跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.169) 您好!臺灣時間:2024/12/11 17:21
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:許庭昊
研究生(外文):Ting-Hao Hsu
論文名稱:耦合金屬-超薄絕緣層-半導體穿隧二極體之延遲暫態行為
論文名稱(外文):Prolonged Transient Behavior in Coupled Ultra-Thin Oxide MIS-Tunnel Diodes
指導教授:胡振國胡振國引用關係
指導教授(外文):Jenn-Gwo Hwu
口試委員:林浩雄鄭晃忠
口試委員(外文):Hao-Hsiung LinHuang-Chung Cheng
口試日期:2020-06-05
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:電子工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:英文
論文頁數:75
中文關鍵詞:穿隧二極體暫態行為
外文關鍵詞:tunnel diodetransient behavior
DOI:10.6342/NTU202001139
相關次數:
  • 被引用被引用:0
  • 點閱點閱:144
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本篇論文主要在研究由周圍耦合電極之深空乏現象,而在中心之金屬―絕緣層―半導體穿隧二極體所引發之暫態電流及耦合感應電壓衰減之延遲現象。當周圍耦合金氧半穿隧二極體進入深空乏後,可觀察到由蕭基位障調變效應所造成之電壓衰減速度隨氧化層厚度越薄而越慢之現象。在中心穿隧二極體所上所引發之暫態電流為為供給周圍耦合電極其所欠缺之少數載子而產生,而在中心穿隧二極體所上所引發之耦合電壓則為受到周圍深空乏之擾動所感應產生。暫態電流之延遲行為能以從周圍耦合電極洩漏之電洞受到蕭基位障調變解釋。另一方面,耦合感應電壓衰減之延遲現象則是由於新產生之少數載子均受到橫向電場影響而漂移至周圍耦合電極所導致。隨著氧化層厚度的增厚、耦合電極間隙的減少及增加電洞的抓陷,兩金氧半穿隧二極體之間的耦合程度可受到增強,進而導致暫態電流及耦合感應電壓的提升。由於在中心之金氧半穿隧二極體所引發之耦合感應電壓之留存時間並不隨上述因素之影響而有大幅衰弱之情形,其有潛力成為新型記憶體之記憶體特徵。本篇論文中提出一新型耦合金氧半記憶體之架構,並示範該記憶體之實際操作。該記憶體元件唯有當氧化層厚度薄於26 Å後其記憶體特徵才會出現所希望利用之延遲行為,並且此記憶體展現出良好的留存時間(約為5.3秒)及非常低之操作功耗(約為36.16皮瓦特)。
In this thesis, the prolonged transient current and the coupled voltage retention behavior of ultra-thin oxide MISTD induced by deep depletion of surrounded coupling electrode is investigated. Once the Ring MISTD is under deep depletion, the voltage decay speed reduces with decreasing oxide thickness, which is a result of the Schottky barrier modulation effect. The transient current is induced to supply minority carriers to the surrounded coupling electrode while the coupling voltage sensed is the result of the perturbation by the nearby deep depletion. The prolonged transient behavior of the sensed current is explained by the modulation of the hole leakage from the Ring MIS. Also, the prolonged behavior of the coupled voltage retention is the result of the generated electrons being swept towards the Ring MIS by lateral field. By increasing oxide thickness, reducing coupling gap width and increasing trapping holes, the coupling between the two MISTDs are enhanced and thereby increase the sensed current or voltage. Since the retention time of the sensed coupled voltage on the Center MISTD shows little degradation when affecting by the above-mentioned factors, it has potential in being utilized as memory characteristic. Devices with oxide thickness smaller than 26Å was proposed for the prolonged transient phenomenon and the operations of the proposed MIS memory cell are demonstrated. The proposed memory cell shows decent retention time of 5.3s and power consumption of only 36.16pW due to limited saturation current.
