跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.91) 您好!臺灣時間:2024/12/11 01:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:王奇樺
研究生(外文):Chi-Hua Wang
論文名稱:矩形黑磷薄膜電晶體其光電特性的各向異性
論文名稱(外文):The anisotropy of optoelectrical properties of Rectangular Black Phosphorus Thin Film Transistor
指導教授:李嗣涔李嗣涔引用關係
指導教授(外文):Si-Chen Lee
口試委員:林浩雄林時彥吳肇欣
口試委員(外文):Hao-Hsiung LinShih-Yen LinChao-Hsin Wu
口試日期:2019-07-05
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:電子工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:108
語文別:英文
論文頁數:133
中文關鍵詞:黑磷薄膜電晶體厚度金鍺合金長方形黑磷-二硫化鎢異質接面
外文關鍵詞:black phosphorus (BP)thin film transistor (TFT)thicknessAuGe alloyrectangularBP/WS2 heterostructure
DOI:10.6342/NTU201901794
相關次數:
  • 被引用被引用:0
  • 點閱點閱:154
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
黑磷為一種具有高電洞遷移率以及直接能隙(= 0.33eV) 的二維材料。影響其載子遷移率的因素包括了黑磷薄膜的厚度、contact金屬的選擇以及載子移動的方向。因此必須同時考慮這三個因素,才有辦法達到黑磷薄膜電晶體的高電洞遷移率。
本論文首先對黑磷的基本性質做了材料分析。透過光學顯微鏡以及原子力顯微鏡的搭配可以粗略的判斷黑磷薄片的厚度,拉曼光譜儀則能夠用來辨認黑磷薄片的晶體方向。X射線與極紫外線光電子能譜儀則可用來確認黑磷與金鍺合金元素組成、能隙與功函數。透過挑選適當的厚度、使用金鍺合金來達成歐姆接觸、以及製作長方形黑磷來迅速判斷黑磷晶格方向,成功製造出擁有良好元件特性的背電極黑磷薄膜電晶體,其元件表現出接近300cm2/V*s的場效電洞遷移率和高達3個數量級的電流開關比。同時也製作了黑磷-二硫化鎢的異質接面整流二極體與透過厚度控制達成的黑磷同質接面整流二極體,兩者接近2的理想因子顯示其電流主要為復合電流主控。兩者良好的光響應則展現了具有直接能隙的黑磷在光電應用上的潛力。
Black Phosphorus (BP) is a 2D material with high hole mobility and direct bandgap ( = 0.33eV). The factors that will influence its carrier mobility are thickness of the BP thin film, choose of the contact metal and the transport direction of the carriers. Therefore, these three factors must be considered simultaneously to obtain the high hole mobility of BP thin film transistors.
In this thesis, material analysis is first conducted to study the fundamental properties of the exfoliated BP. The thickness of BP flakes can be roughly determined by optical microscopy and atomic force microscopy (AFM). The lattice orientation of BP flakes can be recognized by Raman spectroscopy. X-ray and Ultraviolet photoelectron spectroscopy are used to measure the elemental composition, bandgap and work function of BP and AuGe alloy. Through picking the appropriate thickness of the BP thin film, using AuGe alloy to obtain ohmic contact, and fabricating rectangular BP thin film to determine the lattice orientation of BP flakes, the back-gated BP thin film transistors (TFTs) are successfully fabricated and show excellent device performance. The high hole mobility near 300cm2/V*s and the on/off ratio up to 3 order of magnitude can be achieved. The P-N BP/WS2 heterostructure and BP homostructure through thickness engineering are also fabricated. Both of their ideality factors are near 2, indicating that the forward current is dominated by recombination current. Their good optical responsivities also show BP’s potential in the application of optoeletronics due to its direct bandgap.
