跳到主要內容

臺灣博碩士論文加值系統

(44.201.99.222) 您好!臺灣時間:2022/12/03 13:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳定堂
研究生(外文):Ding-Tang Chen
論文名稱:具中心抽頭變壓器LLC諧振轉換器之數位磁通平衡控制
論文名稱(外文):Digital Flux Balance Control of LLC Resonant Converter with Center Tapped Transformer
指導教授:陳景然
指導教授(外文):Cing-Jan Chen
口試委員:陳耀銘林景源
口試委員(外文):Yaow-Ming ChenJing-Yuan Lin
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:電機工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:英文
論文頁數:77
中文關鍵詞:LLC諧振轉換器中心抽頭變壓器偏磁磁通平衡控制迴路磁化電流估測
外文關鍵詞:LLC resonant convertercenter tapped transformerflux walkingflux balance control loopmagnetizing current estimation
DOI:10.6342/NTU202000540
相關次數:
  • 被引用被引用:0
  • 點閱點閱:201
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
LLC諧振轉換器由於其高效率、高功率密度且具有電氣隔離的特性,所以被廣泛採用於各類電子產品中。然而,此轉換器之變壓器會有偏磁(flux walking)的現象,此現象會造成輸出電壓之漣波增大,變壓器亦有飽和的可能。在本論文中,為了解決偏磁現象,提出一磁通平衡控制策略。首先,影響變壓器之磁通平衡的各項因素會被分析,藉由此分析,偵測磁化電流之直流成分調整開關責任週期這一磁通平衡控制策略由此提出。因為磁化電流之直流成分無法輕易被量測到,一個電流偵測方法被提出來做為電流估測器,此方法僅需一個電流偵測器用來對一次側電流取樣。最後,構建了一個模擬方案和一個硬體原型來用於驗證,其額定輸出功率為200瓦特,輸入電壓為380伏特和輸出電壓為20伏特。經由模擬和實驗之結果表明,所提出的控制策略有效地降低了在不匹配條件下的磁化電流之直流成分和輸出電壓漣波。
LLC resonant converters have been widely adopted in various types of electronic products because of their high efficiency, high power density and electrical isolation characteristic. However, these converters suffer from a flux walking issue in transformer, which causes a larger output ripple and possible transformer saturation. In this thesis, a flux-balance control strategy is proposed for resolving the flux walking issue. First, the various elements that affect the transformer flux balance are analyzed. From the analysis, the flux balance control strategy, which adjust duty cycle based on sensed DC magnetizing current, is proposed. Since the DC magnetizing current is not easily measured, a current sensing strategy with a current estimator is proposed, which only requires one current sensor sampling the primary side current. Finally, a simulation scheme and a hardware prototype with rated output power 200 W, input voltage 380 V, and output voltage 20 V is constructed for verification. The simulation and experimental results show that the proposed control strategy effectively reduces the DC magnetizing current and output voltage ripple at mismatched condition.