口試委員會審定書……………………………………………………………………...#
誌謝……………………………………………………………………………………....I
摘要……………………………………………………………………………………..II
Abstract………………………………………………………………………………..III
Contents……………………………………………………………………………….IV
Figure Captions……………………………………………………………………….VI
Chapter 1 Introduction……………………………………………………………..1
1.1 Thesis Organization………………………………………………………….2
1.2 Fundamentals of MIS(p) Tunnel Diode……………………………………..3
1.2.1 Deep Depletion and Current Saturation Mechanism…………………4
1.2.2 Effective Schottky Barrier Height Modulation Effect………………...6
1.2.3 Thickness Dependency of Forward and Reverse Current……………7
1.2.4 Fringing Field Effect on MIS(p) Tunnel Diode………………………..8
1.3 Role of Surrounded Coupling Electrode……………………………………8
1.4 Electrical Determination of Oxide Thickness……………………………..10
1.5 Summary……………………………………………………………………12
Chapter 2 Transient Current Behavior Induced by Deep Depletion of Surrounded Coupling Electrode.......................................................19
2.1 Introduction…………………………………………………………………20
2.2 Experimental………………………………………………………………..21
2.3 Results and Discussion……………………………………………………...22
2.3.1 Voltage Decay Behavior of Ring MISTD…………………………….22
2.3.2 Transient Current Induced on Center MISTD………………………24
2.3.3 Effect of Oxide Thickness on Induced Transient Current…………...25
2.3.4 Effect of Coupling Gap Width on Induced Transient Current …….27
2.3.5 Effect of Trapped Charges on Induced Transient Current…………28
2.4 Summary……………………………………………………………………29
Chapter 3 Coupled Voltage Retention Behavior Induced by Deep Depletion of Surrounded Coupling Electrode……………………………………...39
3.1 Introduction…………………………………………………………………40
3.2 Experimental………………………………………………………………..40
3.3 Results and Discussions…………………………………………………….41
3.3.1 Coupled Voltage Retention on Center MISTD………………………41
3.3.2 Effect of Oxide Thickness on Coupled Voltage Retention…………..42
3.3.3 Effect of Coupling Gap Width on Coupled Voltage Retention………42
3.3.4 Effect of Trapped Charges on Coupled Voltage Retention………….43
3.3.5 Memory Application…………………………………………………..44
3.4 Summary……………………………………………………………………45
Chapter 4 Conclusion and Future Work…………………………………………53
4.1 Conclusion…………………………………………………………………..54
4.2 Future Work………………………………………………………………...55
Appendix Frequency Multiplier Utilizing Coupled MIS- Tunneling Diodes….59
REFERENCES………………………………………………………………………..71
[1]P. M. Zeitzoff, "MOSFET Scaling Trends and Challenges Through The End of The Roadmap," Proceedings of the IEEE 2004 Custom Integrated Circuits Conference (IEEE Cat. No.04CH37571), Orlando, FL, USA, 2004, pp. 233-240, DOI: 10.1109/CICC.2004.1358785.
[2]K. Roy, S. Mukhopadhyay and H. Mahmoodi-Meimand, "Leakage Current Mechanisms and Leakage Reduction Techniques in Deep-submicrometer CMOS Circuits," in Proceedings of the IEEE, vol. 91, no. 2, pp. 305-327, Feb. 2003, DOI: 10.1109/JPROC.2002.808156.
[3]Yen-Kai Lin, Li Lin and Jenn-Gwo Hwu, “Minority Carriers Induced Schottky Barrier Height Modulation in Current Behavior of Metal-Oxide-Semiconductor Tunneling Diode.” 2014 ECS J. Solid State Sci. Technol. 3 Q132, DOI: 10.1149/2.019406jss
[4]C. W. Liu, W. T. Liu, M. H. Lee, W. S. Kuo and B. C. Hsu, "A Novel Photodetector Using MOS Tunneling Structures," in IEEE Electron Device Letters, vol. 21, no. 6, pp. 307-309, June 2000, DOI: 10.1109/55.843159
[5]Y. Chen and J. Hwu, "Light Sensing Enhancement and Energy Saving Improvement in Concentric Double-MIS(p) Tunnel Diode Structure with Inner Gate Outer Sensor Operation," in IEEE Transactions on Electron Devices, vol. 65, no. 11, pp. 4910-4915, Nov. 2018, DOI: 10.1109/TED.2018.2871071.
[6]T. Chang, C. Chang, H. Lee and P. Lee, "A Metal-Insulator-Semiconductor Solar Cell With High Open-Circuit Voltage Using a Stacking Structure," in IEEE Electron Device Letters, vol. 31, no. 12, pp. 1419-1421, Dec. 2010, DOI: 10.1109/LED.2010.2073437
[7]D. L. Pulfrey, "MIS solar cells: A review," in IEEE Transactions on Electron Devices, vol. 25, no. 11, pp. 1308-1317, Nov. 1978, DOI: 10.1109/T-ED.1978.19271.
