資料載入處理中...
跳到主要內容
臺灣博碩士論文加值系統
:::
網站導覽
|
首頁
|
關於本站
|
聯絡我們
|
國圖首頁
|
常見問題
|
操作說明
English
|
FB 專頁
|
Mobile
免費會員
登入
|
註冊
切換版面粉紅色
切換版面綠色
切換版面橘色
切換版面淡藍色
切換版面黃色
切換版面藍色
功能切換導覽列
(18.97.9.170) 您好!臺灣時間:2024/12/07 18:57
字體大小:
字級大小SCRIPT,如您的瀏覽器不支援,IE6請利用鍵盤按住ALT鍵 + V → X → (G)最大(L)較大(M)中(S)較小(A)小,來選擇適合您的文字大小,如為IE7或Firefoxy瀏覽器則可利用鍵盤 Ctrl + (+)放大 (-)縮小來改變字型大小。
字體大小變更功能,需開啟瀏覽器的JAVASCRIPT功能
:::
詳目顯示
recordfocus
第 1 筆 / 共 1 筆
/1
頁
論文基本資料
摘要
外文摘要
目次
參考文獻
紙本論文
論文連結
QR Code
本論文永久網址
:
複製永久網址
Twitter
研究生:
巫冠志
研究生(外文):
Kuan-Zhi Wu
論文名稱:
透過少樣本鍵擊生物特徵驗證行動裝置之使用者
論文名稱(外文):
Authentication with Few-Shot Keystroke Dynamics on Mobile Device
指導教授:
雷欽隆
指導教授(外文):
Chin-Laung Lei
口試委員:
顏嗣鈞
、
郭斯彥
口試委員(外文):
Hsu-Chun Yen
、
Sy-Yen Kuo
口試日期:
2020-07-29
學位類別:
碩士
校院名稱:
國立臺灣大學
系所名稱:
電機工程學研究所
學門:
工程學門
學類:
電資工程學類
論文種類:
學術論文
論文出版年:
2020
畢業學年度:
108
語文別:
英文
論文頁數:
38
中文關鍵詞:
生物特徵識別
、
鍵擊動態
、
移動裝置
、
少樣本學習
外文關鍵詞:
Biometrics
、
Keystroke Dynamics
、
Mobile Device
、
Few-Shot Learning
DOI:
10.6342/NTU202002200
相關次數:
被引用:0
點閱:115
評分:
下載:0
書目收藏:0
智慧型手機的出現使得手機不再只是單純的個人通信設備,伴隨著其功能越來越強大,手機能儲存的信息也越來越多,如照片、影像、檔案、個人資料...... 等等,尤其在近幾年移動銀行的盛行,使得移動裝置的安全問題更加至關重要,因此在手機上設計可靠且安全的用戶身分認證已成為保護用戶私人信息和數據的一項重要任務。然而傳統常見的身分驗證方法 (例如密碼、PIN、圖形解鎖) 無法提供足夠的安全性,在被偷窺或猜中的情況下,入侵者可以完全的搶占手機。即使出現了生物識別認證 (Fingerprint, Face Recognition, Voice Recognition),移動設備的安全性也沒有得到明顯改善,因為用戶可以在生物識別或密碼之間選擇其一做為登入方式,所以漏洞依然存在。在動態鍵入認證的幫助下,上述問題有了解決的方法,在使用密碼或 PIN 碼認證的同時,還需要通過輸入風格來確認身份,這就為傳統的認證方式增加了很大的安全性。
在本論文中,我們主要關注少樣本的訓練數據是否還能有效區分合法使用者和入侵者,同時提出了一種動態更新模型的方法,使模型能夠不斷學習用戶新的擊鍵習慣,以提高準確性。我們在兩個公共數據集上分別實現了 4.2% 和 2.8% 的 FRR。
With the advent of smartphones, mobile phones are no longer just simple personal communication devices. With more and more powerful functions, mobile phones can store more and more information. Such as photos, images, files, private data, etc. Especially in recent years, the popularity of mobile banking has made the security of mobile devices even more important. Therefore, designing reliable and safe user authentication on mobile phones has become an important task to protect users’ private information and data. However, traditional common identity verification methods (PIN and password) cannot provide sufficient security. In the case of being peeped or guessed, an intruder can completely access the user’s data. Even with the advent of biometrics authentication (Fingerprint, Face Recognition, Voice Recognition), the security of mobile devices has not been significantly improved, because users can choose between biometrics or passwords to log into the devices. So the vulnerability remains. With the help of keystroke dynamic authentication, there is a solution to the above problem, which requires the identity to be confirmed by typing style while authenticating with password or PIN, which adds great security to the traditional authentication method.
