跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.170) 您好!臺灣時間:2024/12/06 03:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張峻豪
研究生(外文):Jyun-Hao Jhang
論文名稱:基於最佳化回授雙向快速搜尋隨機樹*與停車導向模型預測控制之人性化自駕車停車運動規劃與車輛控制
論文名稱(外文):Human-like Motion Planning and Vehicle Control for Autonomous Parking Using Optimize-feedback Bidirectional Rapidly-exploring Random Trees* and Parking-oriented Model Predictive Control
指導教授:連豊力
指導教授(外文):Feng-Li Lian
口試委員:李後燦黃正民許志明
口試委員(外文):Hou-Tsan LeeCheng-Ming HuangChih-Ming Hsu
口試日期:2020-07-02
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:電機工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:英文
論文頁數:246
中文關鍵詞:自駕停車系統基於隨機取樣的運動規劃停車導向模型可預測模型垂直停車平行停車斜向停車U字型迴轉
外文關鍵詞:Autonomous parking systemSampling based motion planningParking-oriented model predictive controlPerpendicular parkingParallel parkingAngle parkingU-turn
DOI:10.6342/NTU202002743
相關次數:
  • 被引用被引用:1
  • 點閱點閱:198
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
時至今日,自駕車技術致力於為日常生活提供便捷。然而,現存先進駕駛輔助系統 (ADAS)的應用只能被歸類在自駕等級1至4,而非全自動等級5。基於危險與環境的考量,自動停車可能成為第一個自駕車的全自動應用。大部分自駕停車所需要的技術可從現有技術中選擇,例如:感測結合、SLAM和周圍感知等。另一方面,某些技術應該依據停車場景與考量來做開發,例如:停車格探測、運動規劃與車輛控制等。
在本篇論文中,有兩項用於自駕停車技術的關鍵方法,分別是運動規劃法與車輛控制器:
就運動規劃而言,一個基於隨機取樣的運動規劃法被提出用來從任何可行的起始點有效率地產生仿人類且免於碰撞的停車路徑於日常生活中的停車情境。此外,被提出的方法其目的是為要解決基於隨機取樣的運動規劃法的共同缺點,以維持每次執行結果的高度路徑品質與一致性。
就車輛控制而言,一個停車導向的模型預測控制器被提出來同時控制方向盤與速度以達到精確且順暢的停車路徑追蹤。更進一步來說,被提出的車輛控制器致力於解決實作問題,例如:車輛考量、即時控制與訊號延遲。因此,實作表現上得以接近在理想狀態下的表現。
為了證實兩項本篇所提出方法的效果,本篇論文中的模擬與實驗分別被執行在常見與嚴苛的停車情境中,例如:垂直停車、平行停車、斜向停車與U字型迴轉。模擬結果不僅驗證了本篇研究中所提出兩項方法中技術元素的效果,也展示處理多樣停車情境的能力。最重要的是,實車實驗充分展現了該兩項方法是可被確實實踐在日常生活中的,而非僅僅是理論上的模擬。
Nowadays, techniques of autonomous vehicles are devoted to providing convenience for people in everyday life. However, existing applications of Advanced Driver Assistance Systems (ADAS) can just be categorized into autonomous driving level 1-4 but not full automation in level 5. With the considerations of risks and environments, autonomous parking may be the first fully autonomous applications for autonomous vehicles. Most required techniques for autonomous parking can be chosen from existing ones, like sensor fusion, SLAM, and surrounding perception. On the other hand, some required techniques should be developed based on the parking scenarios and considerations, such as parking slot detection, motion planning, and vehicle control.
In this thesis, there are two key methods proposed for the autonomous parking technique, that is, a motion planner and a vehicle controller:
For motion planning, a sampling based motion planner is proposed to generate a human-like and collision-free parking path efficiently with any feasible start and goal configurations for parking scenarios in everyday life. Moreover, the proposed method aims to deal with the common defects of sampling based motion planners to maintain high path quality and consistency for each execution.
For vehicle control, a parking-oriented model predictive controller is proposed to control steering and speed simultaneously for accurate and smooth parking path tracking. Furthermore, the proposed vehicle controller is dedicated to working around the practical problems, such as vehicle considerations, real-time control, and signal delay. As a result, the practical performance can approach the performance in ideal condition.