摘要 i
ABSTRACT v
CONTENTS vii
LIST OF FIGURES x
LIST OF TABLES xviii
Chapter 1 Introduction 1
1.1 Overview of black phosphorus 1
1.2 Advantages of BP FETs 9
1.3 Motivation 14
Chapter 2 Experiments 17
2.1 Fabrication Systems 17
2.1.1 Mechanical Exfoliation 17
2.1.2 Photolithography 22
2.1.3 E-beam lithography 24
2.1.4 Evaporation System 28
2.1.5 Rapid Thermal Annealing (RTA) 28
2.1.6 Heterostructure Fabrication System 29
2.2 Measurement Techniques 31
2.2.1 Optical Microscopy (OM) 31
2.2.2 Atomic Force Microscopy (AFM) 32
2.2.3 Raman Spectroscopy 33
2.2.4 X-ray Diffraction (XRD) 34
2.2.5 X-ray Photoelectron Spectroscopy (XPS) 35
2.2.6 Ultraviolet Photoemission Spectroscopy (UPS) 36
2.2.7 Current – Voltage Characteristics 39
Chapter 3 Material Analysis for Black Phosphorus 40
3.1 Crystal Structure of Black Phosphorus 40
3.2 Characterization of Black Phosphorus Film Thickness 43
3.2.1 Optical Microscopy (OM) 43
3.2.2 Atomic Force Microscope (AFM) 44
3.3 Raman Spectroscopy 50
3.4 XPS and UPS Analysis of Black Phosphorus and Gold-Germanium alloy 57
3.4.1 X-ray Photoelectron Spectroscopy (XPS) 57
3.4.2 Ultraviolet Photoelectron Spectroscopy (UPS) 64
Chapter 4 BP Thin Film Transistors 70
4.1 Back-gated Black Phosphorus TFTs 71
4.1.1 Device Process Flow 71
4.1.2 Device Performance 75
4.2 Thickness Dependence of Electronic Properties 78
4.3 Contact Metal Comparison of BP TFTs 82
4.4 Anisotropic Properties of Black Phosphorus 91
4.5 Characteristics of P-N BP/WS2 Heterostructure and BP Homostructure 100
4.5.1 Device Process Flow for BP-WS2 Heterostructure 100
4.5.2 Device Performance 102
4.5.3 BP Homostructure P-N-Like Diode through Thickness Control 109
Chapter 5 Conclusion 112
References 115
[1]P. R. Wallace, “THE BAND THEORY OF GRAPHITE,” Physical Review, vol. 71, no. 7, pp. 476-476, 1947.
[2]K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science, vol. 306, no. 5696, pp. 666-9, Oct 22, 2004.
[3]A. H. C. Neto, and K. Novoselov, “Two-Dimensional Crystals: Beyond Graphene,” Materials Express, vol. 1, no. 1, pp. 10-17, 2011.
[4]A. Loiseau, F. Willaime, N. Demoncy, G. Hug, and H. Pascard, “Boron nitride nanotubes with reduced numbers of layers synthesized by arc discharge,” Phys Rev Lett, vol. 76, no. 25, pp. 4737-4740, Jun 17, 1996.
[5]K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature, vol. 438, no. 7065, pp. 197-200, Nov 10, 2005.
[6]J. C. Slater, G. F. Koster, and J. H. Wood, “Symmetry and Free Electron Properties of the Gallium Energy Bands,” Physical Review, vol. 126, no. 4, pp. 1307-1317, 1962.
[7]F. Schwierz, “Graphene transistors,” Nat Nanotechnol, vol. 5, no. 7, pp. 487-96, Jul, 2010.
[8]K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, “Atomically Thin MoS2: A New Direct-Gap Semiconductor,” Physical Review Letters, vol. 105, no. 13, pp. 4, Sep, 2010.
[9]B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, “Single-layer MoS2 transistors,” Nat Nanotechnol, vol. 6, no. 3, pp. 147-50, Mar, 2011.
[10]Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nature Nanotechnology, vol. 7, no. 11, pp. 699-712, Nov, 2012.
[11]H. Schmidt, F. Giustiniano, and G. Eda, “Electronic transport properties of transition metal dichalcogenide field-effect devices: surface and interface effects,” Chemical Society Reviews, vol. 44, no. 21, pp. 7715-7736, 2015.
[12]C. Gong, L. Colombo, R. M. Wallace, and K. Cho, “The unusual mechanism of partial Fermi level pinning at metal-MoS2 interfaces,” Nano Lett, vol. 14, no. 4, pp. 1714-20, 2014.
[13]L. K. Li, Y. J. Yu, G. J. Ye, Q. Q. Ge, X. D. Ou, H. Wu, D. L. Feng, X. H. Chen, and Y. B. Zhang, “Black phosphorus field-effect transistors,” Nature Nanotechnology, vol. 9, no. 5, pp. 372-377, May, 2014.
[14]H. Liu, Y. Du, Y. Deng, and P. D. Ye, “Semiconducting black phosphorus: synthesis, transport properties and electronic applications,” Chem Soc Rev, vol. 44, no. 9, pp. 2732-43, May 07, 2015.
[15]S. Lange, P. Schmidt, and T. Nilges, “Au3SnP7@black phosphorus: an easy access to black phosphorus,” Inorg Chem, vol. 46, no. 10, pp. 4028-35, May 14, 2007.
[16]P. W. Bridgman, “Two new modifications of phosphorus,” Journal of the American Chemical Society, vol. 36, pp. 1344-1363, Jul-Dec, 1914.