口試委員會審定書 i
致謝 ii
中文摘要 iii
Abstract iv
Table of Contents vi
List of Figures vii
List of Tables xi
Chapter 1. Introduction 1
1.1 Research Background and Recent Development 1
1.2 Research Motivation and Objectives 4
1.3 Thesis Organizations 12
1.4 Thesis Contribution 13
Chapter 2. Analysis of Transformer Imbalance Flux Operation of LLC Resonant Converters 14
2.1 Description of LLC Resonant Converter with a Center Tapped Transformer 14
2.2 Derivation of Unbalanced Flux with Mismatched Forward biases of Rectifying Diodes 20
Chapter 3. Proposed Digital Flux Balance Control for LLC Resonant Converter 27
3.1 Description of the Proposed Scheme 27
3.2 Magnetizing Current Estimator 28
3.3 Sampling Timing Analysis 31
3.4 Variable-Frequency-Variable-Duty-Pulse-Width-Modulator (VFVDPWM) 32
Chapter 4. Small-Signal Modeling and Compensator Design of Flux Balance Control for LLC Resonant Converter 35
4.1 Description of the Proposed Control Block Diagram 36
4.2 Small-Signal Modeling of the Variable Frequency Variable Duty Pulse-Width-Modulator (VFVDPWM) 38
4.3 Small-Signal Modeling of the Flux Balance Loop 40
4.4 Small-Signal Modeling of the Voltage Loop 41
4.5 The Indirect Digital Compensators Design 43
4.5.1 The Digital Compensator Design of Flux Balance Loop 44
4.5.2 The Digital Compensator Design of Voltage Loop 45
Chapter 5. Digital Control Implementation of Digital Flux Balance Control for LLC Resonant Converter 48
5.1 The Selection and Features of Microcontroller Chip 48
5.2 Introduction of The Used Function Blocks of TMS320F28035 49
5.3 Adjusting Strategy of Digital Pulse-Width-Modulation 51
5.3.1 The Analysis of Frequency Resolution 52
5.3.2 The Analysis of Duty Resolution 52
5.4 The Implementation of Digital Controller 52
5.4.1 The Implementation of Flux Balance Loop 53
5.4.2 The Implementation of Voltage Loop 54
5.5 The Software Planning 56
Chapter 6. Experimental Results of Digital Flux Balance Control for LLC Resonant Converter 59
6.1 Laboratory Setup 59
6.2 Experiment Results Verification 61
6.2.1 Steady-State Operation 61
6.2.2 Dynamic-State Operation 69
Chapter 7. Conclusions and Suggested Future Works 73
7.1 Conclusions 73
7.2 Future Works 73
References 75
[1]H. Wu, T. Mu, X. Gao, and Y. Xing, “A secondary-side phase-shift-controlled LLC resonant converter with reduced conduction loss at normal operation for hold-up time compensation application,” IEEE Trans. Power Electron. vol. 30, pp. 5352–5357, 2015.
[2]R. D’Cruz, and M. Rajesh, “Half bridge LLC resonant DC-DC converter for solar array simulator application,” in Proc. TAP Energy, June 2015, pp. 138–143.
[3]Y. R. Yang, “A half-bridge LLC resonant converter with loose-coupling transformer and transition capacitor,” in Proceedings of the 2014 9th IEEE Conference on Industrial Electronics and Applications, Hangzhou, China, 9–11 June 2014, pp. 1344–1349.
[4]“Renewables 2015 global status report,” REN21, 2015. [Online] Available: http://www.ren21.net/status-of-renewables/global-status-report/
[5]O. Vainio and S. J. Ovaska, “Noise reduction in zero crossing detection by predictive digital filtering,” IEEE Trans. Ind. Electro., vol. 42, pp. 58-62, 1995.
[6]J. Deng, S. Li, S. Hu, C. Mi, and R. Ma, “Design methodology of LLC resonant converters for electric vehicle battery chargers,” IEEE Trans. Veh. Technol. 2014, 63, 1581-1592.
[7]Y. Shen, W. Zhao, Z. Chen, and C. Ca, “Full-bridge LLC resonant converter with series-parallel connected transformers for electric vehicle on-board charger,” IEEE Access, 2018, 6, 13490–13500.
[8]A. Amirahmadi, M. Domb, and E. Persson, “High power density high efficiency wide input voltage range LLC resonant converter utilizing E-mode GaN switches,” in Applied Power Electronics Conf. (APEC), 2017, pp. 350–354.
[9]M. Joung, H. Kim, and J. Baek, “Dynamic analysis and optimal design of high efficiency full bridge LLC resonant converter for server power system,” in Applied Power Electronics Conf. (APEC), 2012, pp. 1292–1297.
[10]B. C. Kim, K. B. Park, C. E. Kim, and B. H. Lee, G. W. Moon, “LLC resonant converter with adaptive link-voltage variation for a high-power-density adapter,” IEEE Trans. Power Electron. vol. 25, pp. 2248–2252, 2010.
[11]S. Hu, J. Deng; C. Mi, and M. Zhang, “LLC resonant converters for PHEV battery chargers,” in Applied Power Electronics Conf. (APEC), 2013, pp. 3051–3054.