To verify the effects of both proposed methods, the simulations and experiments in the thesis are conducted in common and strict parking scenarios, such as perpendicular parking, parallel parking, angle parking, and U-turn. The simulation results not only verify the effects of each technical element in both proposed methods, but also show the ability to deal with the various parking scenarios. The most important of all, the on-car experiments sufficiently demonstrate that both proposed methods can be actually implemented in everyday life instead of theoretical simulations.
摘要 i
ABSTRACT iii
CONTENTS vii
LIST OF FIGURES x
LIST OF TABLES xvi
Chapter 1 Introduction 1
1.1 Motivation 1
1.2 Problem Formulation 3
1.3 Contributions 6
1.3.1 Optimize-feedback Bi-RRT* with Reeds-Shepp Curve 6
1.3.2 Parking-oriented Model Predictive Control 7
1.4 Organization of the Thesis 8
Chapter 2 Background and Literature Survey 10
2.1 Advanced Driver Assistance Systems 10
2.2 Autonomous Vehicle Techniques 12
2.3 Motion Planning 13
2.4 Vehicle Control 20
2.5 Autonomous Parking System 24
Chapter 3 Related Theories 25
3.1 Vehicle Model 25
3.2 RRT* with Reeds-Shepp Curve 27
3.2.1 Optimal Rapidly-exploring Random Tree 27
3.2.2 Reeds-Shepp Curve 29
3.3 Model Predictive Control 29
3.3.1 The Periods of MPC 29
3.3.2 Linear State Space Model 31
Chapter 4 Optimize-feedback Bidirectional RRT* with Reeds-Shepp Curve 33
4.1 Overview of The Proposed Motion Planner 34
4.2 Collision Model Formulation for Various Vehicles 39
4.3 Exploration-improved Bidirectional RRT* with Reeds-Shepp Curve 41
4.3.1 The Revised Bi-RRT* with Reeds-Shepp Curve 42
4.3.2 Collision-avoidable Sampler 45
4.3.3 The Revised Radial Sampler 48
4.4 Optimize-feedback Process 51
4.5 State Space Convergence 53
4.6 Human-like Cost Function 54
4.7 Summary 57
Chapter 5 Parking-oriented Model Predictive Control 60
5.1 Overview of The Vehicle Controller 61
5.2 Tracking Strategy for Autonomous Parking 62
5.2.1 Segment by Segment Tracking 63
5.2.2 Steering Angle Initialization for Each Segment 63
5.3 Parking-oriented Cost Function and Constraint Design 65
5.4 Simultaneous Computation and Control Framework 68
5.4.1 Multi-thread Framework 69
5.4.2 Execution Time Compensation 70
5.5 Steering Command Smoother 73
5.6 Summary 74
Chapter 6 Simulation and Experimental Results and Analysis 77
6.1 Simulation and Experimental Setups 78
6.2 Method Effects of Optimize-feedback Bidirectional RRT with Reeds-Shepp Curve 88
6.2.1 Simulation Process 89
6.2.2 Collision Model Formulation for Various Vehicles 90
6.2.3 Exploration-improved Bidirectional RRT* with Reeds-Shepp Curve 92
6.2.4 Optimize-feedback Process 101
6.2.5 State Space Convergence 103
6.2.6 Human-like Cost Function 106
6.3 Method Effects of Parking-oriented Model Predictive Control 110
6.3.1 Simulation Process 110
6.3.2 Tracking Strategy for Autonomous Parking 115
6.3.3 Parking-oriented Cost Function and Constraint Design 118
6.3.4 Simultaneous Computation and Control Framework 122
6.3.5 Steering Command Smoother 126
6.4 Simulations in Autonomous Parking Scenarios 130
6.4.1 System Structure 131
6.4.2 Perpendicular Parking 132
6.4.3 Parallel Parking 144
6.4.4 Angle Parking 158
6.4.5 U-turn 171
6.5 Experiments in Autonomous Parking Scenarios 184
6.5.1 System Structure 185
6.5.2 Perpendicular Parking with ITRI Pacifica 186
6.5.3 Parallel Parking with ITRI Pacifica 204
6.5.4 Signal Delay for Practical Consideration 215
6.6 Comparison for The Proposed Motion Planner 218
6.6.1 Simulation Process 218
6.6.2 Compared to Kinematic Bi-RRT 219
6.6.3 Compared to Waypoint-Guided Bi-RRT 226
6.7 Summary 230
Chapter 7 Conclusions and Future Works 232
7.1 Conclusions 232
7.2 Future Works 235
References 237
[1: Hussain & Zeadally 2019] Rasheed Hussain and Sherali Zeadally, “Autonomous Cars: Research Results, Issues, and Future Challenges,” IEEE Communications Surveys & Tutorials, Vol. 21, No.2, pp. 1275-1313, Secondquarter 2019.