[17]T. Nishii, Y. Maruyama, T. Inabe, and I. Shirotani, “SYNTHESIS AND CHARACTERIZATION OF BLACK PHOSPHORUS INTERCALATION COMPOUNDS,” Synthetic Metals, vol. 18, no. 1-3, pp. 559-564, Feb, 1987.
[18]D. Warschauer, “Electrical and Optical Properties of Crystalline Black Phosphorus,” Journal of Applied Physics, vol. 34, no. 7, pp. 1853-1860, 1963.
[19]A. Brown, and S. Rundqvist, “Refinement of the crystal structure of black phosphorus,” Acta Crystallographica, vol. 19, no. 4, pp. 684-685, 1965.
[20]Y. Maruyama, S. Suzuki, K. Kobayashi, and S. Tanuma, “Synthesis and some properties of black phosphorus single crystals,” Physica B+C, vol. 105, no. 1-3, pp. 99-102, 1981.
[21]R. Ahuja, “Calculated high pressure crystal structure transformations for phosphorus,” physica status solidi (b), vol. 235, no. 2, pp. 282-287, 2003.
[22]J. D. Wood, S. A. Wells, D. Jariwala, K. S. Chen, E. Cho, V. K. Sangwan, X. Liu, L. J. Lauhon, T. J. Marks, and M. C. Hersam, “Effective passivation of exfoliated black phosphorus transistors against ambient degradation,” Nano Lett, vol. 14, no. 12, pp. 6964-70, Dec 10, 2014.
[23]R. W. Keyes, “The Electrical Properties of Black Phosphorus,” Physical Review, vol. 92, no. 3, pp. 580-584, 1953.
[24]A. Castellanos-Gomez, L. Vicarelli, E. Prada, J. O. Island, K. L. Narasimha-Acharya, S. I. Blanter, D. J. Groenendijk, M. Buscema, G. A. Steele, J. V. Alvarez, H. W. Zandbergen, J. J. Palacios, and H. S. J. van der Zant, “Isolation and characterization of few-layer black phosphorus,” 2D Materials, vol. 1, no. 2, pp. 025001, 2014.
[25]L. Cartz, S. R. Srinivasa, R. J. Riedner, J. D. Jorgensen, and T. G. Worlton, “EFFECT OF PRESSURE ON BONDING IN BLACK PHOSPHORUS,” Journal of Chemical Physics, vol. 71, no. 4, pp. 1718-1721, 1979.
[26]Y. Akahama, S. Endo, and S.-i. Narita, “Electrical Properties of Black Phosphorus Single Crystals,” Journal of the Physical Society of Japan, vol. 52, no. 6, pp. 2148-2155, 1983.
[27]H. Liu, A. T. Neal, Z. Zhu, Z. Luo, X. F. Xu, D. Tomanek, and P. D. Ye, “Phosphorene: An Unexplored 2D Semiconductor with a High Hole Mobility,” Acs Nano, vol. 8, no. 4, pp. 4033-4041, Apr, 2014.
[28]F. N. Xia, H. Wang, and Y. C. Jia, “Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics,” Nature Communications, vol. 5, pp. 6, Jul, 2014.
[29]V. Tran, R. Soklaski, Y. Liang, and L. Yang, “Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus,” Physical Review B, vol. 89, no. 23, 2014.
[30]J. Qiao, X. Kong, Z. X. Hu, F. Yang, and W. Ji, “High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus,” Nat Commun, vol. 5, pp. 4475, Jul 21, 2014.
[31]A. Favron, E. Gaufres, F. Fossard, A. L. Phaneuf-L'Heureux, N. Y. Tang, P. L. Levesque, A. Loiseau, R. Leonelli, S. Francoeur, and R. Martel, “Photooxidation and quantum confinement effects in exfoliated black phosphorus,” Nat Mater, vol. 14, no. 8, pp. 826-32, Aug, 2015.
[32]K. T. Lam, Z. P. Dong, and J. Guo, “Performance Limits Projection of Black Phosphorous Field-Effect Transistors,” Ieee Electron Device Letters, vol. 35, no. 9, pp. 963-965, Sep, 2014.
[33]A. S. Rodin, A. Carvalho, and A. H. Castro Neto, “Strain-Induced Gap Modification in Black Phosphorus,” Physical Review Letters, vol. 112, no. 17, pp. 5, May, 2014.
[34]R. X. Fei, and L. Yang, “Strain-Engineering the Anisotropic Electrical Conductance of Few-Layer Black Phosphorus,” Nano Letters, vol. 14, no. 5, pp. 2884-2889, May, 2014.
