跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.87) 您好!臺灣時間:2024/12/05 20:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:羅紹瑜
研究生(外文):Shao-Yu Lo
論文名稱:整合氮化鋁薄膜緩衝層及表面鈍化層技術於製作T型閘極高電子遷移率電晶體及其高頻分析
論文名稱(外文):Integrating Aluminum Nitride Film Buffer Layer and Surface Passivation Layer Technology in the Production of T-gate High Electron Mobility Transistors and High Frequency Analysis
指導教授:管傑雄管傑雄引用關係
指導教授(外文):Chieh-Hsiung Kuan
口試委員:孫允武孫建文藍彥文蘇文生
口試委員(外文):Yuen-Wuu SuenKien-Wen SunYann-Wen LanVin-Cent Su
口試日期:2020-07-27
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:電子工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:98
中文關鍵詞:T型閘極信號流圖微波高頻元件高電子遷移率電晶體
外文關鍵詞:T gatesignal graphmicrowavehigh frequency devicesHEMTs
DOI:10.6342/NTU202002134
相關次數:
  • 被引用被引用:0
  • 點閱點閱:199
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
氮化鎵被稱為第三代半導體材料,以其為材料的氮化鋁鎵/氮化鎵高電子遷移率電晶體,因具有二維電子氣以及寬能隙的特性,故在高頻高功率元件上具有極大的發展及應用空間。
本論文使用氮化鋁緩衝層磊晶之基板,在其磊晶片上製備高電子遷移率電晶體,元件製程中結合了 T 型閘極技術和鈍化層生長技術,並將所製備的元件進行高頻量測分析。
在論文第一部分,我們以信號流圖的觀點,重新推導了高頻元件所需用到的基礎微波理論,並且用此方法構建出了小訊號模型的精準 S 參數公式,用以擬合小訊號模型中各個電子元件的參數。
在論文第二部分,我們以電子束微影系統曝光三層光阻結構,並控制顯影的時間,在蒸鍍金屬後,成功製作出閘極線寬為 300 奈米、閘極頭寬為 700-900 奈米之T 型閘極。
在論文第三部分,我們分析了元件的直流特性,並藉由開路及短路襯墊進行去嵌化,將元件的本質參數萃取出來。證明了我們所設計的開路和短路襯墊符合開路短路襯墊去嵌化的條件。經過數據分析後,我們的 HEMT 元件在閘極電壓為-3.5 伏特,汲極電壓為 6 伏特時有截止頻率???????? = 10????????????, ???????????????? = 18????????????。
GaN is a prevalent third generation semiconductor material because of its 2DEG and broad energy gap, Therefore, high electron mobility transistors (HEMTs) based on GaN can be used to design high frequency or high power devices.
In this work, we fabricate HEMTs based on the structure that adopting AlN as an epitaxy buffer. The T gate and the epitaxy buffer technique are adopted in this work. In addition, we also analyze the devices in the high frequency domain.
This thesis is composed of three parts. First, we reorganize the micro wave theory with the viewpoint of the signal flow graph. Then, we use it to construct the small signal model and derive the S parameter formula. After that, we can fit a model and get all the parameters in the devices. Second, we design a three layers photoresist structure and use E beam to exposure. We control the exposure time and figure out the optimal. After Evaporating, we fabricate a T gate structure with 300 nm gate length and approximately 800 nm gate head length.
Last, the DC property of our devices is analyzed. We adopt open short pad de embedding to extract the intrinsic parameters of devices.Our HEMTs provide a 10 GHz current gain cut off frequency when the gate voltage is 3.5V, and the drain voltage is 6 V. The maximum oscillation frequency is 18 GHz.
口試委員審定書 i
致謝 .ii
中文摘要. iv
Abstract. v
目錄. vi
圖目錄. viii
表目錄. xii
第一章:緒論 1
1.1前言 1
1.2研究動機 2
1.3論文架構 4
第二章:微波理論探討及模型建構 5
2.1信號流圖(Signal Graph) 5
2.2線性信號流圖的性質 5
2.3梅森增益公式(Mason’s Gain Formula) 10
2.4二端網路(Two Port Networks) 11
2.5 Coates圖(Coates Graph) 16
2.6矩陣上消點運算 18
2.7二節點模型 19
2.8功率增益推導 20
2.9 S參數與ZY參數轉換推導 28
2.10開路襯墊去嵌化(Open Pad De-embedding) 36
2.11開路短路襯墊去嵌化(Open Short Pad De-embedding) 38
2.12小訊號模型建立及擬合 41
第三章:元件原理及製程量測 43
3.1氮化鎵材料 43
3.2氮化鋁鎵/氮化鎵異質結構 43
3.3歐姆接觸 44
3.4蕭特基接觸 45
3.5 T型閘極 46
3.6元件設計 47
3.7元件製程 51
3.8傳輸線模型(TLM)量測 58
3.9直流量測 59
3.10高頻量測 61
第四章:實驗結果與討論 63
4.1 T型閘極 63
4.2 TLM及直流量測結果 64
4.3高頻量測結果 66
第五章:結論與未來發展 81
參考文獻 83
附錄:一種信號流圖觀點下的逆矩陣運算 87
[1]Hong-Qi Tao, Wei Hong, Bin Zhang, and Xu-Ming Yu A “Compact 60W X-Band GaN HEMT Power Amplifier MMIC,” IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, VOL. 27, NO. 1, JANUARY 2017.