[2: Ziegler et al. 2014] J. Ziegler, P. Bender, M. Schreiber, H. Lategahn, T. Strauss, C. Stiller, T. Dang, U. Franke, N. Appenrodt, C. G. Keller, E. Kaus, R. G. Herrtwich, C. Rabe, D. Pfeiffer, F. Lindner, F. Stein, F. Erbs, M. Enzweiler, C. Knoppel, J. Hipp, M. Haueis, M. Trepte, C. Brenk, A. Tamke, M. Ghanaat, M. Braun, A. Joos, H. Fritz, H. Mock, M. Hein, and E. Zeeb, “Making Bertha Drive - An Autonomous Journey on a Historic Route,” IEEE Intelligent Transportation Systems Magazine, Vol. 6, No. 2, pp. 8-20, 2014.
[3: Jo et al. 2014] K. Jo, J. Kim, D. Kim, C. Jang, and M. Sunwoo, “Development of Autonomous Car - Part I: Distributed System Architecture and Development Process,” IEEE Transactions on Industrial Electronics, Vol. 61, No. 12, pp. 7131-7140, December 2014.
[4: Langari 2017] Reza Langari, “Autonomous Vehicles A Tutorial on Research and Development Issues,” in Proceedings of IEEE American Control Conference (ACC), Sheraton Seattle Hotel, Seattle, USA, pp. 4018-4022, May 24-26, 2017.
[5: Banzhaf et al. 2017] Holger Banzhaf, Dennis Nienhu ̈ser, Steffen Knoop1, J. Marius Zo ̈llner, “The Future of Parking: A Survey on Automated Valet Parking with an Outlook on High Density Parking,” in Proceedings of IEEE Intelligent Vehicles Symposium (IV), Redondo Beach, CA, USA, pp. 1827-1834, June 11-14, 2017.
[6: Bengler et al. 2014] Klaus Bengler, Klaus Dietmayer, Berthold Färber, Markus Maurer, Christoph Stiller, Hermann Winner, “Three Decades of Driver Assistance Systems – Review and Future Perspectives,” IEEE Intelligent Transportation Systems Magazine, Vol. 6, No. 4, pp. 6-22, October 2014.
[7: Bresson et al. 2017] Guillaume Bresson, Zayed Alsayed, Li Yu, and Se ́bastien Glaser, “Simultaneous Localization and Mapping: A Survey of Current Trends in Autonomous Driving,” IEEE Transactions on Intelligent Vehicles, Vol. 2, No. 3, pp. 194-220. September 2017.
[8: Zhu et al. 2017] Hao Zhu, Ka-Veng Yuen, Lyudmila Mihaylova, and Henry Leung, “Overview of Environment Perception for Intelligent Vehicles,” IEEE Transactions on Intelligent Transportation Systems, Vol. 18, No. 10, pp. 2584-2601, January 2017.
[9: Paden et al. 2016] Brian Paden, Michal Ca ̌p ̀, Sze Zheng Yong, Dmitry Yershov, and Emilio Frazzoli, “A Survey of Motion Planning and Control Techniques for Self-Driving Urban Vehicles,” IEEE Transactions on Intelligent Vehicles, Vol. 1, No. 1, pp. 33-55, March 2016.
[10: González et al. 2016] David González, Joshué Pérez, Vicente Milanés, and Fawzi Nashashibi, “A Review of Motion Planning Techniques for Automated Vehicles,” IEEE Transactions on Intelligent Transportation Systems, Vol. 17, No. 4, pp. 1135-1145, April 2016.