[8]Y. Shih, J. Hwu, "An On-chip Temperature Sensor by Utilizing a MOS Tunneling Diode," in IEEE Electron Device Letters, vol. 22, no. 6, pp. 299-301, June 2001, DOI: 10.1109/55.924848
[9]Chih-Yao Wang and Jenn-Gwo Hwu, “Characterization of Stacked Hafnium Oxide ( HfO2 )  / Silicon Dioxide ( SiO2 ) Metal-Oxide-Semiconductor Tunneling Temperature Sensors,” in Journal of The Electrochemical Society, Volume 157, Number 10, August 2010, DOI: 10.1149/1.3206635
[10]K. Tseng, C. Liao and J. Hwu, "Enhancement of Transient Two-States Characteristics in Metal-Insulator-Semiconductor Structure by Thinning Metal Thickness," in IEEE Transactions on Nanotechnology, vol. 16, no. 6, pp. 1011-1015, Nov. 2017, DOI: 10.1109/TNANO.2017.2740943.
[11]Chieh-Fang Cheng, Yung-Chun Yang and Jenn-Gwo Hwu, “Effect of Oxide Thickness on The Two-State Characteristics in MIS(p) Tunnel Diode with Ultrathin Metal Surrounded Gate,” in ECS Journal of Solid State Science and Technology, Volume 8, Number 12, December 2019, DOI: 10.1149/2.0191912jss
[12]Yu-Ching Liao; Jenn-Gwo Hwu, “Intrinsic I-V and C-V characteristics of ultra-thin oxide MOS (p) and MOS (n) structures under deep depletion,” in International Journal of Nanotechnology, Vol. 12, No. 1/2, 2015, DOI: 10.1504/IJNT.2015.066190
[13] Chenming C. Hu, “Modern Semiconductor Devices for Integrated Circuits,” ISBN-13: 978-0136085256
[14]M.A.Green, J.Shewchun, “Current multiplication in metal-insulator-semiconductor (MIS) tunnel diodes,” in Solid-State Electronics, Volume 17, Pages 349-365, April 1974, DOI: 10.1016/0038-1101(74)90127-0
[15]Y. Lin and J. Hwu, "Photosensing by Edge Schottky Barrier Height Modulation Induced by Lateral Diffusion Current in MOS(p) Photodiode," in IEEE Transactions on Electron Devices, vol. 61, no. 9, pp. 3217-3222, Sept. 2014, DOI: 10.1109/TED.2014.2334704.
[16]Han-Wei Lu and Jenn-Gwo Hwu, “Lateral Nonuniformity of the Tunneling Current of Al/SiO2/p-Si Capacitor in Inversion Region Due to Edge Fringing Field Effect,” in ECS Transactions, Volume 58, October 2013, DOI: 10.1149/05807.0339ecst
[17]Wei-Tzu Hou and Jenn-Gwo Hwu, “Photo Response Enhancement in MIS(p) Tunnel Diode via Coupling Effect by Controlling Neighboring Device Inversion Level,” in ECS Journal of Solid State Science and Technology, Volume 6, Number 10, November 2017, DOI: 10.1149/2.0031712jss
[18]C. Liao and J. Hwu, "Subthreshold Swing Reduction by Double Exponential Control Mechanism in an MOS Gated-MIS Tunnel Transistor," in IEEE Transactions on Electron Devices, vol. 62, no. 6, pp. 2061-2065, June 2015, DOI: 10.1109/TED.2015.2424245
[19]C. Yang and J. Hwu, "Tunable Negative Differential Resistance in MISIM Tunnel Diodes Structure with Concentric Circular Electrodes Controlled by Designed Substrate Bias," in IEEE Transactions on Electron Devices, vol. 64, no. 12, pp. 5230-5235, Dec. 2017, DOI: 10.1109/TED.2017.2757506
[20]K. J. Yang and C. Hu, "MOS capacitance measurements for high-leakage thin dielectrics," in IEEE Transactions on Electron Devices, vol. 46, no. 7, pp. 1500-1501, July 1999, DOI: 10.1109/16.772500
[21]Han-Wei Lu, Tzu-Yu Chen and Jenn-Gwo Hwu, “A Novel Methodology to Extract Ultra-thin Dielectric Thickness (<1.8nm) b Analyzing Current Behavior at Oxide Flat-band Voltage,” International Electronic Devices and Materials Symposia-IEDMS 2010, paper No. D4-6., Nov. 2010
[22]M. T. Faber, J. Chramiec, and M. E. Adamski, “Microwave and Millimeter-Wave Diode Frequency Multipliers.” Norwood, MA: Artech House, 1995, pp.1-5.
