extraction 14
3.2.3 Region-based CCAS Feature Extraction 17
3.2.4 Feature Compaction 17
3.3 Active Learning Framework 18
3.3.1 Model uncertainty and batch sample selection 19
3.3.2 Adversarial Variational Auto Encoder 21
3.4 Probability Learning for SRAF Insertion 24
3.5 Clustering-based SRAF placement 26
Chapter 4. Experimental Results 28
4.1 Experimental Setup 28
4.2 CCAS vs. Region-based CCAS 29
4.3 Batch Selection and Model Training 29
4.4 Clustering-based SRAF placement 32
4.5 Compared with previous works 33
Chapter 5. Conclusions 40
Bibliography 41
Publication List 45
[1] S. Banerjee, Z. Li, and S. R. Nassif, "ICCAD-2013 cad contest in mask optimization and benchmark suite," in 2013 IEEE/ACM International Conference on Computer-Aided Design (ICCAD), 2013, pp. 271-274.
[2] J.-R. Gao, X. Xu, B. Yu, and D. Z. Pan, "MOSAIC: Mask optimizing solution with process window aware inverse correction," in 2014 51st ACM/EDAC/IEEE Design Automation Conference (DAC), 2014, pp. 1-6.
[3] C. A. Mack, Ebook Topic: Optical Proximity Correction (OPC), 2006, p. 82. [Online]. Available: https://doi.org/10.1117/3.665802
[4] C. Wallace, P. Nyhus, and S. Sivakumar, "Sub-resolution assist features," U.S. Patent 20060046160A1, Dec. 2009.
[5] Y. Ping, S. McGowan, Y. Gong, Y. M. Foong, J. Liu, J. Qiu, V. Shu, B. Yan, J. Ye, P. Li, H. Zhou, T. Pandey, J. Liang, C. Aquino, S. Baron, and S. Kapasi, "Process window enhancement using advanced RET techniques for 20nm contact layer," in Optical Microlithography XXVII, K. Lai and A. Erdmann, Eds., vol. 9052, International Society for Optics and Photonics. SPIE, 2014, pp. 460-469. [Online]. Available: https://doi.org/10.1117/12.2048513
[6] J. Jun, M. Park, C. Park, H. Yang, D. Yim, M. Do, D. Lee, T. Kim, J. Choi, G. Luk-Pat, and A. Miloslavsky, "Layout optimization with assist features placement by model based rule tables for 2x node random contact," in Design-Process-Technology Co-optimization for Manufacturability IX, J. L. Sturtevant and L. Capodieci, Eds., vol. 9427, International Society for Optics and Photonics. SPIE, 2015, pp. 100-109. [Online]. Available: https://doi.org/10.1117/12.2085460
[7] S. D. Shang, L. Swallow, and Y. Granik, "Model-based SRAF insertion," U.S. Patent 8037429B2, Oct. 2011.
[8] L. Pang, Y. Liu, and D. Abrams, "Inverse lithography technology (ILT): a natural solution for model-based SRAF at 45-nm and 32-nm," in Photomask and Next-Generation Lithography Mask Technology XIV, H. Watanabe, Ed., vol. 6607, International Society for Optics and Photonics. SPIE, 2007, pp. 888-897. [Online]. Available: https://doi.org/10.1117/12.729028
[9] X. Xu, Y. Lin, M. Li, T. Matsunawa, S. Nojima, C. Kodama, T. Kotani, and D. Z. Pan, "Subresolution assist feature generation with supervised data learning," IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 37, no. 6, pp. 1225-1236, 2018.
[10] H. Geng, H. Yang, Y. Ma, J. Mitra, and B. Yu, "SRAF insertion via supervised dictionary learning," in Proceedings of the 24th Asia and South Pacific Design Automation Conference, ser. ASP-DAC'19. New York, NY, USA: Association for Computing Machinery, 2019, p. 406-411. [Online]. Available: https://doi.org/10.1145/3287624.3287684
[11] B. Settles, "Active learning literature survey," 07 2010.
[12] Y. Bengio, A. Courville, and P. Vincent, "Representation learning: A review and new perspectives," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 35, no. 8, pp. 1798-1828, 2013.
[13] S. Sinha, S. Ebrahimi, and T. Darrell, "Variational adversarial active learning," in 2019 IEEE/CVF International Conference on Computer Vision (ICCV), 2019, pp. 5971-5980.
[14] H. Yang, S. Li, C. Tabery, B. Lin, and B. Yu, "Bridging the gap between layout pattern sampling and hotspot detection via batch active learning," 2018.
[15] Y. Cheng, "Mean shift, mode seeking, and clustering," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 17, no. 8, pp. 790-799, 1995.
[16] R. A. Davis, K.-S. Lii, and D. N. Politis, Remarks on Some Nonparametric Estimates of a Density Function. New York, NY: Springer New York, 2011, pp. 95-100. [Online]. Available: https://doi.org/10.1007/978-1-4419-8339-8_13
[17] E. Parzen, "On estimation of a probability density function and mode," Ann. Math. Statist., vol. 33, no. 3, pp. 1065-1076, 09 1962. [Online]. Available: https://doi.org/10.1214/aoms/1177704472
[18] M. R. Hestenes and E. Stiefel, "Methods of conjugate gradients for solving linear systems," 1952.
[19] L. Buitinck, G. Louppe, M. Blondel, F. Pedregosa, A. Mueller, O. Grisel, V. Niculae, P. Prettenhofer, A. Gramfort, J. Grobler, R. Layton, J. VanderPlas, A. Joly, B. Holt, and G. Varoquaux, "API design for machine learning software: experiences from the scikit-learn project," in ECML PKDD Workshop: Languages for Data Mining and Machine Learning, 2013, pp. 108-122.
[20] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala, "Pytorch: An imperative style, high-performance deep learning library," in Advances in Neural Information Processing Systems 32, H. Wallach, H. Larochelle, A. Beygelzimer, F. dAlche-Buc, E. Fox, and R. Garnett, Eds. Curran Associates, Inc., 2019, pp. 8024-8035. [Online]. Available: http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
[21] M. Graphics, "Calibre verification user's manual," 2006.
[22] M. B. Alawieh, Y. Lin, Z. Zhang, M. Li, Q. Huang, and D. Z. Pan, "GAN-SRAF: Sub-resolution assist feature generation using conditional generative adversarial networks," in 2019 56th ACM/IEEE Design Automation Conference (DAC), 2019, pp. 1-6.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top