[11: Gu & Dolan 2012] Tianyu Gu and John M. Dolan, “On-Road Motion Planning for Autonomous Vehicles,” Intelligent Robotics and Applications. Berlin, Germany: Springer-Verlag, pp. 588-597, 2012.
[12: Ziegler et al. 2014] Julius Ziegler, Philipp Bender, Thao Dang, and Christoph Stiller, “Trajectory Planning for BERTHA - a Local, Continuous Method,” in Proceedings of IEEE Intelligent Vehicles Symposium, Dearborn, MI, USA, pp. 450-457, June 8-11, 2014.
[13: Dolgov et al. 2010] Dmitri Dolgov, Sebastian Thrun, Michael Montemerlo, and James Diebel, “Path planning for autonomous vehicles in unknown semi-structured environments,” International Journal of Robotics Research, Vol. 29, No. 5, pp. 485-501, April 2010.
[14: Lim et al. 2018] Wonteak Lim, Seongjin Lee, Myoungho Sunwoo, and Kichun Jo, “Hierarchical Trajectory Planning of an Autonomous Car Based on the Integration of a Sampling and an Optimization Method,” IEEE Transactions on Intelligent Transportation Systems, Vol. 19, No. 2, pp. 613-626, February 2018.
[15: Moon et al. 2017] Jaeyoung Moon, Il Bae, and Shiho Kim, “Real-Time near-optimal Path and Maneuver Planning in Automatic Using a Simultaneous Dynamic Optimization Approach,” in Proceedings of IEEE Intelligent Vehicles Symposium (IV), Redondo Beach, CA, USA, pp.193-196, June 11-14, 2017.
[16: Reeds & Shepp 1990] J. A. Reeds, L. A. Shepp, “Optimal Path for A Car That Goes Both Forwards And Backwards,” Pacific Journal Of Mathematics, Vol. 145, No. 2, pp. 367-373, 1990.
[17: Fraichard & Scheuer 2004] Thierry Fraichard and Alexis Scheuer, “From Reeds and Shepp’s to Continuous-Curvature Path,” IEEE Transactions on Robotics, Vol. 20, No. 6, pp. 1025-1035, December 2004.
[18: Funke et al. 2012] Joseph Funke, Paul Theodosis, Rami Hindiyeh, Ganymed Stanek, Krisada Kritatakirana, Chris Gerdes, Dirk Langer, Marcial Hernandez, Bernhard Mu ̈ller-Bessler, Burkhard Huhnke, “Up to the Limits: Autonomous Audi TTS,” in Proceedings of IEEE Intelligent Vehicles Symposium, Alcala de Henares, Spain, pp. 541-547, June 3-7, 2012.
[19: Glaser et al. 2010] Sébastien Glaser, Benoit Vanholme, Saïd Mammar, Dominique Gruyer, and Lydie Nouveliere, “Maneuver-based trajectory planning for highly autonomous vehicles on real road with traffic and driver interaction,” IEEE Transactions on Intelligent Transportation System, Vol. 11, No. 3, pp. 589-606, September 2010.
[20: Rastelli et al. 2014] Joshue Pe ́rez Rastelli, Ray Lattarulo, and Fawzi Nashashibi, “Dynamic trajectory generation using continuous-curvature algorithms for door to door assistance vehicles,” in Proceedings of IEEE Intelligent Vehicles Symposium, Dearborn, Michigan, USA, pp. 510-515, June 8-11, 2014.
[21: Berglund et al. 2010] Tomas Berglund, Andrej Brodnik, Håkan Jonsson, “Planning Smooth and Obstacle-Avoiding B-Spline Paths for Autonomous Mining Vehicles,” IEEE Transactions on Automation Science and Engineering, Vol. 7, No. 1, pp. 167-172, Jan. 2010.
[22: Elbanhawi et al. 2016] Mohamed Elbanhawi, Milan Simic, and Reza Jazar, “Randomized Bidirectional B-Spline Parameterization Motion Planning,” IEEE Transactions on Intelligent Transportation Systems, Vol. 17, No.2, pp. 406-419, Feb. 2016.
[23: Kim et al. 2014] Jong Min Kim, Kyung Il Lim and Jung Ha Kim, “Auto Parking Path Planning System Using Modified Reeds-Shepp Curve Algorithm,” in Proceedings of IEEE International Conference on Ubiquitous Robots and Ambient Intelligence (URAI), Double Tree Hotel by Hilton, Kuala Lumpur, Malaysia, pp. 311-315, Nov. 12-15, 2014.