[35]Y. C. Du, H. Liu, Y. X. Deng, and P. D. Ye, “Device Perspective for Black Phosphorus Field-Effect Transistors: Contact Resistance, Ambipolar Behavior, and Scaling,” Acs Nano, vol. 8, no. 10, pp. 10035-10042, Oct, 2014.
[36]F. Schwierz, J. Pezoldt, and R. Granzner, “Two-dimensional materials and their prospects in transistor electronics,” Nanoscale, vol. 7, no. 18, pp. 8261-8283, 2015.
[37]R. H. Yan, A. Ourmazd, and K. F. Lee, “Scaling the Si MOSFET: from bulk to SOI to bulk,” IEEE Transactions on Electron Devices, vol. 39, no. 7, pp. 1704-1710, 1992.
[38]D. J. Frank, R. H. Dennard, E. Nowak, P. M. Solomon, Y. Taur, and W. Hon-Sum Philip, “Device scaling limits of Si MOSFETs and their application dependencies,” Proceedings of the IEEE, vol. 89, no. 3, pp. 259-288, 2001.
[39]D. J. Frank, Y. Taur, and H. S. P. Wong, “Generalized scale length for two-dimensional effects in MOSFET's,” Ieee Electron Device Letters, vol. 19, no. 10, pp. 385-387, Oct, 1998.
[40]A. Allain, J. Kang, K. Banerjee, and A. Kis, “Electrical contacts to two-dimensional semiconductors,” Nat Mater, vol. 14, no. 12, pp. 1195-205, Dec, 2015.
[41]S. P. Koenig, R. A. Doganov, H. Schmidt, A. H. Castro Neto, and B. Özyilmaz, “Electric field effect in ultrathin black phosphorus,” Applied Physics Letters, vol. 104, no. 10, pp. 103106, 2014.
[42]M. Buscema, D. J. Groenendijk, S. I. Blanter, G. A. Steele, H. S. J. van der Zant, and A. Castellanos-Gomez, “Fast and Broadband Photoresponse of Few-Layer Black Phosphorus Field-Effect Transistors,” Nano Letters, vol. 14, no. 6, pp. 3347-3352, Jun, 2014.
[43]J. Quereda, P. San-Jose, V. Parente, L. Vaquero-Garzon, A. J. Molina-Mendoza, N. Agrait, G. Rubio-Bollinger, F. Guinea, R. Roldan, and A. Castellanos-Gomez, “Strong Modulation of Optical Properties in Black Phosphorus through Strain-Engineered Rippling,” Nano Lett, vol. 16, no. 5, pp. 2931-7, May 11, 2016.
[44]T. Low, A. S. Rodin, A. Carvalho, Y. Jiang, H. Wang, F. Xia, and A. H. Castro Neto, “Tunable optical properties of multilayer black phosphorus thin films,” Physical Review B, vol. 90, no. 7, 2014.
[45]Q. Guo, A. Pospischil, M. Bhuiyan, H. Jiang, H. Tian, D. Farmer, B. Deng, C. Li, S. J. Han, H. Wang, Q. Xia, T. P. Ma, T. Mueller, and F. Xia, “Black Phosphorus Mid-Infrared Photodetectors with High Gain,” Nano Lett, vol. 16, no. 7, pp. 4648-55, Jul 13, 2016.
[46]S. Das, M. Demarteau, and A. Roelofs, “Ambipolar Phosphorene Field Effect Transistor (vol 8, pg 11730, 2014),” Acs Nano, vol. 10, no. 2, pp. 2984-2984, Feb, 2016.
[47]T. Hong, B. Chamlagain, W. Z. Lin, H. J. Chuang, M. H. Pan, Z. X. Zhou, and Y. Q. Xu, “Polarized photocurrent response in black phosphorus field-effect transistors,” Nanoscale, vol. 6, no. 15, pp. 8978-8983, Aug, 2014.
[48]T. Low, M. Engel, M. Steiner, and P. Avouris, “Origin of photoresponse in black phosphorus phototransistors,” Physical Review B, vol. 90, no. 8, pp. 5, Aug, 2014.
[49]J. W. Jiang, B. S. Wang, and H. S. Park, “Interlayer breathing and shear modes in few-layer black phosphorus,” Journal of Physics-Condensed Matter, vol. 28, no. 16, pp. 10, Apr, 2016.
[50]X. Ling, L. B. Liang, S. X. Huang, A. A. Puretzky, D. B. Geohegan, B. G. Sumpter, J. Kong, V. Meunier, and M. S. Dresselhaus, “Low-Frequency Interlayer Breathing Modes in Few-Layer Black Phosphorus,” Nano Letters, vol. 15, no. 6, pp. 4080-4088, Jun, 2015.
