跳到主要內容

臺灣博碩士論文加值系統

(44.221.73.157) 您好!臺灣時間:2024/06/20 20:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:徐士傑
研究生(外文):Shih-Chieh Hsu
論文名稱:搭載動態偏壓導通時間產生器之新型電荷幫浦式固定導通時間控制降壓型轉換器設計與實現
論文名稱(外文):Design and Implementation of A Novel Charge-Pump Constant On-Time Controlled Buck Converter with Dynamic-Biased On-Time Generator
指導教授:陳景然
指導教授(外文):Ching-Jan Chen
口試委員:陳耀銘劉深淵
口試委員(外文):Yaow-Ming ChenShen-Iuan Liu
口試日期:2020-05-29
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:電機工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:87
中文關鍵詞:降壓型電源轉換器電源管理晶片漣波調變固定導通時間控制電荷幫浦式固定導通時間控制描述函數小信號模型
外文關鍵詞:buck converterpower management integrated circuit (PMIC)ripple-based constant on-time (RBCOT) controlcharge-pump constant on-time (CPCOT) controldescribing function (DF)small signal model
DOI:10.6342/NTU202000925
相關次數:
  • 被引用被引用:0
  • 點閱點閱:248
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近年來,漣波調變固定導通時間控制因為具有快速負載暫態響應、高輕載效率及架構簡單的特性,被廣泛應用於電源管理晶片。在電腦、智慧型手機等許多消費性電子產品中,為了縮小體積並且達到低輸出漣波電壓的需求,具低等效串聯電阻的積層陶瓷電容經常被使用於轉換器的輸出電容。然而,使用積層陶瓷電容之漣波調變固定導通時間控制降壓型電源轉換器可能會面臨到次斜波震盪的問題。
為了解決上述的次斜波問題,本論文提出了電荷幫浦式固定導通時間控制。此控制架構同時保有傳統漣波調變固定導通時間控制之快速負載暫態響應及高輕載效率的優點。除此之外,本論文也提出了動態偏壓導通時間產生器之技術,設法減低控制器之靜態電流消耗。
上述所提出之控制架構晶片使用台積電0.18 μm CMOS製程實現,可應用在切換頻率高達8百萬赫茲的降壓型電源轉換器中。此外,本論文利用描述函數的數學分析對電荷幫浦式固定導通時間控制架構推導小信號模型,進而分析系統穩定度及暫態響應。最後,透過模擬及實測結果驗證所提出的控制理論。量測結果顯示當輸入電壓為3.3伏特時,此降壓型轉換器可以操作在0.25安培至1.25安培的負載電流並可提供0.6伏特至1.3伏特的輸出電壓。當輸出電壓為1.0伏特,負載由0.25安培上升至1.25安培的暫態回復時間為1.5微秒,量測到的輸出壓降為60毫伏特。
Recently, ripple-based constant on-time (RBCOT) control has been widely used in power management integrated circuit (PMIC) due to features of fast load transient response, high light-load efficiency and simple implementation. In many applications such as personal computers, smartphones, and other consumer electronics, multilayer ceramic capacitors with low equivalent series resistance (ESR) are preferred because of compact size and small output voltage ripple requirement. However, a buck converter with RBCOT control may encounter the subharmonic oscillation, especially while low ESR ceramic capacitors are used as converter’s output capacitors.
In this thesis, a charge-pump constant on-time (CPCOT) control scheme is proposed to overcome the subharmonic issue. This control method can also achieve fast transient response and maintain high efficiency under the light-load condition, which are the inherent advantages of RBCOT control scheme. In addition, a dynamic-biased technique for on-time generator is introduced to reduce quiescent current of the controller.
The proposed control was implemented into a monolithic IC using Taiwan Semiconductor Manufacturing Company (TSMC) 0.18 μm CMOS process for a buck converter with switching frequency up to 8 MHz. Furthermore, small-signal model of the CPCOT control was derived based on the describing function (DF) technique to predict system stability and transient response. Finally, simulation and measurement results are given to verify the proposed concepts. The measurement results show that the buck converter can operate under load current between 0.25 A and 1.25 A and produce output voltage from 0.6 V to 1.3 V while the input voltage is 3.3 V. The measured undershoot is 60 mV with 1.5 μs settling time when the load current is increased from 0.25 A to 1.25 A under 1.0 V output voltage.