[24: Yi et al. 2017] Yang Yi, Zhang Lu, Qu Xin, Lei Jinzhou, Li Yijin, and Wan Jianhang, “Smooth Path Planning for Autonomous Parking System,” in Proceedings of IEEE Intelligent Vehicles Symposium (IV), Redondo Beach, CA, USA, pp.193-196, June 11-14, 2017.
[25: Kala & Warwick 2013] Rahul Kala and Kevin Warwick, “Multi-level planning for semiautonomous vehicles in traffic scenarios based on separation maximization,” Journal of Intelligent & Robotic Systems, Vol. 72, No. 3/4, pp. 559-590, Dec. 2013.
[26: Ferguson et al. 2008] Dave Ferguson, Thomas M. Howard, and Maxim Likhachev, “Motion planning in urban environments,” Journal of Field Robotics, Vol. 25, No. 11/12, pp. 939-960, November-December 2008.
[27: Ziegler et al. 2008] Julius Ziegler, Moritz Werling, and Joachim Schroder, “Navigating carlike robots in unstructured environments using an obstacle sensitive cost function,” in Proceedings of IEEE Intelligent Vehicles Symposium, Eindhoven, Netherlands, pp. 787-791, June 4-6, 2008.
[28: Howard et al. 2008] Thomas M. Howard, Colin J.Green, Alonzo Kelly, and Dave Ferguson, “State space sampling of feasible motions for highperformance mobile robot navigation incomplex environments,” Journal of Field Robotics, Vol. 25, No. 6/7, pp.325-345, Jun. 2008.
[29: Werling et al. 2012] Moritz Werling, Sören Kammel, Julius Ziegler, and Lutz Gröll, “Optimal trajectories for time-critical street scenarios using discretized terminal manifolds,” International Journal of Robotics Research, Vol. 31, No. 3, pp. 346-359, March 2012.
[30: Esposto et al. 2017] Francesco Esposto, Jorrit Goos, Arjan Teerhuis, Mohsen Alirezaei, “Hybrid Path Planning for Non-Holonomic Autonomous Vehicles: an Experimental Evaluation,” in Proceedings of IEEE International Conference on Models and Technologies for Intelligent Transportation Systems (MT-ITS), Naples, Italy, pp. 25-30, June 26-28, 2017.
[31: Klaudt et al. 2017] Sebastian Klaudt, Adrian Zlocki, and Lutz Eckstein, “A-Priori map information and path planning for automated valet-parking*,” in Proceedings of IEEE Intelligent Vehicles Symposium (IV), Redondo Beach, CA, USA, pp.193-196, June 11-14, 2017.
[32: Ma et al. 2015] Liang Ma, Jianru Xue, Kuniaki Kawabata, Jihua Zhu, Chao Ma, and Nanning Zheng, “Efficient Sampling-Based Motion Planning for On-Road Autonomous Driving,” IEEE Transactions on Intelligent Transportation Systems, Vol. 16, No. 4, pp. 1961-1976, August 2015.
[33: Moon & Chung 2015] Chang-bae Moon and Woojin Chung, “Kinodynamic Planner Dual-Tree RRT (DT-RRT) for Two-Wheeled Mobile Robots Using the Rapidly Exploring Random Tree,” IEEE Transactions on Industrial Electronics, Vol. 62, No. 2, pp. 1080-1090, February 2015.
[34: Tanzmeister et al. 2016] Georg Tanzmeister, Dirk Wollherr, and Martin Buss, “Grid-Based Multi-Road-Course Estimation Using Motion Planning,” IEEE Transactions on Vehicular Technology, Vol. 65, No. 4, pp. 1924-1935, April 2016.
[35: Kuwata et al. 2009] Yoshiaki Kuwata, Justin Teo, Gaston Fiore, Sertac Karaman, Emilio Frazzoli, and Jonathan P. How, “Real-time Motion Planning with Applications to Autonomous Urban Driving,” IEEE Transactions on Control Systems Technology, Vol. 17, No. 5, September 2009.