In the thesis, we mainly focus on whether a small amount of training data can still be effectively distinguished between legitimate and impostor, and also propose a dynamic update model method so that the model can continue to learn the user’s new keystroke habits to improve accuracy. We achieved the FRR of 4.2% and 2.8% on two public datasets.
Contents
1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 3.1 Statistical Features Selection . . . . . . . . . . . . . . . . . . . . . . . 7 3.1.1 Raw Features . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.1.2 Common features . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.1.3 Novel features . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.2 One-Class Classification . . . . . . . . . . . . . . . . . . . . . . . . . 9 3.2.1 Isolation Forest . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.2.2 One-class SVM . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.3 Scikit-learn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4 Datasets and Feature engineering . . . . . . . . . . . . . . . . . . . . 15
4.1 Dataset1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 4.1.1 Data collection . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.1.2 Feature extraction . . . . . . . . . . . . . . . . . . . . . . . . 17
4.2 Dataset2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 4.2.1 Data collection . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.2.2 Feature extraction . . . . . . . . . . . . . . . . . . . . . . . . 20
5 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 5.1 Data augmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 5.1.1 Gaussian noise . . . . . . . . . . . . . . . . . . . . . . . . . . 22 5.2 Overall architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
5.3 Model used . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 5.3.1 One-class SVM(SVDD) . . . . . . . . . . . . . . . . . . . . . 25
5.3.2 Isolation forest . . . . . . . . . . . . . . . . . . . . . . . . . . 27
6 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
6.1 Evaluation metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
6.2 Performance analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 6.2.1 Classifier analysis . . . . . . . . . . . . . . . . . . . . . . . . . 29
6.2.2 Noise analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
6.2.3 Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
[1] Hoang Minh Thang et al. “Gait identification using accelerometer on mobile phone”. In: 2012 International Conference on Control, Automation and Information Sciences (ICCAIS). IEEE. 2012, pp. 344–348 (cit. on p. 2).
[2] John T Wixted. “The psychology and neuroscience of forgetting”. In: Annu. Rev. Psychol. 55 (2004), pp. 235–269 (cit. on p. 2).
[3] Roger N Shepard. “Recognition memory for words, sentences, and pictures”. In: Journal of verbal Learning and verbal Behavior 6.1 (1967), pp. 156–163 (cit. on p. 2).
[4] Alan S Brown et al. “Generating and remembering passwords”. In: Applied Cognitive Psychology: The Official Journal of the Society for Applied Research in Memory and Cognition 18.6 (2004), pp. 641–651 (cit. on p. 2).
[5] Kevin Doel. “Password”unseated by “123456”on SplashData’s annual “Worst Passwords”list”. In: Pridobljeno (3.4. 2014) iz SplashData News: http://splashdata. com/press/worstpasswords2013. htm (2013) (cit. on p. 2).
[6] Salil P Banerjee and Damon L Woodard. “Biometric authentication and identification using keystroke dynamics: A survey”. In: Journal of Pattern Recognition Research 7.1 (2012), pp. 116–139 (cit. on p. 2).
[7] Nathan L Clarke and Steven M Furnell. “Authenticating mobile phone users using keystroke analysis”. In: International journal of information security 6.1 (2007), pp. 1–14 (cit. on p. 4).
[8] M Karnan and N Krishnaraj. “A model to secure mobile devices using keystroke dynamics through soft computing techniques”. In: International Journal of Soft Computing and Engineering (IJSCE) ISSN (2012), pp. 2231–2307 (cit.on p. 4).
[9] Patrick Bours and Elnaz Masoudian. “Applying keystroke dynamics on onetime pin codes”. In: 2nd International Workshop on Biometrics and Forensics. IEEE. 2014, pp. 1–6 (cit. on p. 5).
[10] Emanuele Maiorana et al. “Keystroke dynamics authentication for mobile phones”. In: Proceedings of the 2011 ACM Symposium on Applied Computing. 2011, pp. 21–26 (cit. on p. 5).
[11] Hataichanok Saevanee and P Bhattarakosol. “Authenticating user using keystroke dynamics and finger pressure”. In: 2009 6th IEEE Consumer Communications and Networking Conference. IEEE. 2009, pp. 1–2 (cit. on p. 5).