[51]X. Luo, X. Lu, G. K. W. Koon, A. H. C. Neto, B. Ozyilmaz, Q. H. Xiong, and S. Y. Quek, “Large Frequency Change with Thickness in Interlayer Breathing Mode-Significant Interlayer Interactions in Few Layer Black Phosphorus,” Nano Letters, vol. 15, no. 6, pp. 3931-3938, Jun, 2015.
[52]J. O. Island, G. A. Steele, H. S. J. van der Zant, and A. Castellanos-Gomez, “Environmental instability of few-layer black phosphorus,” 2d Materials, vol. 2, no. 1, pp. 6, Mar, 2015.
[53]J. B. Smith, D. Hagaman, and H.-F. J. N. Ji, “Growth of 2D black phosphorus film from chemical vapor deposition,” vol. 27, no. 21, pp. 215602, 2016.
[54]Y. Hsiao, P. Y. Chang, K. L. Fan, N. C. Hsu, and S. C. Lee, “Black phosphorus with a unique rectangular shape and its anisotropic properties,” Aip Advances, vol. 8, no. 10, pp. 7, Oct, 2018.
[55]J. H. Kang, D. Sarkar, Y. Khatami, and K. Banerjee, “Proposal for all-graphene monolithic logic circuits,” Applied Physics Letters, vol. 103, no. 8, pp. 5, Aug, 2013.
[56]R. Kappera, D. Voiry, S. E. Yalcin, B. Branch, G. Gupta, A. D. Mohite, and M. Chhowalla, “Phase-engineered low-resistance contacts for ultrathin MoS2 transistors,” Nature Materials, vol. 13, no. 12, pp. 1128-1134, Dec, 2014.
[57]Y. Deng, N. J. Conrad, Z. Luo, H. Liu, X. Xu, and D. Y. Peide, "Towards high-performance two-dimensional black phosphorus optoelectronic devices: The role of metal contacts." pp. 5.2. 1-5.2. 4.
[58]D. J. Perello, S. H. Chae, S. Song, and Y. H. Lee, “High-performance n-type black phosphorus transistors with type control via thickness and contact-metal engineering,” Nat Commun, vol. 6, pp. 7809, Jul 30, 2015.
[59]Y. Q. Ma, C. F. Shen, A. Y. Zhang, L. Chen, Y. H. Liu, J. H. Chen, Q. Z. Liu, Z. Li, M. R. Amer, T. Nilges, A. N. Abbas, and C. W. Zhou, “Black Phosphorus Field-Effect Transistors with Work Function Tunable Contacts,” Acs Nano, vol. 11, no. 7, pp. 7126-7133, Jul, 2017.
[60]N. Haratipour, and S. J. Koester, “Ambipolar Black Phosphorus MOSFETs With Record n-Channel Transconductance,” Ieee Electron Device Letters, vol. 37, no. 1, pp. 103-106, Jan, 2016.
[61]C. H. Wang, J. A. C. Incorvia, C. J. McClellan, A. C. Yu, M. J. Mleczko, E. Pop, and H. S. P. Wong, “Unipolar n-Type Black Phosphorus Transistors with Low Work Function Contacts,” Nano Letters, vol. 18, no. 5, pp. 2822-2827, May, 2018.
[62]D. Xiang, C. Han, J. Wu, S. Zhong, Y. Y. Liu, J. D. Lin, X. A. Zhang, W. P. Hu, B. Ozyilmaz, A. H. C. Neto, A. T. S. Wee, and W. Chen, “Surface transfer doping induced effective modulation on ambipolar characteristics of few-layer black phosphorus,” Nature Communications, vol. 6, pp. 8, Mar, 2015.
[63]P. D. Zhao, D. Kiriya, A. Azcatl, C. X. Zhang, M. Tosun, Y. S. Liu, M. Hettick, J. S. Kang, S. McDonnell, K. C. Santosh, J. H. Guo, K. Cho, R. M. Wallace, and A. Javey, “Air Stable p-Doping of WSe2 by Covalent Functionalization,” Acs Nano, vol. 8, no. 10, pp. 10808-10814, Oct, 2014.
[64]Y. Du, L. Yang, H. Zhou, and P. D. Ye, “Performance Enhancement of Black Phosphorus Field-Effect Transistors by Chemical Doping,” IEEE Electron Device Letters, vol. 37, no. 4, pp. 429-432, 2016.