[2]semiconductor TODAY“ GaN RF device market to grow at 14% CAGR, rising by 2.5x by end 2022,” Compounds &Advanced Silicon • Vol. 11 • Issue 3 April/May 2016.
[3]Kong, X.; Wei, K.; Liu, G.G.; Liu, X.Y. “Improvement of breakdown characteristics of an AlGaN/GaN HEMT with a U-type gate foot for millimeter-wave power application,”. Chin. Phys. B 2012, 21, 128501.
[4]Mason ,Samuel J. “Feedback Theory - Further Properties of Signal Flow Graphs,”. Proceedings of the IRE. 44: 920–926. July 1956.
[5]Xun Zheng , Haoran Li, Matthew Guidry, Brian Romanczyk , Elaheh Ahmadi, Karine Hestroffer, Steven Wienecke , Stacia Keller, and Umesh K. Mishra, “Analysis of MOCVD SiNx Passivated N-Polar GaN MIS-HEMTs on Sapphire With High fmax · VDS,Q,” IEEE ELECTRON DEVICE LETTERS, VOL. 39, NO. 3, MARCH 2018.
[6]Matthew Guidry, Steven Wienecke, Brian Romanczyk, Haoran Li, Xun Zheng, Elahe Ahmadi, Karine Hestroffer, Stacia Keller, and Umesh K. Mishra” Small-Signal Model Extraction of mm-Wave N-polar GaN MISHEMT Exhibiting Record Performance: Analysis of Gain and Validation by 94 GHz Loadpull,” 978-1-5090-0698-4/16/$31.00 ©2016 IEEE.
[7]Arijit Majumder, Soumyo Chatterjee, Sayan Chatterjee, Sheli Sinha Chaudhari, and Dipak Ranjan Poddar,” Optimization of Small-Signal Model of GaN HEMT by Using Evolutionary Algorithms,” IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, VOL. 27, NO. 4, APRIL 2017.
[8]T. Yamanaka, K. Sun, Y. Li, M. Dutta, and M. A. Stroscio,"Spontaneous polarizations, electrical properties, and phononic properties of GaN nanostructures and systems," pp. 64730F-64730F, 2007.
[9]Fabio Sacconi, Aldo Di Carlo, P. Lugli, and Hadis Morkoç,” Spontaneous and Piezoelectric Polarization Effects on the Output Characteristics of AlGaN/GaN Heterojunction Modulation Doped FETs,” IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 48, NO. 3, MARCH 2001.
[10]Hong Zhou, Xiabing Lou, Karynn Sutherlin, Jarren Summers, Sang Bok Kim, Kelson D. Chabak, Roy G. Gordon, and Peide D. Ye, “DC and RF Performance of AlGaN/GaN/SiC MOSHEMTs With Deep Sub-Micron T-Gates and Atomic Layer Epitaxy MgCaO as Gate Dielectric,” IEEE ELECTRON DEVICE LETTERS, VOL. 38, NO. 10, OCTOBER 2017.
[11]Yichuan Zhang , Ke Wei, Sen Huang , Xinhua Wang , Yingkui Zheng, Guoguo Liu, Xiaojuan Chen, Yankui Li, and Xinyu Liu, “High-Temperature-Recessed Millimeter-Wave AlGaN/GaN HEMTs With 42.8% Power-Added-Efficiency at 35 GHz,” IEEE ELECTRON DEVICE LETTERS, VOL. 39, NO. 5, MAY 2018.A
[12]Yen-Ku Lin, Shuichi Noda, Chia-Ching Huang, Hsiao-Chieh Lo, Chia-Hsun Wu, Quang Ho Luc, Po-Chun Chang, Heng-Tung Hsu , Seiji Samukawa , and Edward Yi Chang, “ High-Performance GaN MOSHEMTs Fabricated With ALD Al2O3 Dielectric and NBE Gate Recess Technology for High Frequency Power Applications, ” IEEE ELECTRON DEVICE LETTERS, VOL. 38, NO. 6, JUNE 2017.
[13]Min-Han Mi, Xiao-Hua Ma, Ling Yang, Bin-Hou, Jie-Jie Zhu, Yun-Long He, Meng Zhang, Sheng Wu, and Yue Hao, “90 nm gate length enhancement-mode AlGaN/GaN HEMTs with plasma oxidation technology for high-frequency application,” Appl. Phys. Lett. 111, 173502 (2017).
[14]B. H. Lee et al., "High RF performance improvement using surface passivation technique of AlGaN/GaN HEMTs at K-band application," in Electronics Letters, vol. 49, no. 16, pp. 1013-1015, 1 Aug. 2013.
[15]Madhu S . Gupta, “Power gain in feedback amplifiers, a classic revisited,” IEEE Transactions on Microwave Theory and Techniques, Vol.40 , no. 5, pp. 864-879, 1992.
[16]Hafsa Athar Jafree, Muhammad Imtiaz, Syed Inayatullah, Fozia Hanif Khan, Tajuddin Nizami” A Space Efficient Flexible Pivot Selection Approach to Evaluate Determinant and Inverse of a Matrix,” PLoS ONE 9(2): e87219, February.2014.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