[12]Y. C. Huang, Y. C. Hsieh, Y. C. Lin, H. R. Chiu, and J. Y. Lin, “Study and implementation on start-up control of full-bridge LLC resonant converter,” in Proc. IEEE ITEC Asia-Pacific, 2018, pp. 6–9.
[13]R. L. Lin, and C. W. Lin, “Design criteria for resonant tank of LLC DC-DC resonant converter,” in Proc. IEEE IECON, 2010, pp. 427–432.
[14][Online] Available: https://www.eevblog.com/forum/projects/finished-llc-resonant-converter-project/
[15]M. Sato, S. Nagaoka, T. Uematsu, and T. Zaitsu, “Mechanism of current imbalance in LLC resonant converter with center tapped transformer,” in Proc. IPEC-Niigata 2018 -ECCE Asia, 2018, pp. 118–122.
[16]Phase-Shifted Full Bridge DC/DC Power Converter Design Guide, Texas Instrument, Dallas, TX, USA, 2014, Application note.
[17]Matlab, System identification overview. Available online: https://www.mathworks.com/help/ident/gs/about-system-identification.html
[18]Matlab, System identification toolbox. Available online: https://www.mathworks.com/products/sysid.html
[19]S. Tian, F. Lee, and Q. Li, “A simplified equivalent circuit model of series resonant converter,” IEEE Trans. Power Electron. vol. 31, pp. 3922-3931, 2016.
[20]S. Tian, F. Lee, and Q. Li, “Equivalent circuit modeling of LLC resonant converter,” in Applied Power Electronics Conf. (APEC), 2016, pp. 1608–1615.
[21]Jason Lai. “工業技術人才培訓計畫講義-電力電子之數位控制理論與實務,” Jan. 2019.
[22](2010, June) Texas Instruments, TMS320F28035 datasheet.
[23]C. Adragna, S. De Simone and C. Spini, “Designing LLC resonant converters for optimum efficiency,” in European Conference on Power Electronics and Applications (EPE), pp. 1-10, 8-10 Sept. 2009.
[24]C. Adragna, S. De Simone and C. Spini, “A design methodology for LLC resonant converters based on inspection of resonant tank currents,” in Applied Power Electronics Conf. (APEC), 2008, pp. 1361–1367
[25]S. De Simone, C. Adragna, C. Spini and G. Gattavari, “Design-oriented steady state analysis of LLC resonant converters based on FHA,” in International Symposium on Power Electronics, Electrical Drives, Automation and Motion (SPEEDAM), 2006, pp. S41-16–S
[26]G Huang, "LLC Series Resonant DC/DC Converter,"2000 DPEC Seminar Proceeding.
[27]B. Yang; Lee, F.C.; Zhang, A.J.; Guisong Huang, "LLC resonant converter for front end DC/DC conversion," IEEE APEC'' 2002, pp. 1108-1112, 2002.
[28]J.F. Lazar, R. Martinelli, “Steady-state Analysis of the LLC Resonant Converter”, Applied Power Electronics Conference and Exposition, 2001. APEC 2001. Pages: 728 – 735
[29]H. Jiang, G. Maggetto, “Identification of Steady-State Operational Modes of the Series Resonant DC–DC Converter Based on Loosely Coupled Transformers in Below-Resonance Operation”, IEEE transactions on Power Electronics, Vol. 14, No. 2, March 1999 Pages: 359 – 371
[30]J. Lazar; R. Martinelli, "Steady-state analysis of the LLC series resonant converter," IEEE APEC''2001, pp. 728-735 vol.2.
[31]Z. Zhou; A. Xiong; T. Liu; F. Li; J. Zeng; J. Ying, "Design of LLC converter in 36 W/inch DPS application," 2004 DPEC Seminar Proceeding.
[32]F. Li; J. Zeng; T. Liu; Z. Zhou; A. Xiong; J. Ying, "A Novel Structure Transformer for High Frequency Application," 2004 DPEC Seminar Proceeding.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