口試委員審訂書 i
Acknowledgements ii
中文摘要 iv
Abstract v
Table of Contents vii
List of Figures ix
List of Tables xiii
Chapter 1 Introduction 1
1.1 Research Background 1
1.2 Thesis Motivation 6
1.3 Thesis Outline 8
Chapter 2 Review of Previous Ramp Compensation Methods for RBCOT Controlled Buck Converter 10
2.1 Stability Analysis of RBCOT Controlled Buck Converter 10
2.2 Previous Ramp Compensation Techniques to Eliminate Subharmonic Oscillation 12
2.2.1 RBCOT Control with Fixed External Ramp Compensation 13
2.2.2 RBCOT Control with Inductor Current Ramp Compensation 15
2.2.3 RBCOT Control with Virtual Inductor Current Ramp Compensation 17
2.2.4 RBCOT Control with Capacitor Current Ramp Compensation 19
2.3 Summary 21
Chapter 3 Proposed Charge-Pump Constant On-Time (CPCOT) Controlled Buck Converter with Dynamic-Biased On-Time Generator 23
3.1 Description of Proposed CPCOT Control Scheme 23
3.2 Dynamic-Biased Technique for On-Time Generator 27
3.3 Small-Signal Model Derivation 29
3.3.1 Reference-to-Output Transfer Function 29
3.3.2 Output Impedance Transfer Function 36
3.4 Comparison with Other Ramp Compensation Methods 38
3.5 Summary 39
Chapter 4 Circuit Implementation of CPCOT Control Scheme 41
4.1 Implementation of Modulation Comparator 41
4.2 Implementation of Dynamic-Biased On-Time Generator 48
4.3 Implementation of Charge-Pump Ramp Generator 54
Chapter 5 Simulation and Experiment Results 58
5.1 Specification 58
5.2 Printed Circuit Board (PCB) Design and Experimental Platform 60
5.2.1 Printed Circuit Board (PCB) Design 60
5.2.2 Experimental Platform 64
5.3 Simulation and Measurement Results 65
5.3.1 Steady-State Operation 65
5.3.2 Load Transient Response 70
5.3.3 Dynamic-Biased Technique for On-Time Generator 78
5.3.4 Efficiency Plot 79
5.4 Comparison with Previous Published Works 80
Chapter 6 Conclusions and Future Works 81
6.1 Conclusions 81
6.2 Future Works 83
Reference 85
[1]C. O´. Mathu´na, N. Wang, S. Kulkarni and S. Roy, “Review of Integrated Magnetics for Power Supply on Chip (PwrSoC),” IEEE Trans. Power Electron., vol. 27, no.11, pp. 4799-4813, Nov. 2012.
[2]T. Lo´pez, R. Elferich and E. Alarco´n, “Voltage Regulators for Next Generation Processors,” New York: Springer, 2011.
[3]ASUS document, “MAXIMULS III FORMULA user’s manual,” Sept. 2009, Available on http://www.asus.com.
[4]J. Li, “Current-Mode Control: Modeling and its Digital Application,” Ph. D. Dissertation, Virginia Tech, 2009.
[5]J. Wang, J. Xu and B. Bao, “Analysis of Pulse Bursting Phenomenon in Constant-On-Time-Controlled Buck Converter,” IEEE Trans. Industrial Electron., vol. 58, no.12, pp. 5406-5410, Dec. 2011.
[6]S. Tian, F. C. Lee, P. Mattavelli, K.-Y. Cheng and Y. Yan, “Small-Signal Analysis and Optimal Design of External Ramp for Constant On-Time V2 Control with Multilayer Ceramic Caps,” IEEE Trans. Power Electron., vol. 29, no. 8, pp. 4450-4460, Aug. 2014.
[7]J. Li and F. C. Lee, “Modeling of V2 Current-Mode Control,” in Proc. IEEE APEC, pp. 298-304, Mar. 2009.
[8]Y.-C. Lin, C.-J. Chen, D. Chen, and B. Wang, “A Ripple-Based Constant On-Time Control with Virtual Inductor Current and Offset Cancellation for DC Power Converters,” IEEE Trans. Power Electron., vol. 27, no. 10, pp. 4301-4310, Oct. 2012.
[9]Y. Yan, F. C. Lee, S. Tian and P.-H. Liu, “Modeling and Design Optimization of Capacitor Current Ramp Compensated Constant On-Time V2 Control,” IEEE Trans. Power Electron., vol. 33, no. 8, pp. 7288-7296, Aug. 2018.