[23]X. Zhang, M. Han, R. Wang, F. Zhu, Z. Li, W. Wang, H. Zhang, “Frequency Multiplication High-output Triboelectric Nanogenerator for Sustainably Powering Biomedical Microsystems,” Nano Lett. vol. 13, no. 3, pp. 1168–1172, Feb. 2013, DOI: 10.1021/nl3045684.
[24]B. J. Drouin, F. W. Maiwald, J. C. Pearson, “Application of Cascaded Frequency Multiplication to Molecular Spectroscopy,” Rev. Sci. Instrum. vol. 76, no. 9, pp. 093113, Sep. 2005, DOI: 10.1063/1.2042687
[25]H. Wang, D. Nezich, J. Kong, T. Palacios, “Graphene Frequency Multipliers,” IEEE Electron Device Lett., vol. 30, no. 5, pp. 547-549, May 2009, DOI: 10.1109/LED.2009.2016443.
[26]Z.X. Wang, Z.Y. Zhang, H.L. Xu, L. Ding, S. Wang, L.M. Peng, “A High-performance Top-gate Graphene Field-effect Transistor Based Frequency Doubler,” Appl. Phys. Lett. vol. 96, no. 17, pp. 173104, Apr. 2010, DOI: 10.1063/1.4313959.
[27]Hussain Mohammed Dipu Kabir, S. M. Salahuddin, “A Frequency Multiplier Using Three Ambipolar Graphene Transistors,” Microelectronics Journal, vol. 70, pp. 12–15, Dec. 2017, DOI: 10.1016/j.mejo.2017.10.002.
[28]Kevin J. Chen, Masafumi Yamamoto, “Frequency Multipliers Using InP-Based Resonant-Tunneling High Electron Mobility Transistors,” IEEE Electron Device Lett., vol. 17, no. 5, May. 1996, DOI: 10.1109/55.491840.
[29]Z.Z. Luo, Y.J. Cao, J.Y. Liu, Y.M. Li, D.W. He, Y. Shi, W.P. Hu, H.L. Dong, X.R. Wang, “Negative Transconductance in Multi-layer Organic Thin-film Transistors,” Nanotechnology, vol. 30, no.2, pp. 02LT01, Nov. 2018, DOI: 10.1088/1361-6528/aaea42.
[30]Y. Liu, J. Guo, Q.Y. He, H. Wu, H.C. Cheng, M.N. Ding, Imran Shakir, Vincent Gambin, Y. Huang, X.F. Duan, “Vertical Charge Transport and Negative Transconductance in Multilayer Molybdenum Disulfides,” Nano Lett., vol. 17, no. 9, pp. 5495–5501, Aug. 2017, DOI: 10.1021/acs.nanolett.7b02161.
[31]C.S. Liao and J.G. Hwu, “Remote Gate-controlled Negative Transconductance in Gated MIS Tunnel Diode,” IEEE Trans. Electron Devices, vol. 63, no. 7, pp. 2864–2870, Jul. 2016, DOI: 10.1109/TED.2016.2565688.
[32]C.S. Liao and J.G. Hwu, “Current Coupling Effect in MIS Tunnel Diode with Coupled Open-gated MIS Structure,” ECS Trans., vol. 75, no. 5, pp. 77-86, 2016, DOI: 10.1149/07505.0077ecst.
[33]W.T. Hou, W.C. Kao and J.G. Hwu, “Enchantment of Light-to-Dark Current Ratio via Coupling Effect for MIS (p) Tunnel Diode Photo Sensors,” ECS Trans., vol. 77, no. 5 pp. 249-258, 2017, DOI: 10.1149/07705.0249ecst
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top