[65]Y. M. Shi, W. Zhou, A. Y. Lu, W. J. Fang, Y. H. Lee, A. L. Hsu, S. M. Kim, K. K. Kim, H. Y. Yang, L. J. Li, J. C. Idrobo, and J. Kong, “van der Waals Epitaxy of MoS2 Layers Using Graphene As Growth Templates,” Nano Letters, vol. 12, no. 6, pp. 2784-2791, Jun, 2012.
[66]W. Choi, N. Choudhary, G. H. Han, J. Park, D. Akinwande, and Y. H. Lee, “Recent development of two-dimensional transition metal dichalcogenides and their applications,” Materials Today, vol. 20, no. 3, pp. 116-130, Apr, 2017.
[67]Y. Hernandez, V. Nicolosi, M. Lotya, F. M. Blighe, Z. Y. Sun, S. De, I. T. McGovern, B. Holland, M. Byrne, Y. K. Gun'ko, J. J. Boland, P. Niraj, G. Duesberg, S. Krishnamurthy, R. Goodhue, J. Hutchison, V. Scardaci, A. C. Ferrari, and J. N. Coleman, “High-yield production of graphene by liquid-phase exfoliation of graphite,” Nature Nanotechnology, vol. 3, no. 9, pp. 563-568, Sep, 2008.
[68]J. J. Pei, X. Gai, J. Yang, X. B. Wang, Z. F. Yu, D. Y. Choi, B. Luther-Davies, and Y. R. Lu, “Producing air-stable monolayers of phosphorene and their defect engineering,” Nature Communications, vol. 7, pp. 8, Jan, 2016.
[69]H. Y. Chen, W. W. Fei, J. X. Zhou, C. Y. Miao, and W. L. Guo, “Layer Identification of Colorful Black Phosphorus,” Small, vol. 13, no. 5, pp. 5, Feb, 2017.
[70]S. H. Aldave, M. N. Yogeesh, W. Zhu, J. Kim, S. S. Sonde, A. P. Nayak, and D. Akinwande, “Characterization and sonochemical synthesis of black phosphorus from red phosphorus,” 2D Materials, vol. 3, no. 1, pp. 014007, 2016.
[71]E. Flores, J. R. Ares, A. Castellanos-Gomez, M. Barawi, I. J. Ferrer, and C. Sánchez, “Thermoelectric power of bulk black-phosphorus,” Applied Physics Letters, vol. 106, no. 2, pp. 022102, 2015.
[72]J. Heyd, J. E. Peralta, G. E. Scuseria, and R. L. Martin, “Energy band gaps and lattice parameters evaluated with the Heyd-Scuseria-Ernzerhof screened hybrid functional,” J Chem Phys, vol. 123, no. 17, pp. 174101, Nov 01, 2005.
[73]L. Wang, Z. Sofer, and M. Pumera, “Voltammetry of Layered Black Phosphorus: Electrochemistry of Multilayer Phosphorene,” ChemElectroChem, vol. 2, no. 3, pp. 324-327, 2015.
[74]S. Kuriakose, T. Ahmed, S. Balendhran, V. Bansal, S. Sriram, M. Bhaskaran, and S. Walia, “Black phosphorus: ambient degradation and strategies for protection,” 2d Materials, vol. 5, no. 3, pp. 10, Jul, 2018.
[75]E. G. A. Favron, F. Fossard, P.L. Lévesque, A-L. Phaneuf-L'Heureux, N. Y-W. Tang, A. Loiseau, R. Leonelli, S. Francoeur, R. Martel, “Exfoliating pristine black phosphorus down to the monolayer: photo-oxidation and electronic confinement effects,” Mesoscale and Nanoscale Physics
2014.
[76]J. Yang, R. Xu, J. Pei, Y. W. Myint, F. Wang, Z. Wang, S. Zhang, Z. Yu, and Y. Lu, “Optical tuning of exciton and trion emissions in monolayer phosphorene,” Light: Science & Applications, vol. 4, no. 7, pp. e312, 2015.
[77]S. Liu, N. Huo, S. Gan, Y. Li, Z. Wei, B. Huang, J. Liu, J. Li, and H. Chen, “Thickness-dependent Raman spectra, transport properties and infrared photoresponse of few-layer black phosphorus,” J. Mater. Chem. C, vol. 3, no. 42, pp. 10974-10980, 2015.
[78]J. Kim, J. U. Lee, J. Lee, H. J. Park, Z. Lee, C. Lee, and H. Cheong, “Anomalous polarization dependence of Raman scattering and crystallographic orientation of black phosphorus,” Nanoscale, vol. 7, no. 44, pp. 18708-18715, 2015.