[36: Kleinbort et al. 2019] Michal Kleinbort, Kiril Solovey, Zakary Littlefield, Kostas E. Bekris, and Dan Halperin, “Probabilistic completeness of RRT for geometric and kinodynamic planning with forward propagation,” IEEE Robotics and Automation Letters, Vol. 4, No. 2, pp. 270-283, April 2019.
[37: Feng et al. 2018] Ziyue Feng, Shitao Chen, Yu Chen and Nanning Zheng, “Model-based Decision Making with Imagination for Autonomous Parking,” in Proceedings of IEEE Intelligent Vehicles Symposium (IV), Changshu, Suzhou, China, pp. 2216-2223, June 26-30, 2018.
[38: Zheng & Liu 2018] Kaiyu Zheng and Shan Liu, “RRT based Path Planning for Autonomous Parking of Vehicle,” in Proceedings of IEEE Data Driven Control and Learning Systems Conference, Enshi, Hubei Province, China, pp. 627-632, May 25-27, 2018.
[39: Banzhaf et al. 2017] Holger Banzhaf, Luigi Palmieri, Dennis Nienhüser, Thomas Schamm, Steffen Knoop, J. Marius Zöllner, “Hybrid Curvature Steer: A Novel Extend Function for Sampling-Based Nonholonomic Motion Planning in Tight Environments,” in Proceedings of International Conference on Intelligent Transportation Systems (ITSC), Yokohama, Japan, Oct. 1619, 2017.
[40: Shin et al. 2016] Seho Shin, Joonwoo Ahn and Jaeheung Park, “Desired Orientation RRT (DO-RRT) for Autonomous Vehicle in Narrow Cluttered Spaces,” in Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Daejeon Convention Center, Daejeon, Korea, pp. 4736-4741, October 9-14, 2016.
[41: Wang et al. 2017] Yebin Wang, Devesh K. Jha, and Yukiyasu Akemi, “A Two-stage RRT Path Planner for Automated Parking,” in Proceedings of IEEE Conference on Automation Science and Engineering (CASE), Xi'an, China, pp. 496-502, August 20-23, 2017.
[42: Zinelli et al. 2019] Andrea Zinelli, Luigi Musto, and Fabio Pizzati, “A Deep-Learning Approach for Parking Slot Detection on Surround-View Images,” in Proceedings of IEEE Intelligent Vehicles Symposium (IV), Paris, France, pp. 683-688, June 9-12, 2019.
[43: Wit et al. 2004] Jeff Wit, Carl D. Crane, and David Armstrong, “Autonomous Ground Vehicle Path Tracking,” Journal of Robotic Systems, Vol. 21, pp. 439-449, 2004.
[44: Samson 1995] Claude Samson, “Control of chained systems: Application to path following and time-varying point-stabilization of mobile robots,” IEEE Transactions on Automatic Control, Vol. 40, No. 1, pp. 64-77, January 1995.
[45: Jiang & Nijmeijer 1997] Zhong-Ping Jiang and Henk Nijmeijer,“Tracking control of mobile robots: A case study in backstepping,” Automatica, Vol. 33, No. 7, pp. 1393-1399, July 1997.
[46: Novel et al. 1995] Brigitte D'Andrea Novel, G. Campion, and Georges Bastin, “Control of nonholonomic wheeled mobile robots by state feedback linearization,” International Journal of Robotics Research, Vol. 14, No. 6, pp. 543-559, December 1995.
[47: Raffo et al. 2009] Guilherme V. Raffo, Guilherme K. Gomes, Julio E. Normey-Rico, Christian R. Kelber, and Leandro B. Becker, “A Predictive Controller for Autonomous Vehicle Path Tracking,” IEEE Transactions on Intelligent Transportation Systems, Vol. 10, No. 1, pp. 92-102, March 2009.
[48: Kim et al. 2014] E. Kim, J. Kim, and Myoungho Sunwoo, “Model Predictive Control Strategy for Smooth Path Tracking of Autonomous Vehicles with Steering Actuator Dynamics,” International Journal of Automotive Technology, Vol. 15, No. 7, pp. 1155−1164, 2014.