[10]I.-C. Wei, Y.-C. Lin, C.-J. Chen and D. Chen, “Stability Issues and Modelling of Ripple-Based Constant On-Time Control Schemes Operating in Discontinuous Conduction Mode,” IET Power Electronics, vol. 7, no. 4, pp. 868-875, May 2014.
[11]P.-H. Liu, Y. Yan, F. C. Lee, and Q. Li, “Auto-Tuning and Self-Calibration Techniques for V2 Control with Capacitor Current Ramp Compensation Using Lossless Capacitor Current Sensing,” in Proc. IEEE ECCE, pp.1105-1112, Sept. 2014.
[12]W.-C. Liu, C.-J. Chen, C.-H. Cheng and H.-J. Chen, “A Novel Accurate Adaptive Constant On-Time Buck Converter for Wide-Range Operation,” IEEE Trans. Power Electron., vol. 35, no. 4, pp. 3729-3739, Apr. 2020.
[13]P. K. T. Mok, “Low-Power and Low-Voltage DC-DC Converter Design,” in Proc. IEEE ISSCC, Feb. 2020.
[14]C. F. Lee and P. K. T. Mok, “A Monolithic Current-Mode CMOS DC-DC Converter with On-Chip Current-Sensing Technique,” IEEE J. Solid-State Circuits, vol. 39, no. 1, pp. 3-14, Jan. 2004.
[15]A. Leuciuc, “A Wide Linear Range Low-Voltage Transconductor,” in Proc. IEEE ISCAS, vol. 1, pp.I-161 - I-164, May 2003.
[16]RD0004 datasheet, “Richtek Load Transient Tool User Manual,” Dec. 2016, Available on http://www.richtek.com.
[17]W.-C. Chen, H.-C. Chen, M.-W. Chien, Y.-W. Chou, K.-H. Chen, Y.-H. Lin, T.-Y. Tsai, S.-R. Lin and C.-C. Lee, “Pseudo-Constant Switching Frequency in On-Time Controlled Buck Converter with Predicting Correction Techniques,” IEEE Trans. Power Electron., vol. 31, no. 5, pp. 3650-3662, May 2016.
[18]J. A. Abu Qahouq, O. Abdel-Rahman, L. Huang and I. Batarseh, “On Load Adaptive Control of Voltage Regulators for Power Managed Loads: Control Schemes to Improve Converter Efficiency and Performance,” IEEE Trans. Power Electron., vol. 22, no. 5, pp. 1806-1819, Sept. 2007
[19]X. Ming, Y.-L. Xin, T.-S. Li, H. Liang, Z.-J. Li and B. Zhang, “A Constant On-Time Control With Internal Active Ripple Compensation Strategy for Buck Converter With Ceramic Capacitors,” IEEE Trans. Power Electron., vol. 34, no. 9, pp. 9263-9278, Sept. 2019.
[20]J.-J. Chen, Y.-S. Hwang, C.-H. Chang, Y.-T. Ku and C.-C. Yu, “A Sub-1 μs Fast-Response Buck Converter With Adaptive and Frequency-Locked Controlled Techniques,” IEEE Trans. Industrial Electron., vol. 66, no. 3, pp. 2198-2203, Mar. 2019.
[21]W.-H. Yang, C.-J. Huang, H.-H. Huang, W.-T. Lin, K.-H. Chen, Y.-H. Lin, S.-R. Lin and T.-Y. Tsai, “A Constant-on-Time Control DC–DC Buck Converter With the Pseudowave Tracking Technique for Regulation Accuracy and Load Transient Enhancement,” IEEE Trans. Power Electron., vol. 33, no. 7, pp. 6187-6198, July 2018.
[22]D.-H. Jung, K. Kim, S. Joo and S.-O. Jung, “0.293-mm2 Fast Transient Response Hysteretic Quasi-V2 DC–DC Converter With Area-Efficient Time-Domain-Based Controller in 0.35-μm CMOS,” IEEE J. Solid-State Circuits, vol. 53, no. 6, pp. 1844-1855, June 2018.
[23]C.-H. Tsai, S.-M. Lin and C.-S. Huang, “A Fast-Transient Quasi-V2 Switching Buck Regulator Using AOT Control With a Load Current Correction (LCC) Technique,” IEEE Trans. Power Electron., vol. 28, no. 8, pp. 3949-3957, Aug. 2013.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