[12] Matthias Trojahn and Frank Ortmeier. “Toward mobile authentication with keystroke dynamics on mobile phones and tablets”. In: 2013 27th International Conference on Advanced Information Networking and Applications Workshops. IEEE. 2013, pp. 697–702 (cit. on p. 5).
[13] Margit Antal and Lehel Nemes. “The mobikey keystroke dynamics password database: Benchmark results”. In: Computer Science On-line Conference. Springer. 2016, pp. 35–46 (cit. on p. 8).
[14] Noor Mahmood Al-Obaidi and Mudhafar M Al-Jarrah. “Statistical keystroke dynamics system on mobile devices for experimental data collection and user authentication”. In: 2016 9th International Conference on Developments in eSystems Engineering (DeSE). IEEE. 2016, pp. 123–129 (cit. on p. 8).
[15] M. M. Al-Jarrah, G. M. Khalaf, and S. Amin. “PIN Authentication Using Multi-Model Anomaly Detection in Keystroke Dynamics”. In: 2019 2nd International Conference on Signal Processing and Information Security (ICSPIS). 2019, pp. 1–4 (cit. on p. 8).
[16] Fei Tony Liu, Kai Ming Ting, and Zhi-Hua Zhou. “Isolation forest”. In: 2008 Eighth IEEE International Conference on Data Mining. IEEE. 2008, pp. 413–422 (cit. on p. 9).
[17] David MJ Tax and Robert PW Duin. “Support vector data description”. In: Machine learning 54.1 (2004), pp. 45–66 (cit. on p. 12).
[18] M. Antal and L. Z. Szabó. “An Evaluation of One-Class and Two-Class Classification Algorithms for Keystroke Dynamics Authentication on Mobile Devices”. In: 2015 20th International Conference on Control Systems and Computer Science. 2015, pp. 343–350 (cit. on p. 15).
[19] Cheng-Jung Tasia et al. “Two novel biometric features in keystroke dynamics authentication systems for touch screen devices”. In: Security and Communication Networks 7.4 (2014), pp. 750–758 (cit. on p. 19).
國圖紙本論文
連結至畢業學校之論文網頁
點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
推文
當script無法執行時可按︰
推文
網路書籤
當script無法執行時可按︰
網路書籤
推薦
當script無法執行時可按︰
推薦
評分
當script無法執行時可按︰
評分
引用網址
當script無法執行時可按︰
引用網址
轉寄
當script無法執行時可按︰
轉寄
top
相關論文
相關期刊
熱門點閱論文
1.
可變動式通行碼擊鍵特徵身分認證系統於智慧型手機之研究
2.
利用輸入時間結合輸入影像作個人身份之確認
3.
智慧購物車之基於深度學習人臉識別系統開發
4.
以生物指紋辨識技術應用於信用卡交易身分認證之使用意圖研究
5.
針對注音輸入法所設計的敲鍵特徵
6.
一個新穎的使用者擊鍵特徵預測機制於網路即時詐騙訊息辨識之研究
7.
運用鍵擊特徵增強密碼驗證機制之研究
無相關期刊
1.
針對北高市長選舉的網軍分身偵測
2.
浸染布料之配方預測-使用深層神經網路
3.
以程式呼叫 API 之時間序列檢測惡意程式
4.
兼容的身分認證與金鑰交換協定
5.
多價肺炎鏈球菌結合型疫苗對預防台灣兒童肺炎住院的成效:以全國人口為基礎的時間序列分析
6.
探討活動季節變化與情緒疾患及憂鬱狀態的關係
7.
在末期腎病變中免疫發炎與心血管疾病之關聯
8.
利用煉鋼廠廢棄耐火磚回收廢水中的磷酸與氨氮之研究
9.
自來水管線中四種含鉛腐蝕產物脫落形成之顆粒態鉛及濾紙過濾判定溶解態鉛之有效程度
10.
楊起元的師承與學術
11.
基於深度強化式學習情感理解之富同情心的對話生成聊天機器人
12.
應用於5G無線系統之毫米波升頻器及可變增益放大器之設計
13.
基於長短期記憶式條件式生成對抗網路之無號誌路口軌跡預測
14.
從全球化發展歷程看新冠肺炎疫情對台灣產業與新南向政策之影響
15.
局域化隨機雷射及3D列印隨機雷射
簡易查詢
|
進階查詢
|
熱門排行
|
我的研究室