[49: Ji et al. 2014] Jie Ji, Amir Khajepour, Wael William Melek, and Yanjun Huang, “Path Planning and Tracking for Vehicle Collision Avoidance Based on Model Predictive Control with Multiconstraints,” IEEE Transactions on Vehicular Technology, Vol. 66, No. 2, pp. 952-964, February 2017.
[50: Falcone et al. 2007] Paolo Falcone, Francesco Borrelli, Jahan Asgari, Hongtei Eric Tseng, and Davor Hrovat, “Predictive Active Steering Control for Autonomous Vehicle Systems,” IEEE Transactions on Control Systems Technology, Vol. 15, No. 3, pp. 566-580, May 2007.
[51: Falcone et al. 2008] Paolo Falcone, Francesco Borrelli, Jahan Asgari, Hongtei Eric Tseng, and Davor Hrovat, “Linear time-varying model predictive control and its application to active steering systems: Stability analysis and experimental validation,” International Journal of Robust Nonlinear Control, Vol. 18, pp. 862-875, 2008.
[52: Sun et al. 2019] Chuanyang Sun, Xin Zhang, Quan Zhou, and Ying Tian, “A Model Predictive Controller with Switched Tracking Error for Autonomous Vehicle Path Tracking,” IEEE Access, Vol. 7, pp. 53103-53114, 2019.
[53: Yu et al. 2019] Jiaxing Yu, Xuexun Guo, Xiaofei Pei, Zhenfu Chen, Wei Zhou, Maolin Zhu, and Chaoxian Wu, “Path tracking control based on tube MPC and time delay motion prediction,” IET Intelligent Transport Systems, Vol. 14, No. 1, pp. 1-12, 2019
[54: Cigánek 2019] Ján Cigánek, “Automatic Parking Control using Fuzzy Logic,” in Proceedings of 2019 6th International Conference on Advanced Control Circuits and Systems (ACCS) & 2019 5th International Conference on New Paradigms in Electronics & information Technology (PEIT), Hurgada, Egypt, Egypt, pp. 203-208, Nov. 17-20, 2019.
[55: Filatov et al. 2016] Denis M. Filatov, Elena V. Serykh, Michael M. Kopichev, and Andrey V. Weinmeister, “Autonomous Parking Control System of Four Wheeled Vehicle,” in Proceedings of 2016 IEEE V Forum Strategic Partnership of Universities and Enterprises of Hi-Tech Branches (Science. Education. Innovations), St. Petersburg, Russia, pp. 102-107, Nov. 16-18, 2016.
[56: Hsu et al. 2008] Tsung-hua Hsu, Jing-Fu Liu, Pen-Ning Yu, Wang-Shuan Lee and Jia-Sing Hsu, “Development of an Automatic Parking System for Vehicle,” in Proceedings of IEEE Vehicle Power and Propulsion Conference (VPPC), Harbin, China, Sep. 3-5, 2008.
[57: Ikhwan et al. 2017] Muhammad Ikhwan, Mardlijah, and Didik Khusnul Arif, “Model Predictive Parking Control on Four Wheel Vehicle with Optimum Parking Space,” in Proceedings of 2017 International Conference on Electrical Engineering and Informatics (ICELTICs 2017), Banda Aceh, Indonesia, pp. 35-39, Oct. 18-20, 2017.
[58: Joševski et al. 2017] Martina Joševski, Alexander Katriniok, Verena Neisen, Andreas Riek and Dirk Abel, “Model predictive control for road disturbance rejection in on-curb parking scenarios,” in Proceedings of 2017 IEEE 56th Annual Conference on Decision and Control (CDC), Melbourne, VIC, Australia, pp. 855-860, Dec. 12-15, 2017.
[59: Petrov & Nashashibi 2015] Plamen Petrov and Fawzi Nashashibi, “Automatic Vehicle Perpendicular Parking Design Using Saturated Control,” in Proceedings of 2015 IEEE Jordan Conference on Applied Electrical Engineering and Computing Technologies (AEECT), Amman, Jordan, Nov. 3-5, 2015.
[60: Min et al. 2012] Kyoungwook Min, Jeongdan Choi, Hangeun Kim and Hyun Myung, “Design and Implementation of Path Generation Algorithm for Controlling Autonomous Driving and Parking,” in Proceedings of 2012 12th International Conference on Control, Automation and Systems, Jeju Island, Korea, pp. 956-959, Oct. 17-21, 2012.