[79]C. Q. Han, M. Y. Yao, X. X. Bai, L. Miao, F. Zhu, D. D. Guan, S. Wang, C. L. Gao, C. Liu, D. Qian, Y. Liu, and J.-f. Jia, “Electronic structure of black phosphorus studied by angle-resolved photoemission spectroscopy,” Physical Review B, vol. 90, no. 8, 2014.
[80]S. Zhang, J. Yang, R. Xu, F. Wang, W. Li, M. Ghufran, Y. W. Zhang, Z. Yu, G. Zhang, Q. Qin, and Y. Lu, “Extraordinary photoluminescence and strong temperature/angle-dependent Raman responses in few-layer phosphorene,” ACS Nano, vol. 8, no. 9, pp. 9590-6, Sep 23, 2014.
[81]W. Lu, X. Ma, Z. Fei, J. Zhou, Z. Zhang, C. Jin, and Z. Zhang, “Probing the anisotropic behaviors of black phosphorus by transmission electron microscopy, angular-dependent Raman spectra, and electronic transport measurements,” Applied Physics Letters, vol. 107, no. 2, pp. 021906, 2015.
[82]H. B. Ribeiro, M. A. Pimenta, C. J. de Matos, R. L. Moreira, A. S. Rodin, J. D. Zapata, E. A. de Souza, and A. H. Castro Neto, “Unusual angular dependence of the Raman response in black phosphorus,” ACS Nano, vol. 9, no. 4, pp. 4270-6, Apr 28, 2015.
[83]H. B. Ribeiro, M. A. Pimenta, and C. J. S. de Matos, “Raman spectroscopy in black phosphorus,” Journal of Raman Spectroscopy, vol. 49, no. 1, pp. 76-90, Jan, 2018.
[84]X. Ling, S. X. Huang, E. H. Hasdeo, L. B. Liang, W. M. Parkin, Y. Tatsumi, A. R. T. Nugraha, A. A. Puretzky, P. M. Das, B. G. Sumpter, D. B. Geohegan, J. Kong, R. Saito, M. Drndic, V. Meunier, and M. S. Dresselhaus, “Anisotropic Electron-Photon and Electron-Phonon Interactions in Black Phosphorus (vol 16, pg 2260, 2016),” Nano Letters, vol. 16, no. 7, pp. 4731-4731, Jul, 2016.
[85]J. X. Wu, N. N. Mao, L. M. Xie, H. Xu, and J. Zhang, “Identifying the Crystalline Orientation of Black Phosphorus Using Angle-Resolved Polarized Raman Spectroscopy,” Angewandte Chemie-International Edition, vol. 54, no. 8, pp. 2366-2369, Feb, 2015.
[86]A. Ziletti, A. Carvalho, D. K. Campbell, D. F. Coker, and A. H. Castro Neto, “Oxygen defects in phosphorene,” Phys Rev Lett, vol. 114, no. 4, pp. 046801, Jan 30, 2015.
[87]A. Ziletti, A. Carvalho, P. E. Trevisanutto, D. K. Campbell, D. F. Coker, and A. H. Castro Neto, “Phosphorene oxides: Bandgap engineering of phosphorene by oxidation,” Physical Review B, vol. 91, no. 8, 2015.
[88]M. Taniguchi, S. Suga, M. Seki, H. Sakamoto, H. Kanzaki, Y. Akahama, S. Terada, S. Endo, and S. Narita, “Valence band and core-level photoemission spectra of black phosphorus single crystals,” Solid State Communications, vol. 45, no. 2, pp. 59-61, 1983.
[89]K. J. Gaskell, M. M. Smith, and P. M. A. Sherwood, “Valence band x-ray photoelectron spectroscopic studies of phosphorus oxides and phosphates,” Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol. 22, no. 4, pp. 1331-1336, 2004.
[90]Y. Wang, and P. M. A. Sherwood, “Phosphorus Pentoxide (P2O5) by XPS,” Surface Science Spectra, vol. 9, no. 1, pp. 159-165, 2002.
[91]P. Y. Shih, S. W. Yung, and T. S. Chin, “FTIR and XPS studies of P2O5–Na2O–CuO glasses,” Journal of Non-Crystalline Solids, vol. 244, no. 2-3, pp. 211-222, 1999.
[92]W. Luo, D. Y. Zemlyanov, C. A. Milligan, Y. Du, L. Yang, Y. Wu, and P. D. Ye, “Surface chemistry of black phosphorus under a controlled oxidative environment,” Nanotechnology, vol. 27, no. 43, pp. 434002, Sep 23, 2016.
