|
[1] S. Banerjee, Z. Li, and S. R. Nassif, "ICCAD-2013 cad contest in mask optimization and benchmark suite," in 2013 IEEE/ACM International Conference on Computer-Aided Design (ICCAD), 2013, pp. 271-274. [2] J.-R. Gao, X. Xu, B. Yu, and D. Z. Pan, "MOSAIC: Mask optimizing solution with process window aware inverse correction," in 2014 51st ACM/EDAC/IEEE Design Automation Conference (DAC), 2014, pp. 1-6. [3] C. A. Mack, Ebook Topic: Optical Proximity Correction (OPC), 2006, p. 82. [Online]. Available: https://doi.org/10.1117/3.665802 [4] C. Wallace, P. Nyhus, and S. Sivakumar, "Sub-resolution assist features," U.S. Patent 20060046160A1, Dec. 2009. [5] Y. Ping, S. McGowan, Y. Gong, Y. M. Foong, J. Liu, J. Qiu, V. Shu, B. Yan, J. Ye, P. Li, H. Zhou, T. Pandey, J. Liang, C. Aquino, S. Baron, and S. Kapasi, "Process window enhancement using advanced RET techniques for 20nm contact layer," in Optical Microlithography XXVII, K. Lai and A. Erdmann, Eds., vol. 9052, International Society for Optics and Photonics. SPIE, 2014, pp. 460-469. [Online]. Available: https://doi.org/10.1117/12.2048513 [6] J. Jun, M. Park, C. Park, H. Yang, D. Yim, M. Do, D. Lee, T. Kim, J. Choi, G. Luk-Pat, and A. Miloslavsky, "Layout optimization with assist features placement by model based rule tables for 2x node random contact," in Design-Process-Technology Co-optimization for Manufacturability IX, J. L. Sturtevant and L. Capodieci, Eds., vol. 9427, International Society for Optics and Photonics. SPIE, 2015, pp. 100-109. [Online]. Available: https://doi.org/10.1117/12.2085460 [7] S. D. Shang, L. Swallow, and Y. Granik, "Model-based SRAF insertion," U.S. Patent 8037429B2, Oct. 2011. [8] L. Pang, Y. Liu, and D. Abrams, "Inverse lithography technology (ILT): a natural solution for model-based SRAF at 45-nm and 32-nm," in Photomask and Next-Generation Lithography Mask Technology XIV, H. Watanabe, Ed., vol. 6607, International Society for Optics and Photonics. SPIE, 2007, pp. 888-897. [Online]. Available: https://doi.org/10.1117/12.729028 [9] X. Xu, Y. Lin, M. Li, T. Matsunawa, S. Nojima, C. Kodama, T. Kotani, and D. Z. Pan, "Subresolution assist feature generation with supervised data learning," IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 37, no. 6, pp. 1225-1236, 2018. [10] H. Geng, H. Yang, Y. Ma, J. Mitra, and B. Yu, "SRAF insertion via supervised dictionary learning," in Proceedings of the 24th Asia and South Pacific Design Automation Conference, ser. ASP-DAC'19. New York, NY, USA: Association for Computing Machinery, 2019, p. 406-411. [Online]. Available: https://doi.org/10.1145/3287624.3287684 [11] B. Settles, "Active learning literature survey," 07 2010. [12] Y. Bengio, A. Courville, and P. Vincent, "Representation learning: A review and new perspectives," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 35, no. 8, pp. 1798-1828, 2013. [13] S. Sinha, S. Ebrahimi, and T. Darrell, "Variational adversarial active learning," in 2019 IEEE/CVF International Conference on Computer Vision (ICCV), 2019, pp. 5971-5980. [14] H. Yang, S. Li, C. Tabery, B. Lin, and B. Yu, "Bridging the gap between layout pattern sampling and hotspot detection via batch active learning," 2018. [15] Y. Cheng, "Mean shift, mode seeking, and clustering," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 17, no. 8, pp. 790-799, 1995. [16] R. A. Davis, K.-S. Lii, and D. N. Politis, Remarks on Some Nonparametric Estimates of a Density Function. New York, NY: Springer New York, 2011, pp. 95-100. [Online]. Available: https://doi.org/10.1007/978-1-4419-8339-8_13 [17] E. Parzen, "On estimation of a probability density function and mode," Ann. Math. Statist., vol. 33, no. 3, pp. 1065-1076, 09 1962. [Online]. Available: https://doi.org/10.1214/aoms/1177704472 [18] M. R. Hestenes and E. Stiefel, "Methods of conjugate gradients for solving linear systems," 1952. [19] L. Buitinck, G. Louppe, M. Blondel, F. Pedregosa, A. Mueller, O. Grisel, V. Niculae, P. Prettenhofer, A. Gramfort, J. Grobler, R. Layton, J. VanderPlas, A. Joly, B. Holt, and G. Varoquaux, "API design for machine learning software: experiences from the scikit-learn project," in ECML PKDD Workshop: Languages for Data Mining and Machine Learning, 2013, pp. 108-122. [20] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala, "Pytorch: An imperative style, high-performance deep learning library," in Advances in Neural Information Processing Systems 32, H. Wallach, H. Larochelle, A. Beygelzimer, F. dAlche-Buc, E. Fox, and R. Garnett, Eds. Curran Associates, Inc., 2019, pp. 8024-8035. [Online]. Available: http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf [21] M. Graphics, "Calibre verification user's manual," 2006. [22] M. B. Alawieh, Y. Lin, Z. Zhang, M. Li, Q. Huang, and D. Z. Pan, "GAN-SRAF: Sub-resolution assist feature generation using conditional generative adversarial networks," in 2019 56th ACM/IEEE Design Automation Conference (DAC), 2019, pp. 1-6.
|