[61: Oyama & Nonaka 2013] Kentaro Oyama and Kenichiro Nonaka, “Model Predictive Parking Control for Nonholonomic Vehicles using Time-State Control Form,” in Proceedings of 2013 European Control Conference (ECC), Zürich, Switzerland, pp. 458-465, July 17-19, 2013.
[62: Ma et al. 2017] Shidian Ma, Haobin Jiang, Mu Han, Ju Xie, and Chenxu Li, “Research on Automatic Parking Systems Based on Parking Scene Recognition,” IEEE Access, Vol. 5, pp. 21091-21917, Oct. 18, 2017.
[63: Karaman & Frazzoli 2011] Sertac Karaman and Emilio Frazzoli, “Sampling-based algorithms for optimal motion planning,” The International Journal of Robotics Research, Vol. 30, No. 7, pp. 846-894, 2011.
[64: Ziegler & Stiller 2010] Julius Ziegler and Christoph Stiller, “Fast Collision Checking for Intelligent Vehicle Motion Planning,” in Proceedings of 2010 IEEE Intelligent Vehicles Symposium (IV), University of California, San Diego, CA, USA, pp. 518-522, June 21-24, 2010.
[65: Klemm et al. 2015] Sebastian Klemm, Jan Oberländer, Andreas Hermann, Arne Roennau, Thomas Schamm, J. Marius Zöllner, and Rüdiger Dillmann, “RRT*-Connect: Faster, Asymptotically Optimal Motion Planning,” in Proceedings of IEEE International Conference on Robotics and Biomimetics (ROBIO), Zhuhai, China, pp.1670-1677, Dec. 6-9, 2015.
[66: Biber & Stasser 2003] Peter Biber and Wolfgang Strasser, “The Normal Distributions Transform: A New Approach to Laser Scan Matching,” in Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Las Vegas, NV, USA, pp. 2743-2748, Oct. 27-31, 2003.
[67: Zinelli et al. 2019] Andrea Zinelli, Luigi Musto, and Fabio Pizzati, “A Deep-Learning Approach for Parking Slot Detection on Surround-View Images,” in Proceedings of IEEE Intelligent Vehicles Symposium (IV), Paris, France, pp. 683-688, June 9-12, 2019.
[68: Komoriya & Tanie 1989] K. Komoriya and K. Tanie, “Trajectory Design and Control of a Wheel-type Mobile Robot Using B-spline Curve,” in Proceedings of IEEE/RSJ International Workshop on Intelligent Robots and Systems (IROS), The Autonomous Mobile Robots and Its Applications, Tsukuba, Japan, pp. 398-405, Sept. 4-6, 1989.
[69: Jhang et al. 2020] Jyun-Hao Jhang, Feng-Li Lian, and Yu-Hsiang Hao, “Forward and Backward Motion Planning for Autonomous Parking Using Smooth-feedback Bidirectional Rapidly-exploring Random Trees with Pattern Cost Penalty”, in Proc. of 2020 IEEE International Conference on Automation Science and Engineering, Hong Kong, Aug. 2020.
[70: Jazar 2008] Raza N. Jazar, “Vehicle Dynamics: Theory and Application”, Boston, MA, USA: Springer, 2008, pp. 379-395.
[71: Jazar 2008] Rajesh Rajamani, “Vehicle Dynamics and Control,” in Mechanical Engineering Series, 2nd edition, Editor: Frederick F. Ling, New York: Springer, 2012, pp. 15-46.
[72: Henderson 2019] Trevor Henderson. (2019, March). Motion Planning. [Online]. Available: https://github.com/sportdeath/motion_planning.
[73: Henderson 2019] Atsushi Sakai. (2019, March). model_predictive_speed_and_steer_control. [Online]. Available: https://github.com/AtsushiSakai/PythonRobotics.
[74: CVXPY.org] CVXPY.org. [Online]. Available: https://www.cvxpy.org/.
[75: Autoware.ai 2019] Autoware.ai. (2019, March). mpc_follower. [Online]. Available: https://github.com/autowarefoundation/autoware/tree/feature/mpc_trajectory_follower.
[76: ROS.org] Robot Operating System (ROS).org. [Online]. Available: http://www.ros.org.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top