[93]H. M. Chang, A. Charnas, Y. M. Lin, P. D. Ye, C. I. Wu, and C. H. Wu, “Germanium-doped Metallic Ohmic Contacts in Black Phosphorus Field-Effect Transistors with Ultra-low Contact Resistance,” Scientific Reports, vol. 7, pp. 9, Dec, 2017.
[94]A. Castellanos-Gomez, “Black Phosphorus: Narrow Gap, Wide Applications,” J Phys Chem Lett, vol. 6, no. 21, pp. 4280-91, Nov 05, 2015.
[95]Y. Cai, G. Zhang, and Y. W. Zhang, “Layer-dependent band alignment and work function of few-layer phosphorene,” Sci Rep, vol. 4, pp. 6677, Oct 20, 2014.
[96]T. Hong, B. Chamlagain, W. Lin, H.-J. Chuang, M. Pan, Z. Zhou, and Y.-Q. J. N. Xu, “Polarized photocurrent response in black phosphorus field-effect transistors,” vol. 6, no. 15, pp. 8978-8983, 2014.
[97]K. Kaasbjerg, K. S. Thygesen, and K. W. Jacobsen, “Phonon-limited mobility in n-type single-layer MoS2 from first principles,” Physical Review B, vol. 85, no. 11, pp. 16, Mar, 2012.
[98]Z. P. Ling, S. Sakar, S. Mathew, J. T. Zhu, K. Gopinadhan, T. Venkatesan, and K. W. Ang, “Black Phosphorus Transistors with Near Band Edge Contact Schottky Barrier,” Sci Rep, vol. 5, pp. 18000, Dec 15, 2015.
[99]A. V. Penumatcha, R. B. Salazar, and J. Appenzeller, “Analysing black phosphorus transistors using an analytic Schottky barrier MOSFET model (vol 6, 8948, 2015),” Nature Communications, vol. 7, pp. 1, Jun, 2016.
[100]L. Li, M. Engel, D. B. Farmer, S. J. Han, and H. S. P. Wong, “High-Performance p-Type Black Phosphorus Transistor with Scandium Contact,” Acs Nano, vol. 10, no. 4, pp. 4672-4677, Apr, 2016.
[101]Y. Liu, T. Low, and P. P. Ruden, “Mobility anisotropy in monolayer black phosphorus due to scattering by charged impurities,” Physical Review B, vol. 93, no. 16, pp. 5, Apr, 2016.
[102]N. Haratipour, S. Namgung, R. Grassi, T. Low, S. H. Oh, and S. J. Koester, “High-Performance Black Phosphorus MOSFETs Using Crystal Orientation Control and Contact Engineering,” Ieee Electron Device Letters, vol. 38, no. 5, pp. 685-688, May, 2017.
[103]N. Haratipour, M. C. Robbins, and S. J. Koester, “Black Phosphorus p-MOSFETs With 7-nm HfO2 Gate Dielectric and Low Contact Resistance,” Ieee Electron Device Letters, vol. 36, no. 4, pp. 411-413, Apr, 2015.
[104]A. Avsar, I. J. Vera-Marun, J. Y. Tan, K. Watanabe, T. Taniguchi, A. H. C. Neto, and B. Ozyilmaz, “Air-Stable Transport in Graphene-Contacted, Fully Encapsulated Ultrathin Black Phosphorus-Based Field-Effect Transistors,” Acs Nano, vol. 9, no. 4, pp. 4138-4145, Apr, 2015.
[105]M. C. Robbins, and S. J. Koester, “Black Phosphorus p- and n-MOSFETs With Electrostatically Doped Contacts,” Ieee Electron Device Letters, vol. 38, no. 2, pp. 285-288, Feb, 2017.
[106]G. W. Zhang, S. Y. Huang, A. Chaves, C. Y. Song, V. O. Ozcelik, T. Low, and H. G. Yan, “Infrared fingerprints of few-layer black phosphorus,” Nature Communications, vol. 8, pp. 9, Jan, 2017.
[107]L. Ye, H. Li, Z. F. Chen, and J. B. Xu, “Near-Infrared Photodetector Based on MoS2/Black Phosphorus Heterojunction,” Acs Photonics, vol. 3, no. 4, pp. 692-699, Apr, 2016.
[108]X. L. Chen, X. B. Lu, B. C. Deng, O. Sinai, Y. C. Shao, C. Li, S. F. Yuan, V. Tran, K. Watanabe, T. Taniguchi, D. Naveh, L. Yang, and F. N. Xia, “Widely tunable black phosphorus mid-infrared photodetector,” Nature Communications, vol. 8, pp. 7, Nov, 2017.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top